diff options
Diffstat (limited to 'tools/testing/selftests/kvm/rseq_test.c')
-rw-r--r-- | tools/testing/selftests/kvm/rseq_test.c | 282 |
1 files changed, 282 insertions, 0 deletions
diff --git a/tools/testing/selftests/kvm/rseq_test.c b/tools/testing/selftests/kvm/rseq_test.c new file mode 100644 index 000000000..6f88da7e6 --- /dev/null +++ b/tools/testing/selftests/kvm/rseq_test.c @@ -0,0 +1,282 @@ +// SPDX-License-Identifier: GPL-2.0-only +#define _GNU_SOURCE /* for program_invocation_short_name */ +#include <errno.h> +#include <fcntl.h> +#include <pthread.h> +#include <sched.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <signal.h> +#include <syscall.h> +#include <sys/ioctl.h> +#include <sys/sysinfo.h> +#include <asm/barrier.h> +#include <linux/atomic.h> +#include <linux/rseq.h> +#include <linux/unistd.h> + +#include "kvm_util.h" +#include "processor.h" +#include "test_util.h" + +#include "../rseq/rseq.c" + +/* + * Any bug related to task migration is likely to be timing-dependent; perform + * a large number of migrations to reduce the odds of a false negative. + */ +#define NR_TASK_MIGRATIONS 100000 + +static pthread_t migration_thread; +static cpu_set_t possible_mask; +static int min_cpu, max_cpu; +static bool done; + +static atomic_t seq_cnt; + +static void guest_code(void) +{ + for (;;) + GUEST_SYNC(0); +} + +/* + * We have to perform direct system call for getcpu() because it's + * not available until glic 2.29. + */ +static void sys_getcpu(unsigned *cpu) +{ + int r; + + r = syscall(__NR_getcpu, cpu, NULL, NULL); + TEST_ASSERT(!r, "getcpu failed, errno = %d (%s)", errno, strerror(errno)); +} + +static int next_cpu(int cpu) +{ + /* + * Advance to the next CPU, skipping those that weren't in the original + * affinity set. Sadly, there is no CPU_SET_FOR_EACH, and cpu_set_t's + * data storage is considered as opaque. Note, if this task is pinned + * to a small set of discontigous CPUs, e.g. 2 and 1023, this loop will + * burn a lot cycles and the test will take longer than normal to + * complete. + */ + do { + cpu++; + if (cpu > max_cpu) { + cpu = min_cpu; + TEST_ASSERT(CPU_ISSET(cpu, &possible_mask), + "Min CPU = %d must always be usable", cpu); + break; + } + } while (!CPU_ISSET(cpu, &possible_mask)); + + return cpu; +} + +static void *migration_worker(void *__rseq_tid) +{ + pid_t rseq_tid = (pid_t)(unsigned long)__rseq_tid; + cpu_set_t allowed_mask; + int r, i, cpu; + + CPU_ZERO(&allowed_mask); + + for (i = 0, cpu = min_cpu; i < NR_TASK_MIGRATIONS; i++, cpu = next_cpu(cpu)) { + CPU_SET(cpu, &allowed_mask); + + /* + * Bump the sequence count twice to allow the reader to detect + * that a migration may have occurred in between rseq and sched + * CPU ID reads. An odd sequence count indicates a migration + * is in-progress, while a completely different count indicates + * a migration occurred since the count was last read. + */ + atomic_inc(&seq_cnt); + + /* + * Ensure the odd count is visible while getcpu() isn't + * stable, i.e. while changing affinity is in-progress. + */ + smp_wmb(); + r = sched_setaffinity(rseq_tid, sizeof(allowed_mask), &allowed_mask); + TEST_ASSERT(!r, "sched_setaffinity failed, errno = %d (%s)", + errno, strerror(errno)); + smp_wmb(); + atomic_inc(&seq_cnt); + + CPU_CLR(cpu, &allowed_mask); + + /* + * Wait 1-10us before proceeding to the next iteration and more + * specifically, before bumping seq_cnt again. A delay is + * needed on three fronts: + * + * 1. To allow sched_setaffinity() to prompt migration before + * ioctl(KVM_RUN) enters the guest so that TIF_NOTIFY_RESUME + * (or TIF_NEED_RESCHED, which indirectly leads to handling + * NOTIFY_RESUME) is handled in KVM context. + * + * If NOTIFY_RESUME/NEED_RESCHED is set after KVM enters + * the guest, the guest will trigger a IO/MMIO exit all the + * way to userspace and the TIF flags will be handled by + * the generic "exit to userspace" logic, not by KVM. The + * exit to userspace is necessary to give the test a chance + * to check the rseq CPU ID (see #2). + * + * Alternatively, guest_code() could include an instruction + * to trigger an exit that is handled by KVM, but any such + * exit requires architecture specific code. + * + * 2. To let ioctl(KVM_RUN) make its way back to the test + * before the next round of migration. The test's check on + * the rseq CPU ID must wait for migration to complete in + * order to