diff options
Diffstat (limited to 'mm/util.c')
-rw-r--r-- | mm/util.c | 1195 |
1 files changed, 1195 insertions, 0 deletions
diff --git a/mm/util.c b/mm/util.c new file mode 100644 index 000000000..ce3bb17c9 --- /dev/null +++ b/mm/util.c @@ -0,0 +1,1195 @@ +// SPDX-License-Identifier: GPL-2.0-only +#include <linux/mm.h> +#include <linux/slab.h> +#include <linux/string.h> +#include <linux/compiler.h> +#include <linux/export.h> +#include <linux/err.h> +#include <linux/sched.h> +#include <linux/sched/mm.h> +#include <linux/sched/signal.h> +#include <linux/sched/task_stack.h> +#include <linux/security.h> +#include <linux/swap.h> +#include <linux/swapops.h> +#include <linux/mman.h> +#include <linux/hugetlb.h> +#include <linux/vmalloc.h> +#include <linux/userfaultfd_k.h> +#include <linux/elf.h> +#include <linux/elf-randomize.h> +#include <linux/personality.h> +#include <linux/random.h> +#include <linux/processor.h> +#include <linux/sizes.h> +#include <linux/compat.h> + +#include <linux/uaccess.h> + +#include "internal.h" +#include "swap.h" + +/** + * kfree_const - conditionally free memory + * @x: pointer to the memory + * + * Function calls kfree only if @x is not in .rodata section. + */ +void kfree_const(const void *x) +{ + if (!is_kernel_rodata((unsigned long)x)) + kfree(x); +} +EXPORT_SYMBOL(kfree_const); + +/** + * kstrdup - allocate space for and copy an existing string + * @s: the string to duplicate + * @gfp: the GFP mask used in the kmalloc() call when allocating memory + * + * Return: newly allocated copy of @s or %NULL in case of error + */ +char *kstrdup(const char *s, gfp_t gfp) +{ + size_t len; + char *buf; + + if (!s) + return NULL; + + len = strlen(s) + 1; + buf = kmalloc_track_caller(len, gfp); + if (buf) + memcpy(buf, s, len); + return buf; +} +EXPORT_SYMBOL(kstrdup); + +/** + * kstrdup_const - conditionally duplicate an existing const string + * @s: the string to duplicate + * @gfp: the GFP mask used in the kmalloc() call when allocating memory + * + * Note: Strings allocated by kstrdup_const should be freed by kfree_const and + * must not be passed to krealloc(). + * + * Return: source string if it is in .rodata section otherwise + * fallback to kstrdup. + */ +const char *kstrdup_const(const char *s, gfp_t gfp) +{ + if (is_kernel_rodata((unsigned long)s)) + return s; + + return kstrdup(s, gfp); +} +EXPORT_SYMBOL(kstrdup_const); + +/** + * kstrndup - allocate space for and copy an existing string + * @s: the string to duplicate + * @max: read at most @max chars from @s + * @gfp: the GFP mask used in the kmalloc() call when allocating memory + * + * Note: Use kmemdup_nul() instead if the size is known exactly. + * + * Return: newly allocated copy of @s or %NULL in case of error + */ +char *kstrndup(const char *s, size_t max, gfp_t gfp) +{ + size_t len; + char *buf; + + if (!s) + return NULL; + + len = strnlen(s, max); + buf = kmalloc_track_caller(len+1, gfp); + if (buf) { + memcpy(buf, s, len); + buf[len] = '\0'; + } + return buf; +} +EXPORT_SYMBOL(kstrndup); + +/** + * kmemdup - duplicate region of memory + * + * @src: memory region to duplicate + * @len: memory region length + * @gfp: GFP mask to use + * + * Return: newly allocated copy of @src or %NULL in case of error + */ +void *kmemdup(const void *src, size_t len, gfp_t gfp) +{ + void *p; + + p = kmalloc_track_caller(len, gfp); + if (p) + memcpy(p, src, len); + return p; +} +EXPORT_SYMBOL(kmemdup); + +/** + * kmemdup_nul - Create a NUL-terminated string from unterminated data + * @s: The data to stringify + * @len: The size of the data + * @gfp: the GFP mask used in the kmalloc() call when allocating memory + * + * Return: newly allocated copy of @s with NUL-termination or %NULL in + * case of error + */ +char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) +{ + char *buf; + + if (!s) + return NULL; + + buf = kmalloc_track_caller(len + 1, gfp); + if (buf) { + memcpy(buf, s, len); + buf[len] = '\0'; + } + return