// SPDX-License-Identifier: GPL-2.0-only /* * AMD Cryptographic Coprocessor (CCP) driver * * Copyright (C) 2013-2019 Advanced Micro Devices, Inc. * * Author: Tom Lendacky <thomas.lendacky@amd.com> * Author: Gary R Hook <gary.hook@amd.com> */ #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <crypto/scatterwalk.h> #include <crypto/des.h> #include <linux/ccp.h> #include "ccp-dev.h" /* SHA initial context values */ static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = { cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1), cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3), cpu_to_be32(SHA1_H4), }; static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = { cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1), cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3), cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5), cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7), }; static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = { cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1), cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3), cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5), cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7), }; static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = { cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1), cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3), cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5), cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7), }; static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = { cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1), cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3), cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5), cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7), }; #define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \ ccp_gen_jobid(ccp) : 0) static u32 ccp_gen_jobid(struct ccp_device *ccp) { return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK; } static void ccp_sg_free(struct ccp_sg_workarea *wa) { if (wa->dma_count) dma_unmap_sg(wa->dma_dev, wa->dma_sg_head, wa->nents, wa->dma_dir); wa->dma_count = 0; } static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev, struct scatterlist *sg, u64 len, enum dma_data_direction dma_dir) { memset(wa, 0, sizeof(*wa)); wa->sg = sg; if (!sg) return 0; wa->nents = sg_nents_for_len(sg, len); if (wa->nents < 0) return wa->nents; wa->bytes_left = len; wa->sg_used = 0; if (len == 0) return 0; if (dma_dir == DMA_NONE) return 0; wa->dma_sg = sg; wa->dma_sg_head = sg; wa->dma_dev = dev; wa->dma_dir = dma_dir; wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir); if (!wa->dma_count) return -ENOMEM; return 0; } static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len) { unsigned int nbytes = min_t(u64, len, wa->bytes_left); unsigned int sg_combined_len = 0; if (!wa->sg) return; wa->sg_used += nbytes; wa->bytes_left -= nbytes; if (wa->sg_used == sg_dma_len(wa->dma_sg)) { /* Advance to the next DMA scatterlist entry */ wa->dma_sg = sg_next(wa->dma_sg); /* In the case that the DMA mapped scatterlist has entries * that have been merged, the non-DMA mapped scatterlist * must be advanced multiple times for each merged entry. * This ensures that the current non-DMA mapped entry * corresponds to the current DMA mapped entry. */ do { sg_combined_len += wa->sg->length; wa->sg = sg_next(wa->sg); } while (wa->sg_used > sg_combined_len); wa->sg_used = 0; } } static void ccp_dm_free(struct ccp_dm_workarea *wa) { if (wa->length <= CCP_DMAPOOL_MAX_SIZE) { if (wa->address) dma_pool_free(wa->dma_pool, wa->address, wa->dma.address); } else { if (wa->dma.address) dma_unmap_single(wa->dev, wa->dma.address, wa->length, wa->dma.dir); kfree(wa->address); } wa->address = NULL; wa->dma.address = 0; } static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa, struct ccp_cmd_queue *cmd_q, unsigned int len, enum dma_data_direction dir) { memset(wa, 0, sizeof(*wa)); if (!len) return 0; wa->dev = cmd_q->ccp->dev; wa->length = len; if (len <= CCP_DMAPOOL_MAX_SIZE) { wa->dma_pool = cmd_q->dma_pool; wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL, &wa->dma.address); if (!wa->address) return -ENOMEM; wa->dma.length = CCP_DMAPOOL_MAX_SIZE; } else { wa->address = kzalloc(len, GFP_KERNEL); if (!wa->address) return -ENOMEM; wa->dma.address = dma_map_single(wa->dev, wa->address, len, dir); if (dma_mapping_error(wa->dev, wa->dma.address)) { kfree(wa->address); wa->address = NULL; return -ENOMEM; } wa->dma.length = len; } wa->dma.dir = dir; return 0; } static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, struct scatterlist *sg, unsigned int sg_offset, unsigned int len) { WARN_ON(!wa->address); if (len > (wa->length - wa_offset)) return -EINVAL; scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, 0); return 0; } static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, struct scatterlist *sg, unsigned int sg_offset, unsigned int len) { WARN_ON(!wa->address); scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, 1); } static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, struct scatterlist *sg, unsigned int sg_offset, unsigned int len) { u8 *p, *q; int rc; rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len); if (rc) return rc; p = wa->address + wa_offset; q = p + len - 1; while (p < q) { *p = *p ^ *q; *q = *p ^ *q; *p = *p ^ *q; p++; q--; } return 0; } static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, struct scatterlist *sg, unsigned int sg_offset, unsigned int len) { u8 *p, *q; p = wa->address + wa_offset; q = p + len - 1; while (p < q) { *p = *p ^ *q; *q = *p ^ *q; *p = *p ^ *q; p++; q--; } ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len); } static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q) { ccp_dm_free(&data->dm_wa); ccp_sg_free(&data->sg_wa); } static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q, struct scatterlist *sg, u64 sg_len, unsigned int dm_len, enum dma_data_direction dir) { int ret; memset(data, 0, sizeof(*data)); ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len, dir); if (ret) goto e_err; ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir); if (ret) goto e_err; return 0; e_err: ccp_free_data(data, cmd_q); return ret; } static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from) { struct ccp_sg_workarea *sg_wa = &data->sg_wa; struct ccp_dm_workarea *dm_wa = &data->dm_wa; unsigned int buf_count, nbytes; /* Clear the buffer if setting it */ if (!from) memset(dm_wa->address, 0, dm_wa->length); if (!sg_wa->sg) return 0; /* Perform the copy operation * nbytes will always be <= UINT_MAX because dm_wa->length is * an unsigned int */ nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length); scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used, nbytes, from); /* Update the structures and generate the count */ buf_count = 0; while (sg_wa->bytes_left && (buf_count < dm_wa->length)) { nbytes = min(sg_dma_len(sg_wa->dma_sg) - sg_wa->sg_used, dm_wa->length - buf_count); nbytes = min_t(u64, sg_wa->bytes_left, nbytes); buf_count += nbytes; ccp_update_sg_workarea(sg_wa, nbytes); } return buf_count; } static unsigned int ccp_fill_queue_buf(struct ccp_data *data) { return ccp_queue_buf(data, 0); } static unsigned int ccp_empty_queue_buf(struct ccp_data *data) { return ccp_queue_buf(data, 1); } static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst, struct ccp_op *op, unsigned int block_size, bool blocksize_op) { unsigned int sg_src_len, sg_dst_len, op_len; /* The CCP can only DMA from/to one address each per operation. This * requires that we find the smallest DMA area between the source * and destination. The resulting len values will always be <= UINT_MAX * because the dma length is an unsigned int. */ sg_src_len = sg_dma_len(src->sg_wa.dma_sg) - src->sg_wa.sg_used; sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len); if (dst) { sg_dst_len = sg_dma_len(dst->sg_wa.dma_sg) - dst->sg_wa.sg_used; sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len); op_len = min(sg_src_len, sg_dst_len); } else { op_len = sg_src_len; } /* The data operation length will be at least block_size in length * or the smaller of available sg room remaining for the source or * the destination */ op_len = max(op_len, block_size); /* Unless we have to buffer data, there's no reason to wait */ op->soc = 0; if (sg_src_len < block_size) { /* Not enough data in the sg element, so it * needs to be buffered into a blocksize chunk */ int cp_len = ccp_fill_queue_buf(src); op->soc = 1; op->src.u.dma.address = src->dm_wa.dma.address; op->src.u.dma.offset = 0; op->src.u.dma.length = (blocksize_op) ? block_size : cp_len; } else { /* Enough data in the sg element, but we need to * adjust for any previously copied data */ op->src.u.dma.address = sg_dma_address(src->sg_wa.dma_sg); op->src.u.dma.offset = src->sg_wa.sg_used; op->src.u.dma.length = op_len & ~(block_size - 1); ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length); } if (dst) { if (sg_dst_len < block_size) { /* Not enough room in the sg element or we're on the * last piece of data (when using padding), so the * output needs to be buffered into a blocksize chunk */ op->soc = 1; op->dst.u.dma.address = dst->dm_wa.dma.address; op->dst.u.dma.offset = 0; op->dst.u.dma.length = op->src.u.dma.length; } else { /* Enough room in the sg element, but we need to * adjust for any previously used area */ op->dst.u.dma.address = sg_dma_address(dst->sg_wa.dma_sg); op->dst.u.dma.offset = dst->sg_wa.sg_used; op->dst.u.dma.length = op->src.u.dma.length; } } } static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst, struct ccp_op *op) { op->init = 0; if (dst) { if (op->dst.u.dma.address == dst->dm_wa.dma.address) ccp_empty_queue_buf(dst); else ccp_update_sg_workarea(&dst->sg_wa, op->dst.u.dma.length); } } static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q, struct ccp_dm_workarea *wa, u32 jobid, u32 sb, u32 byte_swap, bool from) { struct ccp_op op; memset(&op, 0, sizeof(op)); op.cmd_q = cmd_q; op.jobid = jobid; op.eom = 1; if (from) { op.soc = 1; op.src.type = CCP_MEMTYPE_SB; op.src.u.sb = sb; op.dst.type = CCP_MEMTYPE_SYSTEM; op.dst.u.dma.address = wa->dma.address; op.dst.u.dma.length = wa->length; } else { op.src.type = CCP_MEMTYPE_SYSTEM; op.src.u.dma.address = wa->dma.address; op.src.u.dma.length = wa->length; op.dst.type = CCP_MEMTYPE_SB; op.dst.u.sb = sb; } op.u.passthru.byte_swap = byte_swap; return cmd_q->ccp->vdata->perform->passthru(&op); } static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q, struct ccp_dm_workarea *wa, u32 jobid, u32 sb, u32 byte_swap) { return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false); } static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q, struct ccp_dm_workarea *wa, u32 jobid, u32 sb, u32 byte_swap) { return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true); } static noinline_for_stack int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) { struct ccp_aes_engine *aes = &cmd->u.aes; struct ccp_dm_workarea key, ctx; struct ccp_data src; struct ccp_op op; unsigned int dm_offset; int ret; if (!((aes->key_len == AES_KEYSIZE_128) || (aes->key_len == AES_KEYSIZE_192) || (aes->key_len == AES_KEYSIZE_256))) return -EINVAL; if (aes->src_len & (AES_BLOCK_SIZE - 1)) return -EINVAL; if (aes->iv_len != AES_BLOCK_SIZE) return -EINVAL; if (!aes->key || !aes->iv || !aes->src) return -EINVAL; if (aes->cmac_final) { if (aes->cmac_key_len != AES_BLOCK_SIZE) return -EINVAL; if (!aes->cmac_key) return -EINVAL; } BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1); BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1); ret = -EIO; memset(&op, 0, sizeof(op)); op.cmd_q = cmd_q; op.jobid = CCP_NEW_JOBID(cmd_q->ccp); op.sb_key = cmd_q->sb_key; op.sb_ctx = cmd_q->sb_ctx; op.init = 1; op.u.aes.type = aes->type; op.u.aes.mode = aes->mode; op.u.aes.action = aes->action; /* All supported key sizes fit in a single (32-byte) SB entry * and must be in little endian format. Use the 256-bit byte * swap passthru option to convert from big endian to little * endian. */ ret = ccp_init_dm_workarea(&key, cmd_q, CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES, DMA_TO_DEVICE); if (ret) return ret; dm_offset = CCP_SB_BYTES - aes->key_len; ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); if (ret) goto e_key; ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_key; } /* The AES context fits in a single (32-byte) SB entry and * must be in little endian format. Use the 256-bit byte swap * passthru option to convert from big endian to little endian. */ ret = ccp_init_dm_workarea(&ctx, cmd_q, CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, DMA_BIDIRECTIONAL); if (ret) goto e_key; dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); if (ret) goto e_ctx; ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_ctx; } /* Send data to the CCP AES engine */ ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, AES_BLOCK_SIZE, DMA_TO_DEVICE); if (ret) goto e_ctx; while (src.sg_wa.bytes_left) { ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true); if (aes->cmac_final && !src.sg_wa.bytes_left) { op.eom = 1; /* Push the K1/K2 key to the CCP now */ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_src; } ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0, aes->cmac_key_len); if (ret) goto e_src; ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_src; } } ret = cmd_q->ccp->vdata->perform->aes(&op); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_src; } ccp_process_data(&src, NULL, &op); } /* Retrieve the AES context - convert from LE to BE using * 32-byte (256-bit) byteswapping */ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_src; } /* ...but we only need AES_BLOCK_SIZE bytes */ dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); e_src: ccp_free_data(&src, cmd_q); e_ctx: ccp_dm_free(&ctx); e_key: ccp_dm_free(&key); return ret; } static noinline_for_stack int ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) { struct ccp_aes_engine *aes = &cmd->u.aes; struct ccp_dm_workarea key, ctx, final_wa, tag; struct ccp_data src, dst; struct ccp_data aad; struct ccp_op op; unsigned int dm_offset; unsigned int authsize; unsigned int jobid; unsigned int ilen; bool in_place = true; /* Default value */ __be64 *final; int ret; struct scatterlist *p_inp, sg_inp[2]; struct scatterlist *p_tag, sg_tag[2]; struct scatterlist *p_outp, sg_outp[2]; struct scatterlist *p_aad; if (!aes->iv) return -EINVAL; if (!