// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved. * Copyright (C) 2015 Linaro Ltd. */ #include <linux/platform_device.h> #include <linux/init.h> #include <linux/cpumask.h> #include <linux/export.h> #include <linux/dma-mapping.h> #include <linux/interconnect.h> #include <linux/module.h> #include <linux/types.h> #include <linux/qcom_scm.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/clk.h> #include <linux/reset-controller.h> #include <linux/arm-smccc.h> #include "qcom_scm.h" static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT); module_param(download_mode, bool, 0); #define SCM_HAS_CORE_CLK BIT(0) #define SCM_HAS_IFACE_CLK BIT(1) #define SCM_HAS_BUS_CLK BIT(2) struct qcom_scm { struct device *dev; struct clk *core_clk; struct clk *iface_clk; struct clk *bus_clk; struct icc_path *path; struct reset_controller_dev reset; /* control access to the interconnect path */ struct mutex scm_bw_lock; int scm_vote_count; u64 dload_mode_addr; }; struct qcom_scm_current_perm_info { __le32 vmid; __le32 perm; __le64 ctx; __le32 ctx_size; __le32 unused; }; struct qcom_scm_mem_map_info { __le64 mem_addr; __le64 mem_size; }; /* Each bit configures cold/warm boot address for one of the 4 CPUs */ static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = { 0, BIT(0), BIT(3), BIT(5) }; static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = { BIT(2), BIT(1), BIT(4), BIT(6) }; static const char * const qcom_scm_convention_names[] = { [SMC_CONVENTION_UNKNOWN] = "unknown", [SMC_CONVENTION_ARM_32] = "smc arm 32", [SMC_CONVENTION_ARM_64] = "smc arm 64", [SMC_CONVENTION_LEGACY] = "smc legacy", }; static struct qcom_scm *__scm; static int qcom_scm_clk_enable(void) { int ret; ret = clk_prepare_enable(__scm->core_clk); if (ret) goto bail; ret = clk_prepare_enable(__scm->iface_clk); if (ret) goto disable_core; ret = clk_prepare_enable(__scm->bus_clk); if (ret) goto disable_iface; return 0; disable_iface: clk_disable_unprepare(__scm->iface_clk); disable_core: clk_disable_unprepare(__scm->core_clk); bail: return ret; } static void qcom_scm_clk_disable(void) { clk_disable_unprepare(__scm->core_clk); clk_disable_unprepare(__scm->iface_clk); clk_disable_unprepare(__scm->bus_clk); } static int qcom_scm_bw_enable(void) { int ret = 0; if (!__scm->path) return 0; if (IS_ERR(__scm->path)) return -EINVAL; mutex_lock(&__scm->scm_bw_lock); if (!__scm->scm_vote_count) { ret = icc_set_bw(__scm->path, 0, UINT_MAX); if (ret < 0) { dev_err(__scm->dev, "failed to set bandwidth request\n"); goto err_bw; } } __scm->scm_vote_count++; err_bw: mutex_unlock(&__scm->scm_bw_lock); return ret; } static void qcom_scm_bw_disable(void) { if (IS_ERR_OR_NULL(__scm->path)) return; mutex_lock(&__scm->scm_bw_lock); if (__scm->scm_vote_count-- == 1) icc_set_bw(__scm->path, 0, 0); mutex_unlock(&__scm->scm_bw_lock); } enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN; static DEFINE_SPINLOCK(scm_query_lock); static enum qcom_scm_convention __get_convention(void) { unsigned long flags; struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_INFO, .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL, .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO, QCOM_SCM_INFO_IS_CALL_AVAIL) | (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT), .arginfo = QCOM_SCM_ARGS(1), .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; enum qcom_scm_convention probed_convention; int ret; bool forced = false; if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN)) return qcom_scm_convention; /* * Per the "SMC calling convention specification", the 64-bit calling * convention can only be used when the client is 64-bit, otherwise * system will encounter the undefined behaviour. */ #if IS_ENABLED(CONFIG_ARM64) /* * Device isn't required as there is only one argument - no device * needed to dma_map_single to secure world */ probed_convention = SMC_CONVENTION_ARM_64; ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true); if (!ret && res.result[0] == 1) goto found; /* * Some SC7180 firmwares didn't implement the * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64 * calling conventions on these firmwares. Luckily we don't make any * early calls into the firmware on these SoCs so the device pointer * will be valid here to check if the compatible matches. */ if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) { forced = true; goto found; } #endif probed_convention = SMC_CONVENTION_ARM_32; ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true); if (!ret && res.result[0] == 1) goto found; probed_convention = SMC_CONVENTION_LEGACY; found: spin_lock_irqsave(&scm_query_lock, flags); if (probed_convention != qcom_scm_convention) { qcom_scm_convention = probed_convention; pr_info("qcom_scm: convention: %s%s\n", qcom_scm_convention_names[qcom_scm_convention], forced ? " (forced)" : ""); } spin_unlock_irqrestore(&scm_query_lock, flags); return qcom_scm_convention; } /** * qcom_scm_call() - Invoke a syscall in the secure world * @dev: device * @desc: Descriptor structure containing arguments and return values * @res: Structure containing results from SMC/HVC call * * Sends a command to the SCM and waits for the command to finish processing. * This should *only* be called in pre-emptible context. */ static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc, struct qcom_scm_res *res) { might_sleep(); switch (__get_convention()) { case SMC_CONVENTION_ARM_32: case SMC_CONVENTION_ARM_64: return scm_smc_call(dev, desc, res, false); case SMC_CONVENTION_LEGACY: return scm_legacy_call(dev, desc, res); default: pr_err("Unknown current SCM calling convention.\n"); return -EINVAL; } } /** * qcom_scm_call_atomic() - atomic variation of qcom_scm_call() * @dev: device * @desc: Descriptor structure containing arguments and return values * @res: Structure containing results from SMC/HVC call * * Sends a command to the SCM and waits for the command to finish processing. * This can be called in atomic context. */ static int qcom_scm_call_atomic(struct device *dev, const struct qcom_scm_desc *desc, struct qcom_scm_res *res) { switch (__get_convention()) { case SMC_CONVENTION_ARM_32: case SMC_CONVENTION_ARM_64: return scm_smc_call(dev, desc, res, true); case SMC_CONVENTION_LEGACY: return scm_legacy_call_atomic(dev, desc, res); default: pr_err("Unknown current SCM calling convention.\n"); return -EINVAL; } } static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id, u32 cmd_id) { int ret; struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_INFO, .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL, .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; desc.arginfo = QCOM_SCM_ARGS(1); switch (__get_convention()) { case SMC_CONVENTION_ARM_32: case SMC_CONVENTION_ARM_64: desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) | (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT); break; case SMC_CONVENTION_LEGACY: desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id); break; default: pr_err("Unknown SMC convention being used\n"); return false; } ret = qcom_scm_call(dev, &desc, &res); return ret ? false : !!res.result[0]; } static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits) { int cpu; unsigned int flags = 0; struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_BOOT, .cmd = QCOM_SCM_BOOT_SET_ADDR, .arginfo = QCOM_SCM_ARGS(2), .owner = ARM_SMCCC_OWNER_SIP, }; for_each_present_cpu(cpu) { if (cpu >= QCOM_SCM_BOOT_MAX_CPUS) return -EINVAL; flags |= cpu_bits[cpu]; } desc.args[0] = flags; desc.args[1] = virt_to_phys(entry); return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL); } static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_BOOT, .cmd = QCOM_SCM_BOOT_SET_ADDR_MC, .owner = ARM_SMCCC_OWNER_SIP, .arginfo = QCOM_SCM_ARGS(6), .args = { virt_to_phys(entry), /* Apply to all CPUs in all affinity levels */ ~0ULL, ~0ULL, ~0ULL, ~0ULL, flags, }, }; /* Need a device for DMA of the additional arguments */ if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY) return -EOPNOTSUPP; return qcom_scm_call(__scm->dev, &desc, NULL); } /** * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus * @entry: Entry point function for the cpus * * Set the Linux entry point for the SCM to transfer control to when coming * out of a power down. CPU power down may be executed on cpuidle or hotplug. */ int qcom_scm_set_warm_boot_addr(void *entry) { if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT)) /* Fallback to old SCM call */ return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits); return 0; } EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr); /** * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus * @entry: Entry point function for the cpus */ int qcom_scm_set_cold_boot_addr(void *entry) { if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT)) /* Fallback to old SCM call */ return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits); return 0; } EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr); /** * qcom_scm_cpu_power_down() - Power down the cpu * @flags: Flags to flush cache * * This is an end point to power down cpu. If there was a pending interrupt, * the control would return from this function, otherwise, the cpu jumps to the * warm boot entry point set for this cpu upon reset. */ void qcom_scm_cpu_power_down(u32 flags) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_BOOT, .cmd = QCOM_SCM_BOOT_TERMINATE_PC, .