buf; +} +EXPORT_SYMBOL(kmemdup_nul); + +/** + * memdup_user - duplicate memory region from user space + * + * @src: source address in user space + * @len: number of bytes to copy + * + * Return: an ERR_PTR() on failure. Result is physically + * contiguous, to be freed by kfree(). + */ +void *memdup_user(const void __user *src, size_t len) +{ + void *p; + + p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); + if (!p) + return ERR_PTR(-ENOMEM); + + if (copy_from_user(p, src, len)) { + kfree(p); + return ERR_PTR(-EFAULT); + } + + return p; +} +EXPORT_SYMBOL(memdup_user); + +/** + * vmemdup_user - duplicate memory region from user space + * + * @src: source address in user space + * @len: number of bytes to copy + * + * Return: an ERR_PTR() on failure. Result may be not + * physically contiguous. Use kvfree() to free. + */ +void *vmemdup_user(const void __user *src, size_t len) +{ + void *p; + + p = kvmalloc(len, GFP_USER); + if (!p) + return ERR_PTR(-ENOMEM); + + if (copy_from_user(p, src, len)) { + kvfree(p); + return ERR_PTR(-EFAULT); + } + + return p; +} +EXPORT_SYMBOL(vmemdup_user); + +/** + * strndup_user - duplicate an existing string from user space + * @s: The string to duplicate + * @n: Maximum number of bytes to copy, including the trailing NUL. + * + * Return: newly allocated copy of @s or an ERR_PTR() in case of error + */ +char *strndup_user(const char __user *s, long n) +{ + char *p; + long length; + + length = strnlen_user(s, n); + + if (!length) + return ERR_PTR(-EFAULT); + + if (length > n) + return ERR_PTR(-EINVAL); + + p = memdup_user(s, length); + + if (IS_ERR(p)) + return p; + + p[length - 1] = '\0'; + + return p; +} +EXPORT_SYMBOL(strndup_user); + +/** + * memdup_user_nul - duplicate memory region from user space and NUL-terminate + * + * @src: source address in user space + * @len: number of bytes to copy + * + * Return: an ERR_PTR() on failure. + */ +void *memdup_user_nul(const void __user *src, size_t len) +{ + char *p; + + /* + * Always use GFP_KERNEL, since copy_from_user() can sleep and + * cause pagefault, which makes it pointless to use GFP_NOFS + * or GFP_ATOMIC. + */ + p = kmalloc_track_caller(len + 1, GFP_KERNEL); + if (!p) + return ERR_PTR(-ENOMEM); + + if (copy_from_user(p, src, len)) { + kfree(p); + return ERR_PTR(-EFAULT); + } + p[len] = '\0'; + + return p; +} +EXPORT_SYMBOL(memdup_user_nul); + +/* Check if the vma is being used as a stack by this task */ +int vma_is_stack_for_current(struct vm_area_struct *vma) +{ + struct task_struct * __maybe_unused t = current; + + return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); +} + +/* + * Change backing file, only valid to use during initial VMA setup. + */ +void vma_set_file(struct vm_area_struct *vma, struct file *file) +{ + /* Changing an anonymous vma with this is illegal */ + get_file(file); + swap(vma->vm_file, file); + fput(file); +} +EXPORT_SYMBOL(vma_set_file); + +#ifndef STACK_RND_MASK +#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ +#endif + +unsigned long randomize_stack_top(unsigned long stack_top) +{ + unsigned long random_variable = 0; + + if (current->flags & PF_RANDOMIZE) { + random_variable = get_random_long(); + random_variable &= STACK_RND_MASK; + random_variable <<= PAGE_SHIFT; + } +#ifdef CONFIG_STACK_GROWSUP + return PAGE_ALIGN(stack_top) + random_variable; +#else + return PAGE_ALIGN(stack_top) - random_variable; +#endif +} + +/** + * randomize_page - Generate a random, page aligned address + * @start: The smallest acceptable address the caller will take. + * @range: The size of the area, starting at @start, within which the + * random address must fall. + * + * If @start + @range would overflow, @range is capped. + * + * NOTE: Historical use of randomize_range, which this replaces, presumed that + * @start was already page aligned. We now align it regardless. + * + * Return: A page aligned address within [start, start + range). On error, + * @start