From 2c3c1048746a4622d8c89a29670120dc8fab93c4 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 20:49:45 +0200 Subject: Adding upstream version 6.1.76. Signed-off-by: Daniel Baumann --- drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c | 657 ++++++++++++++++++++++++ 1 file changed, 657 insertions(+) create mode 100644 drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c (limited to 'drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c') diff --git a/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c b/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c new file mode 100644 index 000000000..d573fb091 --- /dev/null +++ b/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c @@ -0,0 +1,657 @@ +/* + * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + * + * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c + * + */ +#include "priv.h" +#include "gk20a.h" + +#include +#include + +static const u8 _pl_to_div[] = { +/* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */ +/* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32, +}; + +static u32 pl_to_div(u32 pl) +{ + if (pl >= ARRAY_SIZE(_pl_to_div)) + return 1; + + return _pl_to_div[pl]; +} + +static u32 div_to_pl(u32 div) +{ + u32 pl; + + for (pl = 0; pl < ARRAY_SIZE(_pl_to_div) - 1; pl++) { + if (_pl_to_div[pl] >= div) + return pl; + } + + return ARRAY_SIZE(_pl_to_div) - 1; +} + +static const struct gk20a_clk_pllg_params gk20a_pllg_params = { + .min_vco = 1000000, .max_vco = 2064000, + .min_u = 12000, .max_u = 38000, + .min_m = 1, .max_m = 255, + .min_n = 8, .max_n = 255, + .min_pl = 1, .max_pl = 32, +}; + +void +gk20a_pllg_read_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll) +{ + struct nvkm_device *device = clk->base.subdev.device; + u32 val; + + val = nvkm_rd32(device, GPCPLL_COEFF); + pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); + pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH); + pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH); +} + +void +gk20a_pllg_write_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll) +{ + struct nvkm_device *device = clk->base.subdev.device; + u32 val; + + val = (pll->m & MASK(GPCPLL_COEFF_M_WIDTH)) << GPCPLL_COEFF_M_SHIFT; + val |= (pll->n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT; + val |= (pll->pl & MASK(GPCPLL_COEFF_P_WIDTH)) << GPCPLL_COEFF_P_SHIFT; + nvkm_wr32(device, GPCPLL_COEFF, val); +} + +u32 +gk20a_pllg_calc_rate(struct gk20a_clk *clk, struct gk20a_pll *pll) +{ + u32 rate; + u32 divider; + + rate = clk->parent_rate * pll->n; + divider = pll->m * clk->pl_to_div(pll->pl); + + return rate / divider / 2; +} + +int +gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate, + struct gk20a_pll *pll) +{ + struct nvkm_subdev *subdev = &clk->base.subdev; + u32 target_clk_f, ref_clk_f, target_freq; + u32 min_vco_f, max_vco_f; + u32 low_pl, high_pl, best_pl; + u32 target_vco_f; + u32 best_m, best_n; + u32 best_delta = ~0; + u32 pl; + + target_clk_f = rate * 2 / KHZ; + ref_clk_f = clk->parent_rate / KHZ; + + target_vco_f = target_clk_f + target_clk_f / 50; + max_vco_f = max(clk->params->max_vco, target_vco_f); + min_vco_f = clk->params->min_vco; + best_m = clk->params->max_m; + best_n = clk->params->min_n; + best_pl = clk->params->min_pl; + + /* min_pl <= high_pl <= max_pl */ + high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f; + high_pl = min(high_pl, clk->params->max_pl); + high_pl = max(high_pl, clk->params->min_pl); + high_pl = clk->div_to_pl(high_pl); + + /* min_pl <= low_pl <= max_pl */ + low_pl = min_vco_f / target_vco_f; + low_pl = min(low_pl, clk->params->max_pl); + low_pl = max(low_pl, clk->params->min_pl); + low_pl = clk->div_to_pl(low_pl); + + nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl, + clk->pl_to_div(low_pl), high_pl, clk->pl_to_div(high_pl)); + + /* Select lowest possible