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK, .arginfo = QCOM_SCM_ARGS(1), .owner = ARM_SMCCC_OWNER_SIP, }; qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL); } EXPORT_SYMBOL(qcom_scm_cpu_power_down); int qcom_scm_set_remote_state(u32 state, u32 id) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_BOOT, .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE, .arginfo = QCOM_SCM_ARGS(2), .args[0] = state, .args[1] = id, .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; int ret; ret = qcom_scm_call(__scm->dev, &desc, &res); return ret ? : res.result[0]; } EXPORT_SYMBOL(qcom_scm_set_remote_state); static int __qcom_scm_set_dload_mode(struct device *dev, bool enable) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_BOOT, .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE, .arginfo = QCOM_SCM_ARGS(2), .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE, .owner = ARM_SMCCC_OWNER_SIP, }; desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0; return qcom_scm_call_atomic(__scm->dev, &desc, NULL); } static void qcom_scm_set_download_mode(bool enable) { bool avail; int ret = 0; avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_SET_DLOAD_MODE); if (avail) { ret = __qcom_scm_set_dload_mode(__scm->dev, enable); } else if (__scm->dload_mode_addr) { ret = qcom_scm_io_writel(__scm->dload_mode_addr, enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0); } else { dev_err(__scm->dev, "No available mechanism for setting download mode\n"); } if (ret) dev_err(__scm->dev, "failed to set download mode: %d\n", ret); } /** * qcom_scm_pas_init_image() - Initialize peripheral authentication service * state machine for a given peripheral, using the * metadata * @peripheral: peripheral id * @metadata: pointer to memory containing ELF header, program header table * and optional blob of data used for authenticating the metadata * and the rest of the firmware * @size: size of the metadata * @ctx: optional metadata context * * Return: 0 on success. * * Upon successful return, the PAS metadata context (@ctx) will be used to * track the metadata allocation, this needs to be released by invoking * qcom_scm_pas_metadata_release() by the caller. */ int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size, struct qcom_scm_pas_metadata *ctx) { dma_addr_t mdata_phys; void *mdata_buf; int ret; struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_PIL, .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE, .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW), .args[0] = peripheral, .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; /* * During the scm call memory protection will be enabled for the meta * data blob, so make sure it's physically contiguous, 4K aligned and * non-cachable to avoid XPU violations. */ mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys, GFP_KERNEL); if (!mdata_buf) { dev_err(__scm->dev, "Allocation of metadata buffer failed.\n"); return -ENOMEM; } memcpy(mdata_buf, metadata, size); ret = qcom_scm_clk_enable(); if (ret) goto out; ret = qcom_scm_bw_enable(); if (ret) return ret; desc.args[1] = mdata_phys; ret = qcom_scm_call(__scm->dev, &desc, &res); qcom_scm_bw_disable(); qcom_scm_clk_disable(); out: if (ret < 0 || !ctx) { dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys); } else if (ctx) { ctx->ptr = mdata_buf; ctx->phys = mdata_phys; ctx->size = size; } return ret ? : res.result[0]; } EXPORT_SYMBOL(qcom_scm_pas_init_image); /** * qcom_scm_pas_metadata_release() - release metadata context * @ctx: metadata context */ void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx) { if (!ctx->ptr) return; dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys); ctx->ptr = NULL; ctx->phys = 0; ctx->size = 0; } EXPORT_SYMBOL(qcom_scm_pas_metadata_release); /** * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral * for firmware loading * @peripheral: peripheral id * @addr: start address of memory area to prepare * @size: size of the memory area to prepare * * Returns 0 on success. */ int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size) { int ret; struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_PIL, .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP, .arginfo = QCOM_SCM_ARGS(3), .args[0] = peripheral, .args[1] = addr, .args[2] = size, .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = qcom_scm_bw_enable(); if (ret) return ret; ret = qcom_scm_call(__scm->dev, &desc, &res); qcom_scm_bw_disable(); qcom_scm_clk_disable(); return ret ? : res.result[0]; } EXPORT_SYMBOL(qcom_scm_pas_mem_setup); /** * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware * and reset the remote processor * @peripheral: peripheral id * * Return 0 on success. */ int qcom_scm_pas_auth_and_reset(u32 peripheral) { int ret; struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_PIL, .