is returned. + */ +unsigned long randomize_page(unsigned long start, unsigned long range) +{ + if (!PAGE_ALIGNED(start)) { + range -= PAGE_ALIGN(start) - start; + start = PAGE_ALIGN(start); + } + + if (start > ULONG_MAX - range) + range = ULONG_MAX - start; + + range >>= PAGE_SHIFT; + + if (range == 0) + return start; + + return start + (get_random_long() % range << PAGE_SHIFT); +} + +#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT +unsigned long __weak arch_randomize_brk(struct mm_struct *mm) +{ + /* Is the current task 32bit ? */ + if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) + return randomize_page(mm->brk, SZ_32M); + + return randomize_page(mm->brk, SZ_1G); +} + +unsigned long arch_mmap_rnd(void) +{ + unsigned long rnd; + +#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS + if (is_compat_task()) + rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); + else +#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ + rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); + + return rnd << PAGE_SHIFT; +} + +static int mmap_is_legacy(struct rlimit *rlim_stack) +{ + if (current->personality & ADDR_COMPAT_LAYOUT) + return 1; + + if (rlim_stack->rlim_cur == RLIM_INFINITY) + return 1; + + return sysctl_legacy_va_layout; +} + +/* + * Leave enough space between the mmap area and the stack to honour ulimit in + * the face of randomisation. + */ +#define MIN_GAP (SZ_128M) +#define MAX_GAP (STACK_TOP / 6 * 5) + +static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) +{ + unsigned long gap = rlim_stack->rlim_cur; + unsigned long pad = stack_guard_gap; + + /* Account for stack randomization if necessary */ + if (current->flags & PF_RANDOMIZE) + pad += (STACK_RND_MASK << PAGE_SHIFT); + + /* Values close to RLIM_INFINITY can overflow. */ + if (gap + pad > gap) + gap += pad; + + if (gap < MIN_GAP) + gap = MIN_GAP; + else if (gap > MAX_GAP) + gap = MAX_GAP; + + return PAGE_ALIGN(STACK_TOP - gap - rnd); +} + +void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) +{ + unsigned long random_factor = 0UL; + + if (current->flags & PF_RANDOMIZE) + random_factor = arch_mmap_rnd(); + + if (mmap_is_legacy(rlim_stack)) { + mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; + mm->get_unmapped_area = arch_get_unmapped_area; + } else { + mm->mmap_base = mmap_base(random_factor, rlim_stack); + mm->get_unmapped_area = arch_get_unmapped_area_topdown; + } +} +#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) +void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) +{ + mm->mmap_base = TASK_UNMAPPED_BASE; + mm->get_unmapped_area = arch_get_unmapped_area; +} +#endif + +/** + * __account_locked_vm - account locked pages to an mm's locked_vm + * @mm: mm to account against + * @pages: number of pages to account + * @inc: %true if @pages should be considered positive, %false if not + * @task: task used to check RLIMIT_MEMLOCK + * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped + * + * Assumes @task and @mm are valid (i.e. at least one reference on each), and + * that mmap_lock is held as writer. + * + * Return: + * * 0 on success + * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. + */ +int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, + struct task_struct *task, bool bypass_rlim) +{ + unsigned long locked_vm, limit; + int ret = 0; + + mmap_assert_write_locked(mm); + + locked_vm = mm->locked_vm; + if (inc) { + if (!bypass_rlim) { + limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; + if (locked_vm + pages > limit) + ret = -ENOMEM; + } + if (!ret) + mm->locked_vm = locked_vm + pages; + } else { + WARN_ON_ONCE(pages > locked_vm); + mm->locked_vm = locked_vm - pages; + } + + pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, + (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, + locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), + ret ? " - exceeded" : ""); + + return ret; +} +EXPORT_SYMBOL_GPL(__account_locked_vm); + +/** + * account_locked_vm - account locked pages to an mm's locked_vm + * @mm: mm to account against, may be NULL + * @pages: number of pages to account + * @inc: %true if @pages should be considered positive, %false if not + * + * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). + * + * Return: + * * 0 on success, or if mm is NULL + * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. + */ +int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) +{ + int ret; + + if (pages == 0 || !mm) + return 0; + + mmap_write_lock(mm); + ret = __account_locked_vm(mm, pages, inc, current, + capable(CAP_IPC_LOCK)); + mmap_write_unlock(mm); + + return ret; +} +EXPORT_SYMBOL_GPL(account_locked_vm); + +unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, + unsigned long len, unsigned long prot, + unsigned long flag, unsigned long pgoff) +{ + unsigned long ret; + struct mm_struct *mm = current->mm; + unsigned long populate; + LIST_HEAD(uf); + + ret = security_mmap_file(file, prot, flag); + if (!ret) { + if (mmap_write_lock_killable(mm)) + return -EINTR; + ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate, + &uf); + mmap_write_unlock(mm); + userfaultfd_unmap_complete(mm, &uf); + if (populate) + mm_populate(ret, populate); + } + return ret; +} + +unsigned long vm_mmap(struct file *file, unsigned long addr, + unsigned long len, unsigned long prot, + unsigned long flag, unsigned long offset) +{ + if (unlikely(offset + PAGE_ALIGN(len) < offset)) + return -EINVAL; + if (unlikely(offset_in_page(offset))) + return -EINVAL; + + return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); +} +EXPORT_SYMBOL(vm_mmap); + +/** + * kvmalloc_node - attempt to allocate physically contiguous memory, but upon + * failure, fall back to non-contiguous (vmalloc) allocation. + * @size: size of the request. + * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. + * @node: numa node to allocate from + * + * Uses kmalloc to get the memory but if the allocation fails then falls back + * to the vmalloc allocator. Use kvfree for freeing the memory. + * + * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. + * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is + * preferable to the vmalloc fallback, due to visible performance drawbacks. + * + * Return: pointer to the allocated memory of %NULL in case of failure + */ +void *kvmalloc_node(size_t size, gfp_t flags, int node) +{ + gfp_t kmalloc_flags = flags; + void *ret; + + /* + * We want to attempt a large physically contiguous block first because + * it is less likely to fragment multiple larger blocks and therefore + * contribute to a long term fragmentation less than vmalloc fallback. + * However make sure that larger requests are not too disruptive - no + * OOM killer and no allocation failure warnings as we have a fallback. + */ + if (size > PAGE_SIZE) { + kmalloc_flags |= __GFP_NOWARN; + + if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) + kmalloc_flags |= __GFP_NORETRY; + + /* nofail semantic is implemented by the vmalloc fallback */ + kmalloc_flags &= ~__GFP_NOFAIL; + } + + ret = kmalloc_node(size, kmalloc_flags, node); + + /* + * It doesn't really make sense to fallback to vmalloc for sub page + * requests + */ + if (ret || size <= PAGE_SIZE) + return ret; + + /* non-sleeping allocations are not supported by vmalloc */ + if (!gfpflags_allow_blocking(flags)) + return NULL; + + /* Don't even allow crazy sizes */ + if (unlikely(size > INT_MAX)) { + WARN_ON_ONCE(!