((aes->key_len == AES_KEYSIZE_128) || (aes->key_len == AES_KEYSIZE_192) || (aes->key_len == AES_KEYSIZE_256))) return -EINVAL; if (!aes->key) /* Gotta have a key SGL */ return -EINVAL; /* Zero defaults to 16 bytes, the maximum size */ authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE; switch (authsize) { case 16: case 15: case 14: case 13: case 12: case 8: case 4: break; default: return -EINVAL; } /* First, decompose the source buffer into AAD & PT, * and the destination buffer into AAD, CT & tag, or * the input into CT & tag. * It is expected that the input and output SGs will * be valid, even if the AAD and input lengths are 0. */ p_aad = aes->src; p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len); p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len); if (aes->action == CCP_AES_ACTION_ENCRYPT) { ilen = aes->src_len; p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen); } else { /* Input length for decryption includes tag */ ilen = aes->src_len - authsize; p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen); } jobid = CCP_NEW_JOBID(cmd_q->ccp); memset(&op, 0, sizeof(op)); op.cmd_q = cmd_q; op.jobid = jobid; op.sb_key = cmd_q->sb_key; /* Pre-allocated */ op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ op.init = 1; op.u.aes.type = aes->type; /* Copy the key to the LSB */ ret = ccp_init_dm_workarea(&key, cmd_q, CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, DMA_TO_DEVICE); if (ret) return ret; dm_offset = CCP_SB_BYTES - aes->key_len; ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); if (ret) goto e_key; ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_key; } /* Copy the context (IV) to the LSB. * There is an assumption here that the IV is 96 bits in length, plus * a nonce of 32 bits. If no IV is present, use a zeroed buffer. */ ret = ccp_init_dm_workarea(&ctx, cmd_q, CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, DMA_BIDIRECTIONAL); if (ret) goto e_key; dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len; ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); if (ret) goto e_ctx; ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_ctx; } op.init = 1; if (aes->aad_len > 0) { /* Step 1: Run a GHASH over the Additional Authenticated Data */ ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len, AES_BLOCK_SIZE, DMA_TO_DEVICE); if (ret) goto e_ctx; op.u.aes.mode = CCP_AES_MODE_GHASH; op.u.aes.action = CCP_AES_GHASHAAD; while (aad.sg_wa.bytes_left) { ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true); ret = cmd_q->ccp->vdata->perform->aes(&op); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_aad; } ccp_process_data(&aad, NULL, &op); op.init = 0; } } op.u.aes.mode = CCP_AES_MODE_GCTR; op.u.aes.action = aes->action; if (ilen > 0) { /* Step 2: Run a GCTR over the plaintext */ in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false; ret = ccp_init_data(&src, cmd_q, p_inp, ilen, AES_BLOCK_SIZE, in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); if (ret) goto e_aad; if (in_place) { dst = src; } else { ret = ccp_init_data(&dst, cmd_q, p_outp, ilen, AES_BLOCK_SIZE, DMA_FROM_DEVICE); if (ret) goto e_src; } op.soc = 0; op.eom = 0; op.init = 1; while (src.sg_wa.bytes_left) { ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); if (!src.sg_wa.bytes_left) { unsigned int nbytes = ilen % AES_BLOCK_SIZE; if (nbytes) { op.eom = 1; op.u.aes.size = (nbytes * 8) - 1; } } ret = cmd_q->ccp->vdata->perform->aes(&op); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_dst; } ccp_process_data(&src, &dst, &op); op.init = 0; } } /* Step 3: Update the IV portion of the context with the original IV */ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_dst; } ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); if (ret) goto e_dst; ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_dst; } /* Step 4: Concatenate the lengths of the AAD and source, and * hash that 16 byte buffer. */ ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE, DMA_BIDIRECTIONAL); if (ret) goto e_dst; final = (__be64 *)final_wa.address; final[0] = cpu_to_be64(aes->aad_len * 8); final[1] = cpu_to_be64(ilen * 8); memset(&op, 0, sizeof(op)); op.cmd_q = cmd_q; op.jobid = jobid; op.sb_key = cmd_q->sb_key; /* Pre-allocated */ op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ op.init = 1; op.u.aes.type = aes->type; op.u.aes.mode = CCP_AES_MODE_GHASH; op.u.aes.action = CCP_AES_GHASHFINAL; op.src.type = CCP_MEMTYPE_SYSTEM; op.src.u.dma.address = final_wa.dma.address; op.src.u.dma.length = AES_BLOCK_SIZE; op.dst.type = CCP_MEMTYPE_SYSTEM; op.dst.u.dma.address = final_wa.dma.address; op.dst.u.dma.length = AES_BLOCK_SIZE; op.eom = 1; op.u.aes.size = 0; ret = cmd_q->ccp->vdata->perform->aes(&op); if (ret) goto e_final_wa; if (aes->action == CCP_AES_ACTION_ENCRYPT) { /* Put the ciphered tag after the ciphertext. */ ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize); } else { /* Does this ciphered tag match the input? */ ret = ccp_init_dm_workarea(&tag, cmd_q, authsize, DMA_BIDIRECTIONAL); if (ret) goto e_final_wa; ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize); if (ret) { ccp_dm_free(&tag); goto e_final_wa; } ret = crypto_memneq(tag.address, final_wa.address, authsize) ? -EBADMSG : 0; ccp_dm_free(&tag); } e_final_wa: ccp_dm_free(&final_wa); e_dst: if (ilen > 0 && !in_place) ccp_free_data(&dst, cmd_q); e_src: if (ilen > 0) ccp_free_data(&src, cmd_q); e_aad: if (aes->aad_len) ccp_free_data(&aad, cmd_q); e_ctx: ccp_dm_free(&ctx); e_key: ccp_dm_free(&key); return ret; } static noinline_for_stack int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) { struct ccp_aes_engine *aes = &cmd->u.aes; struct ccp_dm_workarea key, ctx; struct ccp_data src, dst; struct ccp_op op; unsigned int dm_offset; bool in_place = false; int ret; if (!