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET, .arginfo = QCOM_SCM_ARGS(1), .args[0] = peripheral, .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = qcom_scm_bw_enable(); if (ret) return ret; ret = qcom_scm_call(__scm->dev, &desc, &res); qcom_scm_bw_disable(); qcom_scm_clk_disable(); return ret ? : res.result[0]; } EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset); /** * qcom_scm_pas_shutdown() - Shut down the remote processor * @peripheral: peripheral id * * Returns 0 on success. */ int qcom_scm_pas_shutdown(u32 peripheral) { int ret; struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_PIL, .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN, .arginfo = QCOM_SCM_ARGS(1), .args[0] = peripheral, .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = qcom_scm_bw_enable(); if (ret) return ret; ret = qcom_scm_call(__scm->dev, &desc, &res); qcom_scm_bw_disable(); qcom_scm_clk_disable(); return ret ? : res.result[0]; } EXPORT_SYMBOL(qcom_scm_pas_shutdown); /** * qcom_scm_pas_supported() - Check if the peripheral authentication service is * available for the given peripherial * @peripheral: peripheral id * * Returns true if PAS is supported for this peripheral, otherwise false. */ bool qcom_scm_pas_supported(u32 peripheral) { int ret; struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_PIL, .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED, .arginfo = QCOM_SCM_ARGS(1), .args[0] = peripheral, .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PIL_PAS_IS_SUPPORTED)) return false; ret = qcom_scm_call(__scm->dev, &desc, &res); return ret ? false : !!res.result[0]; } EXPORT_SYMBOL(qcom_scm_pas_supported); static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_PIL, .cmd = QCOM_SCM_PIL_PAS_MSS_RESET, .arginfo = QCOM_SCM_ARGS(2), .args[0] = reset, .args[1] = 0, .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; int ret; ret = qcom_scm_call(__scm->dev, &desc, &res); return ret ? : res.result[0]; } static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev, unsigned long idx) { if (idx != 0) return -EINVAL; return __qcom_scm_pas_mss_reset(__scm->dev, 1); } static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev, unsigned long idx) { if (idx != 0) return -EINVAL; return __qcom_scm_pas_mss_reset(__scm->dev, 0); } static const struct reset_control_ops qcom_scm_pas_reset_ops = { .assert = qcom_scm_pas_reset_assert, .deassert = qcom_scm_pas_reset_deassert, }; int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_IO, .cmd = QCOM_SCM_IO_READ, .arginfo = QCOM_SCM_ARGS(1), .args[0] = addr, .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; int ret; ret = qcom_scm_call_atomic(__scm->dev, &desc, &res); if (ret >= 0) *val = res.result[0]; return ret < 0 ? ret : 0; } EXPORT_SYMBOL(qcom_scm_io_readl); int qcom_scm_io_writel(phys_addr_t addr, unsigned int val) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_IO, .cmd = QCOM_SCM_IO_WRITE, .arginfo = QCOM_SCM_ARGS(2), .args[0] = addr, .args[1] = val, .owner = ARM_SMCCC_OWNER_SIP, }; return qcom_scm_call_atomic(__scm->dev, &desc, NULL); } EXPORT_SYMBOL(qcom_scm_io_writel); /** * qcom_scm_restore_sec_cfg_available() - Check if secure environment * supports restore security config interface. * * Return true if restore-cfg interface is supported, false if not. */ bool qcom_scm_restore_sec_cfg_available(void) { return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP, QCOM_SCM_MP_RESTORE_SEC_CFG); } EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available); int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_MP, .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG, .arginfo = QCOM_SCM_ARGS(2), .args[0] = device_id, .args[1] = spare, .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; int ret; ret = qcom_scm_call(__scm->dev, &desc, &res); return ret ? : res.result[0]; } EXPORT_SYMBOL(qcom_scm_restore_sec_cfg); int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_MP, .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE, .arginfo = QCOM_SCM_ARGS(1), .args[0] = spare, .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; int ret; ret = qcom_scm_call(__scm->dev, &desc, &res); if (size) *size = res.result[0]; return ret ? : res.result[1]; } EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size); int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_MP, .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT, .