(flags & __GFP_NOWARN)); + return NULL; + } + + /* + * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, + * since the callers already cannot assume anything + * about the resulting pointer, and cannot play + * protection games. + */ + return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, + flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, + node, __builtin_return_address(0)); +} +EXPORT_SYMBOL(kvmalloc_node); + +/** + * kvfree() - Free memory. + * @addr: Pointer to allocated memory. + * + * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). + * It is slightly more efficient to use kfree() or vfree() if you are certain + * that you know which one to use. + * + * Context: Either preemptible task context or not-NMI interrupt. + */ +void kvfree(const void *addr) +{ + if (is_vmalloc_addr(addr)) + vfree(addr); + else + kfree(addr); +} +EXPORT_SYMBOL(kvfree); + +/** + * kvfree_sensitive - Free a data object containing sensitive information. + * @addr: address of the data object to be freed. + * @len: length of the data object. + * + * Use the special memzero_explicit() function to clear the content of a + * kvmalloc'ed object containing sensitive data to make sure that the + * compiler won't optimize out the data clearing. + */ +void kvfree_sensitive(const void *addr, size_t len) +{ + if (likely(!ZERO_OR_NULL_PTR(addr))) { + memzero_explicit((void *)addr, len); + kvfree(addr); + } +} +EXPORT_SYMBOL(kvfree_sensitive); + +void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) +{ + void *newp; + + if (oldsize >= newsize) + return (void *)p; + newp = kvmalloc(newsize, flags); + if (!newp) + return NULL; + memcpy(newp, p, oldsize); + kvfree(p); + return newp; +} +EXPORT_SYMBOL(kvrealloc); + +/** + * __vmalloc_array - allocate memory for a virtually contiguous array. + * @n: number of elements. + * @size: element size. + * @flags: the type of memory to allocate (see kmalloc). + */ +void *__vmalloc_array(size_t n, size_t size, gfp_t flags) +{ + size_t bytes; + + if (unlikely(check_mul_overflow(n, size, &bytes))) + return NULL; + return __vmalloc(bytes, flags); +} +EXPORT_SYMBOL(__vmalloc_array); + +/** + * vmalloc_array - allocate memory for a virtually contiguous array. + * @n: number of elements. + * @size: element size. + */ +void *vmalloc_array(size_t n, size_t size) +{ + return __vmalloc_array(n, size, GFP_KERNEL); +} +EXPORT_SYMBOL(vmalloc_array); + +/** + * __vcalloc - allocate and zero memory for a virtually contiguous array. + * @n: number of elements. + * @size: element size. + * @flags: the type of memory to allocate (see kmalloc). + */ +void *__vcalloc(size_t n, size_t size, gfp_t flags) +{ + return __vmalloc_array(n, size, flags | __GFP_ZERO); +} +EXPORT_SYMBOL(__vcalloc); + +/** + * vcalloc - allocate and zero memory for a virtually contiguous array. + * @n: number of elements. + * @size: element size. + */ +void *vcalloc(size_t n, size_t size) +{ + return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO); +} +EXPORT_SYMBOL(vcalloc); + +/* Neutral page->mapping pointer to address_space or anon_vma or other */ +void *page_rmapping(struct page *page) +{ + return folio_raw_mapping(page_folio(page)); +} + +/** + * folio_mapped - Is this folio mapped into userspace? + * @folio: The folio. + * + * Return: True if any page in this folio is referenced by user page tables. + */ +bool folio_mapped(struct folio *folio) +{ + long i, nr; + + if (!folio_test_large(folio)) + return atomic_read(&folio->_mapcount) >= 0; + if (atomic_read(folio_mapcount_ptr(folio)) >= 0) + return true; + if (folio_test_hugetlb(folio)) + return false; + + nr = folio_nr_pages(folio); + for (i = 0; i < nr; i++) { + if (atomic_read(&folio_page(folio, i)->_mapcount) >= 0) + return true; + } + return false; +} +EXPORT_SYMBOL(folio_mapped); + +struct anon_vma *folio_anon_vma(struct folio *folio) +{ + unsigned long mapping = (unsigned long)folio->mapping; + + if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) + return NULL; + return (void *)(mapping - PAGE_MAPPING_ANON); +} + +/** + * folio_mapping - Find the mapping where this folio is stored. + * @folio: The folio. + * + * For folios which are in the page cache, return the mapping that this + * page belongs to. Folios in the swap cache return the swap mapping + * this page is stored in (which is different from the mapping for the + * swap file or swap device where the data is stored). + * + * You can