((aes->key_len == AES_KEYSIZE_128) || (aes->key_len == AES_KEYSIZE_192) || (aes->key_len == AES_KEYSIZE_256))) return -EINVAL; if (((aes->mode == CCP_AES_MODE_ECB) || (aes->mode == CCP_AES_MODE_CBC)) && (aes->src_len & (AES_BLOCK_SIZE - 1))) return -EINVAL; if (!aes->key || !aes->src || !aes->dst) return -EINVAL; if (aes->mode != CCP_AES_MODE_ECB) { if (aes->iv_len != AES_BLOCK_SIZE) return -EINVAL; if (!aes->iv) return -EINVAL; } BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1); BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1); ret = -EIO; memset(&op, 0, sizeof(op)); op.cmd_q = cmd_q; op.jobid = CCP_NEW_JOBID(cmd_q->ccp); op.sb_key = cmd_q->sb_key; op.sb_ctx = cmd_q->sb_ctx; op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1; op.u.aes.type = aes->type; op.u.aes.mode = aes->mode; op.u.aes.action = aes->action; /* All supported key sizes fit in a single (32-byte) SB entry * and must be in little endian format. Use the 256-bit byte * swap passthru option to convert from big endian to little * endian. */ ret = ccp_init_dm_workarea(&key, cmd_q, CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES, DMA_TO_DEVICE); if (ret) return ret; dm_offset = CCP_SB_BYTES - aes->key_len; ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); if (ret) goto e_key; ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_key; } /* The AES context fits in a single (32-byte) SB entry and * must be in little endian format. Use the 256-bit byte swap * passthru option to convert from big endian to little endian. */ ret = ccp_init_dm_workarea(&ctx, cmd_q, CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, DMA_BIDIRECTIONAL); if (ret) goto e_key; if (aes->mode != CCP_AES_MODE_ECB) { /* Load the AES context - convert to LE */ dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); if (ret) goto e_ctx; ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_ctx; } } switch (aes->mode) { case CCP_AES_MODE_CFB: /* CFB128 only */ case CCP_AES_MODE_CTR: op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1; break; default: op.u.aes.size = 0; } /* Prepare the input and output data workareas. For in-place * operations we need to set the dma direction to BIDIRECTIONAL * and copy the src workarea to the dst workarea. */ if (sg_virt(aes->src) == sg_virt(aes->dst)) in_place = true; ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, AES_BLOCK_SIZE, in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); if (ret) goto e_ctx; if (in_place) { dst = src; } else { ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len, AES_BLOCK_SIZE, DMA_FROM_DEVICE); if (ret) goto e_src; } /* Send data to the CCP AES engine */ while (src.sg_wa.bytes_left) { ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); if (!src.sg_wa.bytes_left) { op.eom = 1; /* Since we don't retrieve the AES context in ECB * mode we have to wait for the operation to complete * on the last piece of data */ if (aes->mode == CCP_AES_MODE_ECB) op.soc = 1; } ret = cmd_q->ccp->vdata->perform->aes(&op); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_dst; } ccp_process_data(&src, &dst, &op); } if (aes->mode != CCP_AES_MODE_ECB) { /* Retrieve the AES context - convert from LE to BE using * 32-byte (256-bit) byteswapping */ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_dst; } /* ...but we only need AES_BLOCK_SIZE bytes */ dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); } e_dst: if (!in_place) ccp_free_data(&dst, cmd_q); e_src: ccp_free_data(&src, cmd_q); e_ctx: ccp_dm_free(&ctx); e_key: ccp_dm_free(&key); return ret; } static noinline_for_stack int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) { struct ccp_xts_aes_engine *xts = &cmd->u.xts; struct ccp_dm_workarea key, ctx; struct ccp_data src, dst; struct ccp_op op; unsigned int unit_size, dm_offset; bool in_place = false; unsigned int sb_count; enum ccp_aes_type aestype; int ret; switch (xts->unit_size) { case CCP_XTS_AES_UNIT_SIZE_16: unit_size = 16; break; case CCP_XTS_AES_UNIT_SIZE_512: unit_size = 512; break; case CCP_XTS_AES_UNIT_SIZE_1024: unit_size = 1024; break; case CCP_XTS_AES_UNIT_SIZE_2048: unit_size = 2048; break; case CCP_XTS_AES_UNIT_SIZE_4096: unit_size = 4096; break; default: return -EINVAL; } if (xts->key_len == AES_KEYSIZE_128) aestype = CCP_AES_TYPE_128; else if (xts->key_len == AES_KEYSIZE_256) aestype = CCP_AES_TYPE_256; else return -EINVAL; if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1))) return -EINVAL; if (xts->iv_len != AES_BLOCK_SIZE) return -EINVAL; if (!xts->key || !xts->iv || !xts->src || !xts->dst) return -EINVAL; BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1); BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1); ret = -EIO; memset(&op, 0, sizeof(op)); op.cmd_q = cmd_q; op.jobid = CCP_NEW_JOBID(cmd_q->ccp); op.sb_key = cmd_q->sb_key; op.sb_ctx = cmd_q->sb_ctx; op.init = 1; op.u.xts.type = aestype; op.u.xts.action = xts->action; op.u.xts.unit_size = xts->unit_size; /* A version 3 device only supports 128-bit keys, which fits into a * single SB entry. A version 5 device uses a 512-bit vector, so two * SB entries. */ if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) sb_count = CCP_XTS_AES_KEY_SB_COUNT; else sb_count = CCP5_XTS_AES_KEY_SB_COUNT; ret = ccp_init_dm_workarea(&key, cmd_q, sb_count * CCP_SB_BYTES, DMA_TO_DEVICE); if (ret) return ret; if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) { /* All supported key sizes must be in little endian format. * Use the 256-bit byte swap passthru option to convert from * big endian to little endian. */ dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128; ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len); if (ret) goto e_key; ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len); if (ret) goto e_key; } else { /* Version 5 CCPs use a 512-bit space for the key: each portion * occupies 256 bits, or one entire slot, and is zero-padded. */ unsigned int pad; dm_offset = CCP_SB_BYTES; pad = dm_offset - xts->key_len; ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len); if (ret) goto e_key; ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key, xts->key_len, xts->key_len); if (ret) goto e_key; } ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_key; } /* The AES context fits in a single (32-byte) SB entry and * for XTS is already in little endian format so no byte swapping * is needed. */ ret = ccp_init_dm_workarea(&ctx, cmd_q, CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES, DMA_BIDIRECTIONAL); if (ret) goto e_key; ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len); if (ret) goto e_ctx; ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_NOOP); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_ctx; } /* Prepare the input and output data workareas. For in-place * operations we need to set the dma direction to BIDIRECTIONAL * and copy the src workarea to the dst workarea. */ if (sg_virt(xts->src) == sg_virt(xts->dst)) in_place = true; ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len, unit_size, in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); if (ret) goto e_ctx; if (in_place) { dst = src; } else { ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len, unit_size, DMA_FROM_DEVICE); if (ret) goto e_src; } /* Send data to the CCP AES engine */ while (src.sg_wa.bytes_left) { ccp_prepare_data(&src, &dst, &op, unit_size, true); if (!src.sg_wa.bytes_left) op.eom = 1; ret = cmd_q->ccp->vdata->perform->xts_aes(&op); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_dst; } ccp_process_data(&src, &dst, &op); } /* Retrieve the AES context - convert from LE to BE using * 32-byte (256-bit) byteswapping */ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_dst; } /* ...but we only need AES_BLOCK_SIZE bytes */ dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len); e_dst: if (!in_place) ccp_free_data(&dst, cmd_q); e_src: ccp_free_data(&src, cmd_q); e_ctx: ccp_dm_free(&ctx); e_key: ccp_dm_free(&key); return ret; } static noinline_for_stack int ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) { struct ccp_des3_engine *des3 = &cmd->u.des3; struct ccp_dm_workarea key, ctx; struct ccp_data src, dst; struct ccp_op op; unsigned int dm_offset; unsigned int len_singlekey; bool in_place = false; int ret; /* Error checks */ if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) return -EINVAL; if (!cmd_q->ccp->vdata->perform->des3) return -EINVAL; if (des3->key_len != DES3_EDE_KEY_SIZE) return -EINVAL; if (((des3->mode == CCP_DES3_MODE_ECB) || (des3->mode == CCP_DES3_MODE_CBC)) && (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1))) return -EINVAL; if (!des3->key || !des3->src || !des3->dst) return -EINVAL; if (des3->mode != CCP_DES3_MODE_ECB) { if (des3->iv_len != DES3_EDE_BLOCK_SIZE) return -EINVAL; if (!des3->iv) return -EINVAL; } /* Zero out all the fields of the command desc */ memset(&op, 0, sizeof(op)); /* Set up the Function field */ op.cmd_q = cmd_q; op.jobid = CCP_NEW_JOBID(cmd_q->ccp); op.sb_key = cmd_q->sb_key; op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1; op.u.des3.type = des3->type; op.u.des3.mode = des3->mode; op.u.des3.action = des3->action; /* * All supported key sizes fit in a single (32-byte) KSB entry and * (like AES) must be in little endian format. Use the 256-bit byte * swap passthru option to convert from big endian to little endian. */ ret = ccp_init_dm_workarea(&key, cmd_q, CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES, DMA_TO_DEVICE); if (ret) return ret; /* * The contents of the key triplet are in the reverse order of what * is required by the engine. Copy the 3 pieces individually to put * them where they belong. */ dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */ len_singlekey = des3->key_len / 3; ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey, des3->key, 0, len_singlekey); if (ret) goto e_key; ret = ccp_set_dm_area(&key, dm_offset + len_singlekey, des3->key, len_singlekey, len_singlekey); if (ret) goto e_key; ret = ccp_set_dm_area(&key, dm_offset, des3->key, 2 * len_singlekey, len_singlekey); if (ret) goto e_key; /* Copy the key to the SB */ ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_key; } /* * The DES3 context fits in a single (32-byte) KSB entry and * must be in little endian format. Use the 256-bit byte swap * passthru option to convert from big endian to little endian. */ if (des3->mode != CCP_DES3_MODE_ECB) { op.sb_ctx = cmd_q->sb_ctx; ret = ccp_init_dm_workarea(&ctx, cmd_q, CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES, DMA_BIDIRECTIONAL); if (ret) goto e_key; /* Load the context into the LSB */ dm_offset = CCP_SB_BYTES - des3->iv_len; ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0, des3->iv_len); if (ret) goto e_ctx; ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_ctx; } } /* * Prepare the input and output data workareas. For in-place * operations we need to set the dma direction to BIDIRECTIONAL * and copy the src workarea to the dst workarea. */ if (sg_virt(des3->src) == sg_virt(des3->dst)) in_place = true; ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len, DES3_EDE_BLOCK_SIZE, in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); if (ret) goto e_ctx; if (in_place) dst = src; else { ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len, DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE); if (ret) goto e_src; } /* Send data to the CCP DES3 engine */ while (src.sg_wa.bytes_left) { ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true); if (!src.sg_wa.bytes_left) { op.eom = 1; /* Since we don't retrieve the context in ECB mode * we have to wait for the operation to complete * on the last piece of data */ op.soc = 0; } ret = cmd_q->ccp->vdata->perform->des3(&op); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_dst; } ccp_process_data(&src, &dst, &op); } if (des3->mode != CCP_DES3_MODE_ECB) { /* Retrieve the context and make BE */ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_dst; } /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */ ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0, DES3_EDE_BLOCK_SIZE); } e_dst: if (!in_place) ccp_free_data(&dst, cmd_q); e_src: ccp_free_data(&src, cmd_q); e_ctx: if (des3->mode != CCP_DES3_MODE_ECB) ccp_dm_free(&ctx); e_key: ccp_dm_free(&key); return ret; } static noinline_for_stack int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) { struct ccp_sha_engine *sha = &cmd->u.sha; struct ccp_dm_workarea ctx; struct ccp_data src; struct ccp_op op; unsigned int ioffset, ooffset; unsigned int digest_size; int sb_count; const void *init; u64 block_size; int ctx_size; int ret; switch (sha->type) { case CCP_SHA_TYPE_1: if (sha->ctx_len < SHA1_DIGEST_SIZE) return -EINVAL; block_size = SHA1_BLOCK_SIZE; break; case CCP_SHA_TYPE_224: if (sha->ctx_len < SHA224_DIGEST_SIZE) return -EINVAL; block_size = SHA224_BLOCK_SIZE; break; case CCP_SHA_TYPE_256: if (sha->ctx_len < SHA256_DIGEST_SIZE) return -EINVAL; block_size = SHA256_BLOCK_SIZE; break; case CCP_SHA_TYPE_384: if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0) || sha->ctx_len < SHA384_DIGEST_SIZE) return -EINVAL; block_size = SHA384_BLOCK_SIZE; break; case CCP_SHA_TYPE_512: if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0) || sha->ctx_len < SHA512_DIGEST_SIZE) return -EINVAL; block_size = SHA512_BLOCK_SIZE; break; default: return -EINVAL; } if (!sha->ctx) return -EINVAL; if (!sha->final && (sha->src_len & (block_size - 1))) return -EINVAL; /* The version 3 device can't handle zero-length input */ if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) { if (!sha->src_len) { unsigned int digest_len; const u8 *sha_zero; /* Not final, just return */ if (!sha->final) return 0; /* CCP can't do a zero length sha operation so the * caller must buffer the data. */ if (sha->msg_bits) return -EINVAL; /* The CCP cannot perform zero-length sha operations * so the caller is required to buffer data for the * final operation. However, a sha operation for a * message with a total length of zero is valid so * known values are required to supply the result. */ switch (sha->type) { case CCP_SHA_TYPE_1: sha_zero = sha1_zero_message_hash; digest_len = SHA1_DIGEST_SIZE; break; case CCP_SHA_TYPE_224: sha_zero = sha224_zero_message_hash; digest_len = SHA224_DIGEST_SIZE; break; case CCP_SHA_TYPE_256: sha_zero = sha256_zero_message_hash; digest_len = SHA256_DIGEST_SIZE; break; default: return -EINVAL; } scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0, digest_len, 1); return 0; } } /* Set variables used throughout */ switch (sha->type) { case CCP_SHA_TYPE_1: digest_size = SHA1_DIGEST_SIZE; init = (void *) ccp_sha1_init; ctx_size = SHA1_DIGEST_SIZE; sb_count = 1; if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0)) ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE; else ooffset = ioffset = 0; break; case CCP_SHA_TYPE_224: digest_size = SHA224_DIGEST_SIZE; init = (void *) ccp_sha224_init; ctx_size = SHA256_DIGEST_SIZE; sb_count = 1; ioffset = 0; if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0)) ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE; else ooffset = 0; break; case CCP_SHA_TYPE_256: digest_size = SHA256_DIGEST_SIZE; init = (void *) ccp_sha256_init; ctx_size = SHA256_DIGEST_SIZE; sb_count = 1; ooffset = ioffset = 0; break; case CCP_SHA_TYPE_384: digest_size = SHA384_DIGEST_SIZE; init = (void *) ccp_sha384_init; ctx_size = SHA512_DIGEST_SIZE; sb_count = 2; ioffset = 0; ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE; break; case CCP_SHA_TYPE_512: digest_size = SHA512_DIGEST_SIZE; init = (void *) ccp_sha512_init; ctx_size = SHA512_DIGEST_SIZE; sb_count = 2; ooffset = ioffset = 0; break; default: ret = -EINVAL; goto e_data; } /* For zero-length plaintext the src pointer is ignored; * otherwise both parts must be valid */ if (sha->src_len && !sha->src) return -EINVAL; memset(&op, 0, sizeof(op)); op.cmd_q = cmd_q; op.jobid = CCP_NEW_JOBID(cmd_q->ccp); op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ op.u.sha.type = sha->type; op.u.sha.msg_bits = sha->msg_bits; /* For SHA1/224/256 the context fits in a single (32-byte) SB entry; * SHA384/512 require 2 adjacent SB slots, with the right half in the * first slot, and the left half in the second. Each portion must then * be in little endian format: use the 256-bit byte swap option. */ ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES, DMA_BIDIRECTIONAL); if (ret) return ret; if (sha->first) { switch (sha->type) { case CCP_SHA_TYPE_1: case CCP_SHA_TYPE_224: case CCP_SHA_TYPE_256: memcpy(ctx.address + ioffset, init, ctx_size); break; case CCP_SHA_TYPE_384: case CCP_SHA_TYPE_512: memcpy(ctx.address + ctx_size / 2, init, ctx_size / 2); memcpy(ctx.address, init + ctx_size / 2, ctx_size / 2); break; default: ret = -EINVAL; goto e_ctx; } } else { /* Restore the context */ ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0, sb_count * CCP_SB_BYTES); if (ret) goto e_ctx; } ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_ctx; } if (sha->src) { /* Send data to the CCP SHA engine; block_size is set above */ ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len, block_size, DMA_TO_DEVICE); if (ret) goto e_ctx; while (src.sg_wa.bytes_left) { ccp_prepare_data(&src, NULL, &op, block_size, false); if (sha->final && !src.sg_wa.bytes_left) op.eom = 1; ret = cmd_q->ccp->vdata->perform->sha(&op); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_data; } ccp_process_data(&src, NULL, &op); } } else { op.eom = 1; ret = cmd_q->ccp->vdata->perform->sha(&op); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_data; } } /* Retrieve the SHA context - convert from LE to BE using * 32-byte (256-bit) byteswapping to BE */ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, CCP_PASSTHRU_BYTESWAP_256BIT); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_data; } if (sha->final) { /* Finishing up, so get the digest */ switch (sha->type) { case CCP_SHA_TYPE_1: case CCP_SHA_TYPE_224: case CCP_SHA_TYPE_256: ccp_get_dm_area(&ctx, ooffset, sha->ctx, 0, digest_size); break; case CCP_SHA_TYPE_384: case CCP_SHA_TYPE_512: ccp_get_dm_area(&ctx, 0, sha->ctx, LSB_ITEM_SIZE - ooffset, LSB_ITEM_SIZE); ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset, sha->ctx, 0, LSB_ITEM_SIZE - ooffset); break; default: ret = -EINVAL; goto e_data; } } else { /* Stash the context */ ccp_get_dm_area(&ctx, 0, sha->ctx, 0, sb_count * CCP_SB_BYTES); } if (sha->final && sha->opad) { /* HMAC operation, recursively perform final SHA */ struct ccp_cmd hmac_cmd; struct scatterlist sg; u8 *hmac_buf; if (sha->opad_len != block_size) { ret = -EINVAL; goto e_data; } hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL); if (!hmac_buf) { ret = -ENOMEM; goto e_data; } sg_init_one(&sg, hmac_buf, block_size + digest_size); scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0); switch (sha->type) { case CCP_SHA_TYPE_1: case CCP_SHA_TYPE_224: case CCP_SHA_TYPE_256: memcpy(hmac_buf + block_size, ctx.address + ooffset, digest_size); break; case CCP_SHA_TYPE_384: case CCP_SHA_TYPE_512: memcpy(hmac_buf + block_size, ctx.address + LSB_ITEM_SIZE + ooffset, LSB_ITEM_SIZE); memcpy(hmac_buf + block_size + (LSB_ITEM_SIZE - ooffset), ctx.address, LSB_ITEM_SIZE); break; default: kfree(hmac_buf); ret = -EINVAL; goto e_data; } memset(&hmac_cmd, 0, sizeof(hmac_cmd)); hmac_cmd.engine = CCP_ENGINE_SHA; hmac_cmd.u.sha.type = sha->type; hmac_cmd.u.sha.ctx = sha->ctx; hmac_cmd.u.sha.ctx_len = sha->ctx_len; hmac_cmd.u.sha.src = &sg; hmac_cmd.u.sha.src_len = block_size + digest_size; hmac_cmd.u.sha.opad = NULL; hmac_cmd.u.sha.opad_len = 0; hmac_cmd.u.sha.first = 1; hmac_cmd.u.sha.final = 1; hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3; ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd); if (ret) cmd->engine_error = hmac_cmd.engine_error; kfree(hmac_buf); } e_data: if (sha->src) ccp_free_data(&src, cmd_q); e_ctx: ccp_dm_free(&ctx); return ret; } static noinline_for_stack int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) { struct ccp_rsa_engine *rsa = &cmd->u.rsa; struct ccp_dm_workarea exp, src, dst; struct ccp_op op; unsigned int sb_count, i_len, o_len; int ret; /* Check against the maximum allowable size, in bits */ if (rsa->key_size > cmd_q->ccp->vdata->rsamax) return -EINVAL; if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst) return -EINVAL; memset(&op, 0, sizeof(op)); op.cmd_q = cmd_q; op.jobid = CCP_NEW_JOBID(cmd_q->ccp); /* The RSA modulus must precede the message being acted upon, so * it must be copied to a DMA area where the message and the * modulus can be concatenated. Therefore the input buffer * length required is twice the output buffer length (which * must be a multiple of 256-bits). Compute o_len, i_len in bytes. * Buffer sizes must be a multiple of 32 bytes; rounding up may be * required. */ o_len = 32 * ((rsa->key_size + 255) / 256); i_len = o_len * 2; sb_count = 0; if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) { /* sb_count is the number of storage block slots required * for the modulus. */ sb_count = o_len / CCP_SB_BYTES; op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, sb_count); if (!op.sb_key) return -EIO; } else { /* A version 5 device allows a modulus size that will not fit * in the LSB, so the command will transfer it from memory. * Set the sb key to the default, even though it's not used. */ op.sb_key = cmd_q->sb_key; } /* The RSA exponent must be in little endian format. Reverse its * byte order. */ ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE); if (ret) goto e_sb; ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len); if (ret) goto e_exp; if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) { /* Copy the exponent to the local storage block, using * as many 32-byte blocks as were allocated above. It's * already little endian, so no further change is required. */ ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key, CCP_PASSTHRU_BYTESWAP_NOOP); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_exp; } } else { /* The exponent can be retrieved from memory via DMA. */ op.exp.u.dma.address = exp.dma.address; op.exp.u.dma.offset = 0; } /* Concatenate the modulus and the message. Both the modulus and * the operands must be in little endian format. Since the input * is in big endian format it must be converted. */ ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE); if (ret) goto e_exp; ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len); if (ret) goto e_src; ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len); if (ret) goto e_src; /* Prepare the output area for the operation */ ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE); if (ret) goto e_src; op.soc = 1; op.src.u.dma.address = src.dma.address; op.src.u.dma.offset = 0; op.src.u.dma.length = i_len; op.dst.u.dma.address = dst.dma.address; op.dst.u.dma.offset = 0; op.dst.u.dma.length = o_len; op.u.rsa.mod_size = rsa->key_size; op.u.rsa.input_len = i_len; ret = cmd_q->ccp->vdata->perform->rsa(&op); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_dst; } ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len); e_dst: ccp_dm_free(&dst); e_src: ccp_dm_free(&src); e_exp: ccp_dm_free(&exp); e_sb: if (sb_count) cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count); return ret; } static noinline_for_stack int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) { struct ccp_passthru_engine *pt = &cmd->u.passthru; struct ccp_dm_workarea mask; struct ccp_data src, dst; struct ccp_op op; bool in_place = false; unsigned int i; int ret = 0; if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) return -EINVAL; if (!pt->src || !pt->dst) return -EINVAL; if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) return -EINVAL; if (!pt->mask) return -EINVAL; } BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1); memset(&op, 0, sizeof(op)); op.cmd_q = cmd_q; op.jobid = CCP_NEW_JOBID(cmd_q->ccp); if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { /* Load the mask */ op.sb_key = cmd_q->sb_key; ret = ccp_init_dm_workarea(&mask, cmd_q, CCP_PASSTHRU_SB_COUNT * CCP_SB_BYTES, DMA_TO_DEVICE); if (ret) return ret; ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len); if (ret) goto e_mask; ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key, CCP_PASSTHRU_BYTESWAP_NOOP); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_mask; } } /* Prepare the input and output data workareas. For in-place * operations we need to set the dma direction to BIDIRECTIONAL * and copy the src workarea to the dst workarea. */ if (sg_virt(pt->src) == sg_virt(pt->dst)) in_place = true; ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len, CCP_PASSTHRU_MASKSIZE, in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); if (ret) goto e_mask; if (in_place) { dst = src; } else { ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len, CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE); if (ret) goto e_src; } /* Send data to the CCP Passthru engine * Because the CCP engine works on a single source and destination * dma address at a time, each entry in the source scatterlist * (after the dma_map_sg call) must be less than or equal to the * (remaining) length in the destination scatterlist entry and the * length must be a multiple of CCP_PASSTHRU_BLOCKSIZE */ dst.sg_wa.sg_used = 0; for (i = 1; i <= src.sg_wa.dma_count; i++) { if (!dst.sg_wa.sg || (sg_dma_len(dst.sg_wa.sg) < sg_dma_len(src.sg_wa.sg))) { ret = -EINVAL; goto e_dst; } if (i == src.sg_wa.dma_count) { op.eom = 1; op.soc = 1; } op.src.type = CCP_MEMTYPE_SYSTEM; op.src.u.dma.address = sg_dma_address(src.sg_wa.sg); op.src.u.dma.offset = 0; op.src.u.dma.length = sg_dma_len(src.sg_wa.sg); op.dst.type = CCP_MEMTYPE_SYSTEM; op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg); op.dst.u.dma.offset = dst.sg_wa.sg_used; op.dst.u.dma.length = op.src.u.dma.length; ret = cmd_q->ccp->vdata->perform->passthru(&op); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_dst; } dst.sg_wa.sg_used += sg_dma_len(src.sg_wa.sg); if (dst.sg_wa.sg_used == sg_dma_len(dst.sg_wa.sg)) { dst.sg_wa.sg = sg_next(dst.sg_wa.sg); dst.sg_wa.sg_used = 0; } src.sg_wa.sg = sg_next(src.sg_wa.sg); } e_dst: if (!in_place) ccp_free_data(&dst, cmd_q); e_src: ccp_free_data(&src, cmd_q); e_mask: if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) ccp_dm_free(&mask); return ret; } static noinline_for_stack int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) { struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap; struct ccp_dm_workarea mask; struct ccp_op op; int ret; if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) return -EINVAL; if (!pt->src_dma || !pt->dst_dma) return -EINVAL; if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) return -EINVAL; if (!pt->mask) return -EINVAL; } BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1); memset(&op, 0, sizeof(op)); op.cmd_q = cmd_q; op.jobid = CCP_NEW_JOBID(cmd_q->ccp); if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { /* Load the mask */ op.sb_key = cmd_q->sb_key; mask.length = pt->mask_len; mask.dma.address = pt->mask; mask.dma.length = pt->mask_len; ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key, CCP_PASSTHRU_BYTESWAP_NOOP); if (ret) { cmd->engine_error = cmd_q->cmd_error; return ret; } } /* Send data to the CCP Passthru engine */ op.eom = 1; op.soc = 1; op.src.type = CCP_MEMTYPE_SYSTEM; op.src.u.dma.address = pt->src_dma; op.src.u.dma.offset = 0; op.src.u.dma.length = pt->src_len; op.dst.type = CCP_MEMTYPE_SYSTEM; op.dst.u.dma.address = pt->dst_dma; op.dst.u.dma.offset = 0; op.dst.u.dma.length = pt->src_len; ret = cmd_q->ccp->vdata->perform->passthru(&op); if (ret) cmd->engine_error = cmd_q->cmd_error; return ret; } static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) { struct ccp_ecc_engine *ecc = &cmd->u.ecc; struct ccp_dm_workarea src, dst; struct ccp_op op; int ret; u8 *save; if (!ecc->u.mm.operand_1 || (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES)) return -EINVAL; if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) if (!ecc->u.mm.operand_2 || (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES)) return -EINVAL; if (!ecc->u.mm.result || (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES)) return -EINVAL; memset(&op, 0, sizeof(op)); op.cmd_q = cmd_q; op.jobid = CCP_NEW_JOBID(cmd_q->ccp); /* Concatenate the modulus and the operands. Both the modulus and * the operands must be in little endian format. Since the input * is in big endian format it must be converted and placed in a * fixed length buffer. */ ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, DMA_TO_DEVICE); if (ret) return ret; /* Save the workarea address since it is updated in order to perform * the concatenation */ save = src.address; /* Copy the ECC modulus */ ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len); if (ret) goto e_src; src.address += CCP_ECC_OPERAND_SIZE; /* Copy