avoid false positive, thus any kernel rseq bug + * will be missed if the next migration starts before the + * check completes. + * + * 3. To ensure the read-side makes efficient forward progress, + * e.g. if getcpu() involves a syscall. Stalling the read-side + * means the test will spend more time waiting for getcpu() + * to stabilize and less time trying to hit the timing-dependent + * bug. + * + * Because any bug in this area is likely to be timing-dependent, + * run with a range of delays at 1us intervals from 1us to 10us + * as a best effort to avoid tuning the test to the point where + * it can hit _only_ the original bug and not detect future + * regressions. + * + * The original bug can reproduce with a delay up to ~500us on + * x86-64, but starts to require more iterations to reproduce + * as the delay creeps above ~10us, and the average runtime of + * each iteration obviously increases as well. Cap the delay + * at 10us to keep test runtime reasonable while minimizing + * potential coverage loss. + * + * The lower bound for reproducing the bug is likely below 1us, + * e.g. failures occur on x86-64 with nanosleep(0), but at that + * point the overhead of the syscall likely dominates the delay. + * Use usleep() for simplicity and to avoid unnecessary kernel + * dependencies. + */ + usleep((i % 10) + 1); + } + done = true; + return NULL; +} + +static void calc_min_max_cpu(void) +{ + int i, cnt, nproc; + + TEST_REQUIRE(CPU_COUNT(&possible_mask) >= 2); + + /* + * CPU_SET doesn't provide a FOR_EACH helper, get the min/max CPU that + * this task is affined to in order to reduce the time spent querying + * unusable CPUs, e.g. if this task is pinned to a small percentage of + * total CPUs. + */ + nproc = get_nprocs_conf(); + min_cpu = -1; + max_cpu = -1; + cnt = 0; + + for (i = 0; i < nproc; i++) { + if (!CPU_ISSET(i, &possible_mask)) + continue; + if (min_cpu == -1) + min_cpu = i; + max_cpu = i; + cnt++; + } + + __TEST_REQUIRE(cnt >= 2, + "Only one usable CPU, task migration not possible"); +} + +int main(int argc, char *argv[]) +{ + int r, i, snapshot; + struct kvm_vm *vm; + struct kvm_vcpu *vcpu; + u32 cpu, rseq_cpu; + + /* Tell stdout not to buffer its content */ + setbuf(stdout, NULL); + + r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask); + TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)", errno, + strerror(errno)); + + calc_min_max_cpu(); + + r = rseq_register_current_thread(); + TEST_ASSERT(!r, "rseq_register_current_thread failed, errno = %d (%s)", + errno, strerror(errno)); + + /* + * Create and run a dummy VM that immediately exits to userspace via + * GUEST_SYNC, while concurrently migrating the process by setting its + * CPU affinity. + */ + vm = vm_create_with_one_vcpu(&vcpu, guest_code); + ucall_init(vm, NULL); + + pthread_create(&migration_thread, NULL, migration_worker, + (void *)(unsigned long)syscall(SYS_gettid)); + + for (i = 0; !done; i++) { + vcpu_run(vcpu); + TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC, + "Guest failed?"); + + /* + * Verify rseq's CPU matches sched's CPU. Ensure migration + * doesn't occur between getcpu() and reading the rseq cpu_id + * by rereading both if the sequence count changes, or if the + * count is odd (migration in-progress). + */ + do { + /* + * Drop bit 0 to force a mismatch if the count is odd, + * i.e. if a migration is in-progress. + */ + snapshot = atomic_read(&seq_cnt) & ~1; + + /* + * Ensure calling getcpu() and reading rseq.cpu_id complete + * in a single "no migration" window, i.e. are not reordered + * across the seq_cnt reads. + */ + smp_rmb(); + sys_getcpu(&cpu); + rseq_cpu = rseq_current_cpu_raw(); + smp_rmb(); + } while (snapshot != atomic_read(&seq_cnt)); + + TEST_ASSERT(rseq_cpu == cpu, + "rseq CPU = %d, sched CPU = %d\n", rseq_cpu, cpu); + } + + /* + * Sanity check that the test was able to enter the guest a reasonable + * number of times, e.g. didn't get stalled too often/long waiting for + * getcpu() to stabilize. A 2:1 migration:KVM_RUN ratio is a fairly + * conservative ratio on x86-64, which can do _more_ KVM_RUNs than + * migrations given the 1us+ delay in the migration task. + */ + TEST_ASSERT(i > (NR_TASK_MIGRATIONS / 2), + "Only performed %d KVM_RUNs, task stalled too much?\n", i); + + pthread_join(migration_thread, NULL); + + kvm_vm_free(vm); + + rseq_unregister_current_thread(); + + return 0; +} |