call this for folios which aren't in the swap cache or page + * cache and it will return NULL. + */ +struct address_space *folio_mapping(struct folio *folio) +{ + struct address_space *mapping; + + /* This happens if someone calls flush_dcache_page on slab page */ + if (unlikely(folio_test_slab(folio))) + return NULL; + + if (unlikely(folio_test_swapcache(folio))) + return swap_address_space(folio_swap_entry(folio)); + + mapping = folio->mapping; + if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) + return NULL; + + return mapping; +} +EXPORT_SYMBOL(folio_mapping); + +/* Slow path of page_mapcount() for compound pages */ +int __page_mapcount(struct page *page) +{ + int ret; + + ret = atomic_read(&page->_mapcount) + 1; + /* + * For file THP page->_mapcount contains total number of mapping + * of the page: no need to look into compound_mapcount. + */ + if (!PageAnon(page) && !PageHuge(page)) + return ret; + page = compound_head(page); + ret += atomic_read(compound_mapcount_ptr(page)) + 1; + if (PageDoubleMap(page)) + ret--; + return ret; +} +EXPORT_SYMBOL_GPL(__page_mapcount); + +/** + * folio_mapcount() - Calculate the number of mappings of this folio. + * @folio: The folio. + * + * A large folio tracks both how many times the entire folio is mapped, + * and how many times each individual page in the folio is mapped. + * This function calculates the total number of times the folio is + * mapped. + * + * Return: The number of times this folio is mapped. + */ +int folio_mapcount(struct folio *folio) +{ + int i, compound, nr, ret; + + if (likely(!folio_test_large(folio))) + return atomic_read(&folio->_mapcount) + 1; + + compound = folio_entire_mapcount(folio); + if (folio_test_hugetlb(folio)) + return compound; + ret = compound; + nr = folio_nr_pages(folio); + for (i = 0; i < nr; i++) + ret += atomic_read(&folio_page(folio, i)->_mapcount) + 1; + /* File pages has compound_mapcount included in _mapcount */ + if (!folio_test_anon(folio)) + return ret - compound * nr; + if (folio_test_double_map(folio)) + ret -= nr; + return ret; +} + +/** + * folio_copy - Copy the contents of one folio to another. + * @dst: Folio to copy to. + * @src: Folio to copy from. + * + * The bytes in the folio represented by @src are copied to @dst. + * Assumes the caller has validated that @dst is at least as large as @src. + * Can be called in atomic context for order-0 folios, but if the folio is + * larger, it may sleep. + */ +void folio_copy(struct folio *dst, struct folio *src) +{ + long i = 0; + long nr = folio_nr_pages(src); + + for (;;) { + copy_highpage(folio_page(dst, i), folio_page(src, i)); + if (++i == nr) + break; + cond_resched(); + } +} + +int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; +int sysctl_overcommit_ratio __read_mostly = 50; +unsigned long sysctl_overcommit_kbytes __read_mostly; +int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; +unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ +unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ + +int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, + size_t *lenp, loff_t *ppos) +{ + int ret; + + ret = proc_dointvec(table, write, buffer, lenp, ppos); + if (ret == 0 && write) + sysctl_overcommit_kbytes = 0; + return ret; +} + +static void sync_overcommit_as(struct work_struct *dummy) +{ + percpu_counter_sync(&vm_committed_as); +} + +int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, + size_t *lenp, loff_t *ppos) +{ + struct ctl_table t; + int new_policy = -1; + int ret; + + /* + * The deviation of sync_overcommit_as could be big with loose policy + * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to + * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply + * with the strict "NEVER", and to avoid possible race condition (even + * though user usually won't too frequently do the switching to policy + * OVERCOMMIT_NEVER), the switch is done in the following order: + * 1. changing the batch + * 2. sync