From 2c3c1048746a4622d8c89a29670120dc8fab93c4 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 20:49:45 +0200 Subject: Adding upstream version 6.1.76. Signed-off-by: Daniel Baumann --- drivers/net/wireless/ath/ath9k/eeprom.c | 687 ++++++++++++++++++++++++++++++++ 1 file changed, 687 insertions(+) create mode 100644 drivers/net/wireless/ath/ath9k/eeprom.c (limited to 'drivers/net/wireless/ath/ath9k/eeprom.c') diff --git a/drivers/net/wireless/ath/ath9k/eeprom.c b/drivers/net/wireless/ath/ath9k/eeprom.c new file mode 100644 index 000000000..efb788914 --- /dev/null +++ b/drivers/net/wireless/ath/ath9k/eeprom.c @@ -0,0 +1,687 @@ +/* + * Copyright (c) 2008-2011 Atheros Communications Inc. + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +#include "hw.h" +#include + +void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val) +{ + REG_WRITE(ah, reg, val); + + if (ah->config.analog_shiftreg) + udelay(100); +} + +void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask, + u32 shift, u32 val) +{ + REG_RMW(ah, reg, ((val << shift) & mask), mask); + + if (ah->config.analog_shiftreg) + udelay(100); +} + +int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight, + int16_t targetLeft, int16_t targetRight) +{ + int16_t rv; + + if (srcRight == srcLeft) { + rv = targetLeft; + } else { + rv = (int16_t) (((target - srcLeft) * targetRight + + (srcRight - target) * targetLeft) / + (srcRight - srcLeft)); + } + return rv; +} + +bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize, + u16 *indexL, u16 *indexR) +{ + u16 i; + + if (target <= pList[0]) { + *indexL = *indexR = 0; + return true; + } + if (target >= pList[listSize - 1]) { + *indexL = *indexR = (u16) (listSize - 1); + return true; + } + + for (i = 0; i < listSize - 1; i++) { + if (pList[i] == target) { + *indexL = *indexR = i; + return true; + } + if (target < pList[i + 1]) { + *indexL = i; + *indexR = (u16) (i + 1); + return false; + } + } + return false; +} + +void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data, + int eep_start_loc, int size) +{ + int i = 0, j, addr; + u32 addrdata[8]; + u32 data[8]; + + for (addr = 0; addr < size; addr++) { + addrdata[i] = AR5416_EEPROM_OFFSET + + ((addr + eep_start_loc) << AR5416_EEPROM_S); + i++; + if (i == 8) { + REG_READ_MULTI(ah, addrdata, data, i); + + for (j = 0; j < i; j++) { + *eep_data = data[j]; + eep_data++; + } + i = 0; + } + } + + if (i != 0) { + REG_READ_MULTI(ah, addrdata, data, i); + + for (j = 0; j < i; j++) { + *eep_data = data[j]; + eep_data++; + } + } +} + +static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size, + off_t offset, u16 *data) +{ + if (offset >= blob_size) + return false; + + *data = blob[offset]; + return true; +} + +static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata, + off_t offset, u16 *data) +{ + return ath9k_hw_nvram_read_array(pdata->eeprom_data, + ARRAY_SIZE(pdata->eeprom_data), + offset, data); +} + +static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob, + off_t offset, u16 *data) +{ + return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data, + eeprom_blob->size / sizeof(u16), + offset, data); +} + +static bool ath9k_hw_nvram_read_nvmem(struct ath_hw *ah, off_t offset, + u16 *data) +{ + return ath9k_hw_nvram_read_array(ah->nvmem_blob, + ah->nvmem_blob_len / sizeof(u16), + offset, data); +} + +bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data) +{ + struct ath_common *common = ath9k_hw_common(ah); + struct ath9k_platform_data *pdata = ah->dev->platform_data; + bool ret; + + if (ah->nvmem_blob) + ret = ath9k_hw_nvram_read_nvmem(ah, off, data); + else if (ah->eeprom_blob) + ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data); + else if (pdata && !pdata->use_eeprom) + ret = ath9k_hw_nvram_read_pdata(pdata, off, data); + else + ret = common->bus_ops->eeprom_read(common, off, data); + + if (!ret) + ath_dbg(common, EEPROM, + "unable to read eeprom region at offset %u\n", off); + + return ret; +} + +int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size) +{ + u16 magic; + u16 *eepdata; + int i; + bool needs_byteswap = false; + struct ath_common *common = ath9k_hw_common(ah); + + if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) { + ath_err(common, "Reading Magic # failed\n"); + return -EIO; + } + + if (swab16(magic) == AR5416_EEPROM_MAGIC) { + needs_byteswap = true; + ath_dbg(common, EEPROM, + "EEPROM needs byte-swapping to correct endianness.