the first operand */ ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0, ecc->u.mm.operand_1_len); if (ret) goto e_src; src.address += CCP_ECC_OPERAND_SIZE; if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) { /* Copy the second operand */ ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0, ecc->u.mm.operand_2_len); if (ret) goto e_src; src.address += CCP_ECC_OPERAND_SIZE; } /* Restore the workarea address */ src.address = save; /* Prepare the output area for the operation */ ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, DMA_FROM_DEVICE); if (ret) goto e_src; op.soc = 1; op.src.u.dma.address = src.dma.address; op.src.u.dma.offset = 0; op.src.u.dma.length = src.length; op.dst.u.dma.address = dst.dma.address; op.dst.u.dma.offset = 0; op.dst.u.dma.length = dst.length; op.u.ecc.function = cmd->u.ecc.function; ret = cmd_q->ccp->vdata->perform->ecc(&op); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_dst; } ecc->ecc_result = le16_to_cpup( (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { ret = -EIO; goto e_dst; } /* Save the ECC result */ ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0, CCP_ECC_MODULUS_BYTES); e_dst: ccp_dm_free(&dst); e_src: ccp_dm_free(&src); return ret; } static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) { struct ccp_ecc_engine *ecc = &cmd->u.ecc; struct ccp_dm_workarea src, dst; struct ccp_op op; int ret; u8 *save; if (!ecc->u.pm.point_1.x || (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) || !ecc->u.pm.point_1.y || (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES)) return -EINVAL; if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { if (!ecc->u.pm.point_2.x || (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) || !ecc->u.pm.point_2.y || (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES)) return -EINVAL; } else { if (!ecc->u.pm.domain_a || (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES)) return -EINVAL; if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) if (!ecc->u.pm.scalar || (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES)) return -EINVAL; } if (!ecc->u.pm.result.x || (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) || !ecc->u.pm.result.y || (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES)) return -EINVAL; memset(&op, 0, sizeof(op)); op.cmd_q = cmd_q; op.jobid = CCP_NEW_JOBID(cmd_q->ccp); /* Concatenate the modulus and the operands. Both the modulus and * the operands must be in little endian format. Since the input * is in big endian format it must be converted and placed in a * fixed length buffer. */ ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, DMA_TO_DEVICE); if (ret) return ret; /* Save the workarea address since it is updated in order to perform * the concatenation */ save = src.address; /* Copy the ECC modulus */ ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len); if (ret) goto e_src; src.address += CCP_ECC_OPERAND_SIZE; /* Copy the first point X and Y coordinate */ ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0, ecc->u.pm.point_1.x_len); if (ret) goto e_src; src.address += CCP_ECC_OPERAND_SIZE; ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0, ecc->u.pm.point_1.y_len); if (ret) goto e_src; src.address += CCP_ECC_OPERAND_SIZE; /* Set the first point Z coordinate to 1 */ *src.address = 0x01; src.address += CCP_ECC_OPERAND_SIZE; if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { /* Copy the second point X and Y coordinate */ ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0, ecc->u.pm.point_2.x_len); if (ret) goto e_src; src.address += CCP_ECC_OPERAND_SIZE; ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0, ecc->u.pm.point_2.y_len); if (ret) goto e_src; src.address += CCP_ECC_OPERAND_SIZE; /* Set the second point Z coordinate to 1 */ *src.address = 0x01; src.address += CCP_ECC_OPERAND_SIZE; } else { /* Copy the Domain "a" parameter */ ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0, ecc->u.pm.domain_a_len); if (ret) goto e_src; src.address += CCP_ECC_OPERAND_SIZE; if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) { /* Copy the scalar value */ ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.scalar, 0, ecc->u.pm.scalar_len); if (ret) goto e_src; src.address += CCP_ECC_OPERAND_SIZE; } } /* Restore the workarea address */ src.address = save; /* Prepare the output area for the operation */ ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, DMA_FROM_DEVICE); if (ret) goto e_src; op.soc = 1; op.src.u.dma.address = src.dma.address; op.src.u.dma.offset = 0; op.src.u.dma.length = src.length; op.dst.u.dma.address = dst.dma.address; op.dst.u.dma.offset = 0; op.dst.u.dma.length = dst.length; op.u.ecc.function = cmd->u.ecc.function; ret = cmd_q->ccp->vdata->perform->ecc(&op); if (ret) { cmd->engine_error = cmd_q->cmd_error; goto e_dst; } ecc->ecc_result = le16_to_cpup( (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { ret = -EIO; goto e_dst; } /* Save the workarea address since it is updated as we walk through * to copy the point math result */ save = dst.address; /* Save the ECC result X and Y coordinates */ ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0, CCP_ECC_MODULUS_BYTES); dst.address += CCP_ECC_OUTPUT_SIZE; ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0, CCP_ECC_MODULUS_BYTES); /* Restore the workarea address */ dst.address = save; e_dst: ccp_dm_free(&dst); e_src: ccp_dm_free(&src); return ret; } static noinline_for_stack int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) { struct ccp_ecc_engine *ecc = &cmd->u.ecc; ecc->ecc_result = 0; if (!ecc->mod || (ecc->mod_len > CCP_ECC_MODULUS_BYTES)) return -EINVAL; switch (ecc->function) { case CCP_ECC_FUNCTION_MMUL_384BIT: case CCP_ECC_FUNCTION_MADD_384BIT: case CCP_ECC_FUNCTION_MINV_384BIT: return ccp_run_ecc_mm_cmd(cmd_q, cmd); case CCP_ECC_FUNCTION_PADD_384BIT: case CCP_ECC_FUNCTION_PMUL_384BIT: case CCP_ECC_FUNCTION_PDBL_384BIT: return ccp_run_ecc_pm_cmd(cmd_q, cmd); default: return -EINVAL; } } int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) { int ret; cmd->engine_error = 0; cmd_q->cmd_error = 0; cmd_q->int_rcvd = 0; cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q); switch (cmd->engine) { case CCP_ENGINE_AES: switch (cmd->u.aes.mode) { case CCP_AES_MODE_CMAC: ret = ccp_run_aes_cmac_cmd(cmd_q, cmd); break; case CCP_AES_MODE_GCM: ret = ccp_run_aes_gcm_cmd(cmd_q, cmd); break; default: ret = ccp_run_aes_cmd(cmd_q, cmd); break; } break; case CCP_ENGINE_XTS_AES_128: ret = ccp_run_xts_aes_cmd(cmd_q, cmd); break; case CCP_ENGINE_DES3: ret = ccp_run_des3_cmd(cmd_q, cmd); break; case CCP_ENGINE_SHA: ret = ccp_run_sha_cmd(cmd_q, cmd); break; case CCP_ENGINE_RSA: ret = ccp_run_rsa_cmd(cmd_q, cmd); break; case CCP_ENGINE_PASSTHRU: if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP) ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd); else ret = ccp_run_passthru_cmd(cmd_q, cmd); break; case CCP_ENGINE_ECC: ret = ccp_run_ecc_cmd(cmd_q, cmd); break; default: ret = -EINVAL; } return ret; }