percpu count on each CPU + * 3. switch the policy + */ + if (write) { + t = *table; + t.data = &new_policy; + ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); + if (ret || new_policy == -1) + return ret; + + mm_compute_batch(new_policy); + if (new_policy == OVERCOMMIT_NEVER) + schedule_on_each_cpu(sync_overcommit_as); + sysctl_overcommit_memory = new_policy; + } else { + ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); + } + + return ret; +} + +int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, + size_t *lenp, loff_t *ppos) +{ + int ret; + + ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); + if (ret == 0 && write) + sysctl_overcommit_ratio = 0; + return ret; +} + +/* + * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used + */ +unsigned long vm_commit_limit(void) +{ + unsigned long allowed; + + if (sysctl_overcommit_kbytes) + allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); + else + allowed = ((totalram_pages() - hugetlb_total_pages()) + * sysctl_overcommit_ratio / 100); + allowed += total_swap_pages; + + return allowed; +} + +/* + * Make sure vm_committed_as in one cacheline and not cacheline shared with + * other variables. It can be updated by several CPUs frequently. + */ +struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; + +/* + * The global memory commitment made in the system can be a metric + * that can be used to drive ballooning decisions when Linux is hosted + * as a guest. On Hyper-V, the host implements a policy engine for dynamically + * balancing memory across competing virtual machines that are hosted. + * Several metrics drive this policy engine including the guest reported + * memory commitment. + * + * The time cost of this is very low for small platforms, and for big + * platform like a 2S/36C/72T Skylake server, in worst case where + * vm_committed_as's spinlock is under severe contention, the time cost + * could be about 30~40 microseconds. + */ +unsigned long vm_memory_committed(void) +{ + return percpu_counter_sum_positive(&vm_committed_as); +} +EXPORT_SYMBOL_GPL(vm_memory_committed); + +/* + * Check that a process has enough memory to allocate a new virtual + * mapping. 0 means there is enough memory for the allocation to + * succeed and -ENOMEM implies there is not. + * + * We currently support three overcommit policies, which are set via the + * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst + * + * Strict overcommit modes added 2002 Feb 26 by Alan Cox. + * Additional code 2002 Jul 20 by Robert Love. + * + * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. + * + * Note this is a helper function intended to be used by LSMs which + * wish to use this logic. + */ +int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) +{ + long allowed; + + vm_acct_memory(pages); + + /* + * Sometimes we want to use more memory than we have + */ + if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) + return 0; + + if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { + if (pages > totalram_pages() + total_swap_pages) + goto error; + return 0; + } + + allowed = vm_commit_limit(); + /* + * Reserve some for root + */ + if (!cap_sys_admin) + allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); + + /* + * Don't let a single process grow so big a user can't recover + */ + if (mm) { + long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); + + allowed -= min_t(long, mm->total_vm / 32, reserve); + } + + if (percpu_counter_read_positive(&vm_committed_as) < allowed) + return 0; +error: + pr_warn_ratelimited("%s: pid: %d, comm: %s, no enough memory for the allocation\n", + __func__, current->pid, current->comm); + vm_unacct_memory(pages); + + return -ENOMEM; +} + +/** + * get_cmdline() - copy the cmdline value to a buffer. + * @task: the task whose cmdline value to copy. + * @buffer: the buffer to copy to. + * @buflen: the length of the buffer. Larger cmdline values are truncated + * to this