\n"); + } else if (magic != AR5416_EEPROM_MAGIC) { + if (ath9k_hw_use_flash(ah)) { + ath_dbg(common, EEPROM, + "Ignoring invalid EEPROM magic (0x%04x).\n", + magic); + } else { + ath_err(common, + "Invalid EEPROM magic (0x%04x).\n", magic); + return -EINVAL; + } + } + + if (needs_byteswap) { + if (ah->ah_flags & AH_NO_EEP_SWAP) { + ath_info(common, + "Ignoring endianness difference in EEPROM magic bytes.\n"); + } else { + eepdata = (u16 *)(&ah->eeprom); + + for (i = 0; i < size; i++) + eepdata[i] = swab16(eepdata[i]); + } + } + + if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) { + *swap_needed = true; + ath_dbg(common, EEPROM, + "Big Endian EEPROM detected according to EEPMISC register.\n"); + } else { + *swap_needed = false; + } + + return 0; +} + +bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size) +{ + u32 i, sum = 0; + u16 *eepdata = (u16 *)(&ah->eeprom); + struct ath_common *common = ath9k_hw_common(ah); + + for (i = 0; i < size; i++) + sum ^= eepdata[i]; + + if (sum != 0xffff) { + ath_err(common, "Bad EEPROM checksum 0x%x\n", sum); + return false; + } + + return true; +} + +bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev) +{ + struct ath_common *common = ath9k_hw_common(ah); + + if (ah->eep_ops->get_eeprom_ver(ah) != version || + ah->eep_ops->get_eeprom_rev(ah) < minrev) { + ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n", + ah->eep_ops->get_eeprom_ver(ah), + ah->eep_ops->get_eeprom_rev(ah)); + return false; + } + + return true; +} + +void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList, + u8 *pVpdList, u16 numIntercepts, + u8 *pRetVpdList) +{ + u16 i, k; + u8 currPwr = pwrMin; + u16 idxL = 0, idxR = 0; + + for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) { + ath9k_hw_get_lower_upper_index(currPwr, pPwrList, + numIntercepts, &(idxL), + &(idxR)); + if (idxR < 1) + idxR = 1; + if (idxL == numIntercepts - 1) + idxL = (u16) (numIntercepts - 2); + if (pPwrList[idxL] == pPwrList[idxR]) + k = pVpdList[idxL]; + else + k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] + + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) / + (pPwrList[idxR] - pPwrList[idxL])); + pRetVpdList[i] = (u8) k; + currPwr += 2; + } +} + +void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah, + struct ath9k_channel *chan, + struct cal_target_power_leg *powInfo, + u16 numChannels, + struct cal_target_power_leg *pNewPower, + u16 numRates, bool isExtTarget) +{ + struct chan_centers centers; + u16 clo, chi; + int i; + int matchIndex = -1, lowIndex = -1; + u16 freq; + + ath9k_hw_get_channel_centers(ah, chan, ¢ers); + freq = (isExtTarget) ? centers.ext_center : centers.ctl_center; + + if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, + IS_CHAN_2GHZ(chan))) { + matchIndex = 0; + } else { + for (i = 0; (i < numChannels) && + (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { + if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel, + IS_CHAN_2GHZ(chan))) { + matchIndex = i; + break; + } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel, + IS_CHAN_2GHZ(chan)) && i > 0 && + freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel, + IS_CHAN_2GHZ(chan))) { + lowIndex = i - 1; + break; + } + } + if ((matchIndex == -1) && (lowIndex == -1)) + matchIndex = i - 1; + } + + if (matchIndex != -1) { + *pNewPower = powInfo[matchIndex]; + } else { + clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel, + IS_CHAN_2GHZ(chan)); + chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel, + IS_CHAN_2GHZ(chan)); + + for (i = 0; i < numRates; i++) { + pNewPower->tPow2x[i] = + (u8)ath9k_hw_interpolate(freq, clo, chi, + powInfo[lowIndex].tPow2x[i], + powInfo[lowIndex + 1].tPow2x[i]); + } + } +} + +void ath9k_hw_get_target_powers(struct ath_hw *ah, + struct ath9k_channel *chan, + struct cal_target_power_ht *powInfo, + u16 numChannels, + struct cal_target_power_ht *pNewPower, + u16 numRates, bool isHt40Target) +{ + struct chan_centers centers; + u16 clo, chi; + int i; + int matchIndex = -1, lowIndex = -1; + u16 freq; + + ath9k_hw_get_channel_centers(ah, chan, ¢ers); + freq = isHt40Target ? centers.synth_center : centers.ctl_center; + + if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) { + matchIndex = 0; + } else { + for (i = 0; (i < numChannels) && + (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { + if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel, + IS_CHAN_2GHZ(chan))) { + matchIndex = i; + break; + } else + if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel, + IS_CHAN_2GHZ(chan)) && i > 0 && + freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel, + IS_CHAN_2GHZ(chan))) { + lowIndex = i - 1; + break; + } + } + if ((matchIndex == -1) && (lowIndex == -1)) + matchIndex = i - 1; + } + + if (matchIndex != -1) { + *pNewPower = powInfo[matchIndex]; + } else { + clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel, + IS_CHAN_2GHZ(chan)); + chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel, + IS_CHAN_2GHZ(chan)); + + for (i = 0; i < numRates; i++) { + pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq, + clo, chi, + powInfo[lowIndex].tPow2x[i], + powInfo[lowIndex + 1].tPow2x[i]); + } + } +} + +u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower, + bool is2GHz, int num_band_edges) +{ + u16 twiceMaxEdgePower = MAX_RATE_POWER; + int i; + + for (i = 0; (i < num_band_edges) && + (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) { + if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) { + twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl); + break; + } else if ((i > 0) && + (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, + is2GHz))) { + if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel, + is2GHz) < freq && + CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) { + twiceMaxEdgePower = + CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl); + } + break; + } + } + + return twiceMaxEdgePower; +} + +u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit, + u8 antenna_reduction) +{ + u16 reduction = antenna_reduction; + + /* + * Reduce scaled Power by number of chains active + * to get the per chain tx power level. + */ + switch (ar5416_get_ntxchains(ah->txchainmask)) { + case 1: + break; + case 2: + reduction += POWER_CORRECTION_FOR_TWO_CHAIN; + break; + case 3: + reduction += POWER_CORRECTION_FOR_THREE_CHAIN; + break; + } + + if (power_limit > reduction) + power_limit -= reduction; + else + power_limit = 0; + + return min_t(u16, power_limit, MAX_RATE_POWER); +} + +void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah) +{ + struct ath_common *common = ath9k_hw_common(ah); + struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); + + switch (ar5416_get_ntxchains(ah->txchainmask)) { + case 1: + break; + case 2: + regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN; + break; + case 3: + regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN; + break; + default: + ath_dbg(common, EEPROM, "Invalid chainmask configuration\n"); + break; + } +} + +void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah, + struct ath9k_channel *chan, + void *pRawDataSet, + u8 *bChans, u16 availPiers, + u16 tPdGainOverlap, + u16 *pPdGainBoundaries, u8 *pPDADCValues, + u16 numXpdGains) +{ + int i, j, k; + int16_t ss; + u16 idxL = 0, idxR = 0, numPiers; + static u8 vpdTableL[AR5416_NUM_PD_GAINS] + [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; + static u8 vpdTableR[AR5416_NUM_PD_GAINS] + [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; + static u8 vpdTableI[AR5416_NUM_PD_GAINS] + [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; + + u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR; + u8 minPwrT4[AR5416_NUM_PD_GAINS]; + u8 maxPwrT4[AR5416_NUM_PD_GAINS]; + int16_t vpdStep; + int16_t tmpVal; + u16 sizeCurrVpdTable, maxIndex, tgtIndex; + bool match; + int16_t minDelta = 0; + struct chan_centers centers; + int pdgain_boundary_default; + struct cal_data_per_freq *data_def = pRawDataSet; + struct cal_data_per_freq_4k *data_4k = pRawDataSet; + struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet; + bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah); + int intercepts; + + if (AR_SREV_9287(ah)) + intercepts = AR9287_PD_GAIN_ICEPTS; + else + intercepts = AR5416_PD_GAIN_ICEPTS; + + memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS); + ath9k_hw_get_channel_centers(ah, chan, ¢ers); + + for (numPiers = 0; numPiers < availPiers; numPiers++) { + if (bChans[numPiers] == AR5416_BCHAN_UNUSED) + break; + } + + match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center, + IS_CHAN_2GHZ(chan)), + bChans, numPiers, &idxL, &idxR); + + if (match) { + if (AR_SREV_9287(ah)) { + for (i = 0; i < numXpdGains; i++) { + minPwrT4[i] = data_9287[idxL].pwrPdg[i][0]; + maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1]; + ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], + data_9287[idxL].pwrPdg[i], + data_9287[idxL].vpdPdg[i], + intercepts, + vpdTableI[i]); + } + } else if (eeprom_4k) { + for (i = 0; i < numXpdGains; i++) { + minPwrT4[i] = data_4k[idxL].pwrPdg[i][0]; + maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1]; + ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], + data_4k[idxL].pwrPdg[i], + data_4k[idxL].vpdPdg[i], + intercepts, + vpdTableI[i]); + } + } else { + for (i = 0; i < numXpdGains; i++) { + minPwrT4[i] = data_def[idxL].pwrPdg[i][0]; + maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1]; + ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], + data_def[idxL].pwrPdg[i], + data_def[idxL].vpdPdg[i], + intercepts, + vpdTableI[i]); + } + } + } else { + for (i = 0; i < numXpdGains; i++) { + if (AR_SREV_9287(ah)) { + pVpdL = data_9287[idxL].vpdPdg[i]; + pPwrL = data_9287[idxL].pwrPdg[i]; + pVpdR = data_9287[idxR].vpdPdg[i]; + pPwrR = data_9287[idxR].pwrPdg[i]; + } else if (eeprom_4k) { + pVpdL = data_4k[idxL].vpdPdg[i]; + pPwrL = data_4k[idxL].pwrPdg[i]; + pVpdR = data_4k[idxR].vpdPdg[i]; + pPwrR = data_4k[idxR].pwrPdg[i]; + } else { + pVpdL = data_def[idxL].vpdPdg[i]; + pPwrL = data_def[idxL].pwrPdg[i]; + pVpdR = data_def[idxR].vpdPdg[i]; + pPwrR = data_def[idxR].pwrPdg[i]; + } + + minPwrT4[i] = max(pPwrL[0], pPwrR[0]); + + maxPwrT4[i] = + min(pPwrL[intercepts - 1], + pPwrR[intercepts - 1]); + + + ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], + pPwrL, pVpdL, + intercepts, + vpdTableL[i]); + ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], + pPwrR, pVpdR, + intercepts, + vpdTableR[i]); + + for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { + vpdTableI[i][j] = + (u8)(ath9k_hw_interpolate((u16) + FREQ2FBIN(centers. + synth_center, + IS_CHAN_2GHZ + (chan)), + bChans[idxL], bChans[idxR], + vpdTableL[i][j], vpdTableR[i][j])); + } + } + } + + k = 0; + + for (i = 0; i < numXpdGains; i++) { + if (i == (numXpdGains - 1)) + pPdGainBoundaries[i] = + (u16)(maxPwrT4[i] / 2); + else + pPdGainBoundaries[i] = + (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4); + + pPdGainBoundaries[i] = + min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]); + + minDelta = 0; + + if (i == 0) { + if (AR_SREV_9280_20_OR_LATER(ah)) + ss = (int16_t)(0 - (minPwrT4[i] / 2)); + else + ss = 0; + } else { + ss = (int16_t)((pPdGainBoundaries[i - 1] - + (minPwrT4[i] / 2)) - + tPdGainOverlap + 1 + minDelta); + } + vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); + vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); + + while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { + tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); + pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal); + ss++; + } + + sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1); + tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap - + (minPwrT4[i] / 2)); + maxIndex = (tgtIndex < sizeCurrVpdTable) ? + tgtIndex : sizeCurrVpdTable; + + while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { + pPDADCValues[k++] = vpdTableI[i][ss++]; + } + + vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - + vpdTableI[i][sizeCurrVpdTable - 2]); + vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); + + if (tgtIndex >= maxIndex) { + while ((ss <= tgtIndex) && + (k < (AR5416_NUM_PDADC_VALUES - 1))) { + tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] + + (ss - maxIndex + 1) * vpdStep)); + pPDADCValues[k++] = (u8)((tmpVal > 255) ? + 255 : tmpVal); + ss++; + } + } + } + + if (eeprom_4k) + pdgain_boundary_default = 58; + else + pdgain_boundary_default = pPdGainBoundaries[i - 1]; + + while (i < AR5416_PD_GAINS_IN_MASK) { + pPdGainBoundaries[i] = pdgain_boundary_default; + i++; + } + + while (k < AR5416_NUM_PDADC_VALUES) { + pPDADCValues[k] = pPDADCValues[k - 1]; + k++; + } +} + +int ath9k_hw_eeprom_init(struct ath_hw *ah) +{ + if (AR_SREV_9300_20_OR_LATER(ah)) + ah->eep_ops = &eep_ar9300_ops; + else if (AR_SREV_9287(ah)) { + ah->eep_ops = &eep_ar9287_ops; + } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) { + ah->eep_ops = &eep_4k_ops; + } else { + ah->eep_ops = &eep_def_ops; + } + + if (!ah->eep_ops->fill_eeprom(ah)) + return -EIO; + + return ah->eep_ops->check_eeprom(ah); +} -- cgit v1.2.3