VCO */ + for (pl = low_pl; pl <= high_pl; pl++) { + u32 m, n, n2; + + target_vco_f = target_clk_f * clk->pl_to_div(pl); + + for (m = clk->params->min_m; m <= clk->params->max_m; m++) { + u32 u_f = ref_clk_f / m; + + if (u_f < clk->params->min_u) + break; + if (u_f > clk->params->max_u) + continue; + + n = (target_vco_f * m) / ref_clk_f; + n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f; + + if (n > clk->params->max_n) + break; + + for (; n <= n2; n++) { + u32 vco_f; + + if (n < clk->params->min_n) + continue; + if (n > clk->params->max_n) + break; + + vco_f = ref_clk_f * n / m; + + if (vco_f >= min_vco_f && vco_f <= max_vco_f) { + u32 delta, lwv; + + lwv = (vco_f + (clk->pl_to_div(pl) / 2)) + / clk->pl_to_div(pl); + delta = abs(lwv - target_clk_f); + + if (delta < best_delta) { + best_delta = delta; + best_m = m; + best_n = n; + best_pl = pl; + + if (best_delta == 0) + goto found_match; + } + } + } + } + } + +found_match: + WARN_ON(best_delta == ~0); + + if (best_delta != 0) + nvkm_debug(subdev, + "no best match for target @ %dMHz on gpc_pll", + target_clk_f / KHZ); + + pll->m = best_m; + pll->n = best_n; + pll->pl = best_pl; + + target_freq = gk20a_pllg_calc_rate(clk, pll); + + nvkm_debug(subdev, + "actual target freq %d KHz, M %d, N %d, PL %d(div%d)\n", + target_freq / KHZ, pll->m, pll->n, pll->pl, + clk->pl_to_div(pll->pl)); + return 0; +} + +static int +gk20a_pllg_slide(struct gk20a_clk *clk, u32 n) +{ + struct nvkm_subdev *subdev = &clk->base.subdev; + struct nvkm_device *device = subdev->device; + struct gk20a_pll pll; + int ret = 0; + + /* get old coefficients */ + gk20a_pllg_read_mnp(clk, &pll); + /* do nothing if NDIV is the same */ + if (n == pll.n) + return 0; + + /* pll slowdown mode */ + nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, + BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT), + BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT)); + + /* new ndiv ready for ramp */ + pll.n = n; + udelay(1); + gk20a_pllg_write_mnp(clk, &pll); + + /* dynamic ramp to new ndiv */ + udelay(1); + nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, + BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), + BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT)); + + /* wait for ramping to complete */ + if (nvkm_wait_usec(device, 500, GPC_BCAST_NDIV_SLOWDOWN_DEBUG, + GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK, + GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) < 0) + ret = -ETIMEDOUT; + + /* exit slowdown mode */ + nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, + BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) | + BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0); + nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN); + + return ret; +} + +static int +gk20a_pllg_enable(struct gk20a_clk *clk) +{ + struct nvkm_device *device = clk->base.subdev.device; + u32 val; + + nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE); + nvkm_rd32(device, GPCPLL_CFG); + + /* enable lock detection */ + val = nvkm_rd32(device, GPCPLL_CFG); + if (val & GPCPLL_CFG_LOCK_DET_OFF) { + val &= ~GPCPLL_CFG_LOCK_DET_OFF; + nvkm_wr32(device, GPCPLL_CFG, val); + } + + /* wait for lock */ + if (nvkm_wait_usec(device, 300, GPCPLL_CFG, GPCPLL_CFG_LOCK, + GPCPLL_CFG_LOCK) < 0) + return -ETIMEDOUT; + + /* switch to VCO mode */ + nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), + BIT(SEL_VCO_GPC2CLK_OUT_SHIFT)); + + return 0; +} + +static void +gk20a_pllg_disable(struct gk20a_clk *clk) +{ + struct nvkm_device *device = clk->base.subdev.device; + + /* put PLL in bypass before disabling it */ + nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0); + + nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0); + nvkm_rd32(device, GPCPLL_CFG); +} + +static int +gk20a_pllg_program_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll) +{ + struct nvkm_subdev *subdev = &clk->base.subdev; + struct nvkm_device *device = subdev->device; + struct gk20a_pll cur_pll; + int ret; + + gk20a_pllg_read_mnp(clk, &cur_pll); + + /* split VCO-to-bypass jump in half by setting out divider 1:2 */ + nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, + GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT); + /* Intentional 2nd write to assure linear divider operation */ + nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, + GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT); + nvkm_rd32(device, GPC2CLK_OUT); + udelay(2); + + gk20a_pllg_disable(clk); + + gk20a_pllg_write_mnp(clk, pll); + + ret = gk20a_pllg_enable(clk); + if (ret) + return ret; + + /* restore out divider 1:1 */ + udelay(2); + nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, + GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT); + /* Intentional 2nd write to assure linear divider operation */ + nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, + GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT); + nvkm_rd32(device, GPC2CLK_OUT); + + return 0; +} + +static int +gk20a_pllg_program_mnp_slide(struct gk20a_clk *clk, const struct gk20a_pll *pll) +{ + struct gk20a_pll cur_pll; + int ret; + + if (gk20a_pllg_is_enabled(clk)) { + gk20a_pllg_read_mnp(clk, &cur_pll); + + /* just do NDIV slide if there is no change to M and PL */ + if (pll->m == cur_pll.m && pll->pl == cur_pll.pl) + return gk20a_pllg_slide(clk, pll->n); + + /* slide down to current NDIV_LO */ + cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll); + ret = gk20a_pllg_slide(clk, cur_pll.n); + if (ret) + return ret; + } + + /* program MNP with the new clock parameters and new NDIV_LO */ + cur_pll = *pll; + cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll); + ret = gk20a_pllg_program_mnp(clk, &cur_pll); + if (ret) + return ret; + + /* slide up to new NDIV */ + return gk20a_pllg_slide(clk, pll->n); +} + +static struct nvkm_pstate +gk20a_pstates[] = { + { + .base = { + .domain[nv_clk_src_gpc] = 72000, + .voltage = 0, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 108000, + .voltage = 1, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 180000, + .voltage = 2, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 252000, + .voltage = 3, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 324000, + .voltage = 4, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 396000, + .voltage = 5, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 468000, + .voltage = 6, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 540000, + .voltage = 7, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 612000, + .voltage = 8, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 648000, + .voltage = 9, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 684000, + .voltage = 10, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 708000, + .voltage = 11, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 756000, + .voltage = 12, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 804000, + .voltage = 13, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 852000, + .voltage = 14, + }, + }, +}; + +int +gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src) +{ + struct gk20a_clk *clk = gk20a_clk(base); + struct nvkm_subdev *subdev = &clk->base.subdev; + struct nvkm_device *device = subdev->device; + struct gk20a_pll pll; + + switch (src) { + case nv_clk_src_crystal: + return device->crystal; + case nv_clk_src_gpc: + gk20a_pllg_read_mnp(clk, &pll); + return gk20a_pllg_calc_rate(clk, &pll) / GK20A_CLK_GPC_MDIV; + default: + nvkm_error(subdev, "invalid clock source %d\n", src); + return -EINVAL; + } +} + +int +gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate) +{ + struct gk20a_clk *clk = gk20a_clk(base); + + return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] * + GK20A_CLK_GPC_MDIV, &clk->pll); +} + +int +gk20a_clk_prog(struct nvkm_clk *base) +{ + struct gk20a_clk *clk = gk20a_clk(base); + int ret; + + ret = gk20a_pllg_program_mnp_slide(clk, &clk->pll); + if (ret) + ret = gk20a_pllg_program_mnp(clk, &clk->pll); + + return ret; +} + +void +gk20a_clk_tidy(struct nvkm_clk *base) +{ +} + +int +gk20a_clk_setup_slide(struct gk20a_clk *clk) +{ + struct nvkm_subdev *subdev = &clk->base.subdev; + struct nvkm_device *device = subdev->device; + u32 step_a, step_b; + + switch (clk->parent_rate) { + case 12000000: + case 12800000: + case 13000000: + step_a = 0x2b; + step_b = 0x0b; + break; + case 19200000: + step_a = 0x12; + step_b = 0x08; + break; + case 38400000: + step_a = 0x04; + step_b = 0x05; + break; + default: + nvkm_error(subdev, "invalid parent clock rate %u KHz", + clk->parent_rate / KHZ); + return -EINVAL; + } + + nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT, + step_a << GPCPLL_CFG2_PLL_STEPA_SHIFT); + nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT, + step_b << GPCPLL_CFG3_PLL_STEPB_SHIFT); + + return 0; +} + +void +gk20a_clk_fini(struct nvkm_clk *base) +{ + struct nvkm_device *device = base->subdev.device; + struct gk20a_clk *clk = gk20a_clk(base); + + /* slide to VCO min */ + if (gk20a_pllg_is_enabled(clk)) { + struct gk20a_pll pll; + u32 n_lo; + + gk20a_pllg_read_mnp(clk, &pll); + n_lo = gk20a_pllg_n_lo(clk, &pll); + gk20a_pllg_slide(clk, n_lo); + } + + gk20a_pllg_disable(clk); + + /* set IDDQ */ + nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1); +} + +static int +gk20a_clk_init(struct nvkm_clk *base) +{ + struct gk20a_clk *clk = gk20a_clk(base); + struct nvkm_subdev *subdev = &clk->base.subdev; + struct nvkm_device *device = subdev->device; + int ret; + + /* get out from IDDQ */ + nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0); + nvkm_rd32(device, GPCPLL_CFG); + udelay(5); + + nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, + GPC2CLK_OUT_INIT_VAL); + + ret = gk20a_clk_setup_slide(clk); + if (ret) + return ret; + + /* Start with lowest frequency */ + base->func->calc(base, &base->func->pstates[0].base); + ret = base->func->prog(&clk->base); + if (ret) { + nvkm_error(subdev, "cannot initialize clock\n"); + return ret; + } + + return 0; +} + +static const struct nvkm_clk_func +gk20a_clk = { + .init = gk20a_clk_init, + .fini = gk20a_clk_fini, + .read = gk20a_clk_read, + .calc = gk20a_clk_calc, + .prog = gk20a_clk_prog, + .tidy = gk20a_clk_tidy, + .pstates = gk20a_pstates, + .nr_pstates = ARRAY_SIZE(gk20a_pstates), + .domains = { + { nv_clk_src_crystal, 0xff }, + { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV }, + { nv_clk_src_max } + } +}; + +int +gk20a_clk_ctor(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, + const struct nvkm_clk_func *func, const struct gk20a_clk_pllg_params *params, + struct gk20a_clk *clk) +{ + struct nvkm_device_tegra *tdev = device->func->tegra(device); + int ret; + int i; + + /* Finish initializing the pstates */ + for (i = 0; i < func->nr_pstates; i++) { + INIT_LIST_HEAD(&func->pstates[i].list); + func->pstates[i].pstate = i + 1; + } + + clk->params = params; + clk->parent_rate = clk_get_rate(tdev->clk); + + ret = nvkm_clk_ctor(func, device, type, inst, true, &clk->base); + if (ret) + return ret; + + nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n", + clk->parent_rate / KHZ); + + return 0; +} + +int +gk20a_clk_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, + struct nvkm_clk **pclk) +{ + struct gk20a_clk *clk; + int ret; + + clk = kzalloc(sizeof(*clk), GFP_KERNEL); + if (!clk) + return -ENOMEM; + *pclk = &clk->base; + + ret = gk20a_clk_ctor(device, type, inst, &gk20a_clk, &gk20a_pllg_params, clk); + + clk->pl_to_div = pl_to_div; + clk->div_to_pl = div_to_pl; + return ret; +} -- cgit v1.2.3