length. + * + * Return: the size of the cmdline field copied. Note that the copy does + * not guarantee an ending NULL byte. + */ +int get_cmdline(struct task_struct *task, char *buffer, int buflen) +{ + int res = 0; + unsigned int len; + struct mm_struct *mm = get_task_mm(task); + unsigned long arg_start, arg_end, env_start, env_end; + if (!mm) + goto out; + if (!mm->arg_end) + goto out_mm; /* Shh! No looking before we're done */ + + spin_lock(&mm->arg_lock); + arg_start = mm->arg_start; + arg_end = mm->arg_end; + env_start = mm->env_start; + env_end = mm->env_end; + spin_unlock(&mm->arg_lock); + + len = arg_end - arg_start; + + if (len > buflen) + len = buflen; + + res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); + + /* + * If the nul at the end of args has been overwritten, then + * assume application is using setproctitle(3). + */ + if (res > 0 && buffer[res-1] != '\0' && len < buflen) { + len = strnlen(buffer, res); + if (len < res) { + res = len; + } else { + len = env_end - env_start; + if (len > buflen - res) + len = buflen - res; + res += access_process_vm(task, env_start, + buffer+res, len, + FOLL_FORCE); + res = strnlen(buffer, res); + } + } +out_mm: + mmput(mm); +out: + return res; +} + +int __weak memcmp_pages(struct page *page1, struct page *page2) +{ + char *addr1, *addr2; + int ret; + + addr1 = kmap_atomic(page1); + addr2 = kmap_atomic(page2); + ret = memcmp(addr1, addr2, PAGE_SIZE); + kunmap_atomic(addr2); + kunmap_atomic(addr1); + return ret; +} + +#ifdef CONFIG_PRINTK +/** + * mem_dump_obj - Print available provenance information + * @object: object for which to find provenance information. + * + * This function uses pr_cont(), so that the caller is expected to have + * printed out whatever preamble is appropriate. The provenance information + * depends on the type of object and on how much debugging is enabled. + * For example, for a slab-cache object, the slab name is printed, and, + * if available, the return address and stack trace from the allocation + * and last free path of that object. + */ +void mem_dump_obj(void *object) +{ + const char *type; + + if (kmem_valid_obj(object)) { + kmem_dump_obj(object); + return; + } + + if (vmalloc_dump_obj(object)) + return; + + if (is_vmalloc_addr(object)) + type = "vmalloc memory"; + else if (virt_addr_valid(object)) + type = "non-slab/vmalloc memory"; + else if (object == NULL) + type = "NULL pointer"; + else if (object == ZERO_SIZE_PTR) + type = "zero-size pointer"; + else + type = "non-paged memory"; + + pr_cont(" %s\n", type); +} +EXPORT_SYMBOL_GPL(mem_dump_obj); +#endif + +/* + * A driver might set a page logically offline -- PageOffline() -- and + * turn the page inaccessible in the hypervisor; after that, access to page + * content can be fatal. + * + * Some special PFN walkers -- i.e., /proc/kcore -- read content of random + * pages after checking PageOffline(); however, these PFN walkers can race + * with drivers that set PageOffline(). + * + * page_offline_freeze()/page_offline_thaw() allows for a subsystem to + * synchronize with such drivers, achieving that a page cannot be set + * PageOffline() while frozen. + * + * page_offline_begin()/page_offline_end() is used by drivers that care about + * such races when setting a page PageOffline(). + */ +static DECLARE_RWSEM(page_offline_rwsem); + +void page_offline_freeze(void) +{ + down_read(&page_offline_rwsem); +} + +void page_offline_thaw(void) +{ + up_read(&page_offline_rwsem); +} + +void page_offline_begin(void) +{ + down_write(&page_offline_rwsem); +} +EXPORT_SYMBOL(page_offline_begin); + +void page_offline_end(void) +{ + up_write(&page_offline_rwsem); +} +EXPORT_SYMBOL(page_offline_end); + +#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO +void flush_dcache_folio(struct folio *folio) +{ + long i, nr = folio_nr_pages(folio); + + for (i = 0; i < nr; i++) + flush_dcache_page(folio_page(folio, i)); +} +EXPORT_SYMBOL(flush_dcache_folio); +#endif |