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL, QCOM_SCM_VAL), .args[0] = addr, .args[1] = size, .args[2] = spare, .owner = ARM_SMCCC_OWNER_SIP, }; int ret; ret = qcom_scm_call(__scm->dev, &desc, NULL); /* the pg table has been initialized already, ignore the error */ if (ret == -EPERM) ret = 0; return ret; } EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init); int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_MP, .cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE, .arginfo = QCOM_SCM_ARGS(2), .args[0] = size, .args[1] = spare, .owner = ARM_SMCCC_OWNER_SIP, }; return qcom_scm_call(__scm->dev, &desc, NULL); } EXPORT_SYMBOL(qcom_scm_iommu_set_cp_pool_size); int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size, u32 cp_nonpixel_start, u32 cp_nonpixel_size) { int ret; struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_MP, .cmd = QCOM_SCM_MP_VIDEO_VAR, .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_VAL), .args[0] = cp_start, .args[1] = cp_size, .args[2] = cp_nonpixel_start, .args[3] = cp_nonpixel_size, .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; ret = qcom_scm_call(__scm->dev, &desc, &res); return ret ? : res.result[0]; } EXPORT_SYMBOL(qcom_scm_mem_protect_video_var); static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region, size_t mem_sz, phys_addr_t src, size_t src_sz, phys_addr_t dest, size_t dest_sz) { int ret; struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_MP, .cmd = QCOM_SCM_MP_ASSIGN, .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL), .args[0] = mem_region, .args[1] = mem_sz, .args[2] = src, .args[3] = src_sz, .args[4] = dest, .args[5] = dest_sz, .args[6] = 0, .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; ret = qcom_scm_call(dev, &desc, &res); return ret ? : res.result[0]; } /** * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership * @mem_addr: mem region whose ownership need to be reassigned * @mem_sz: size of the region. * @srcvm: vmid for current set of owners, each set bit in * flag indicate a unique owner * @newvm: array having new owners and corresponding permission * flags * @dest_cnt: number of owners in next set. * * Return negative errno on failure or 0 on success with @srcvm updated. */ int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz, unsigned int *srcvm, const struct qcom_scm_vmperm *newvm, unsigned int dest_cnt) { struct qcom_scm_current_perm_info *destvm; struct qcom_scm_mem_map_info *mem_to_map; phys_addr_t mem_to_map_phys; phys_addr_t dest_phys; dma_addr_t ptr_phys; size_t mem_to_map_sz; size_t dest_sz; size_t src_sz; size_t ptr_sz; int next_vm; __le32 *src; void *ptr; int ret, i, b; unsigned long srcvm_bits = *srcvm; src_sz = hweight_long(srcvm_bits) * sizeof(*src); mem_to_map_sz = sizeof(*mem_to_map); dest_sz = dest_cnt * sizeof(*destvm); ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(dest_sz, SZ_64); ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL); if (!ptr) return -ENOMEM; /* Fill source vmid detail */ src = ptr; i = 0; for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG) src[i++] = cpu_to_le32(b); /* Fill details of mem buff to map */ mem_to_map = ptr + ALIGN(src_sz, SZ_64); mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64); mem_to_map->mem_addr = cpu_to_le64(mem_addr); mem_to_map->mem_size = cpu_to_le64(mem_sz); next_vm = 0; /* Fill details of next vmid detail */ destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64); dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64); for (i = 0; i < dest_cnt; i++, destvm++, newvm++) { destvm->vmid = cpu_to_le32(newvm->vmid); destvm->perm = cpu_to_le32(newvm->perm); destvm->ctx = 0; destvm->ctx_size = 0; next_vm |= BIT(newvm->vmid); } ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz, ptr_phys, src_sz, dest_phys, dest_sz); dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys); if (ret) { dev_err(__scm->dev, "Assign memory protection call failed %d\n", ret); return -EINVAL; } *srcvm = next_vm; return 0; } EXPORT_SYMBOL(qcom_scm_assign_mem); /** * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available */ bool qcom_scm_ocmem_lock_available(void) { return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM, QCOM_SCM_OCMEM_LOCK_CMD); } EXPORT_SYMBOL(qcom_scm_ocmem_lock_available); /** * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM * region to the specified initiator * * @id: tz initiator id * @offset: OCMEM offset * @size: OCMEM size * @mode: access mode (WIDE/NARROW) */ int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size, u32 mode) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_OCMEM, .cmd = QCOM_SCM_OCMEM_LOCK_CMD, .args[0] = id, .args[1] = offset, .args[2] = size, .args[3] = mode, .arginfo = QCOM_SCM_ARGS(4), }; return qcom_scm_call(__scm->dev, &desc, NULL); } EXPORT_SYMBOL(qcom_scm_ocmem_lock); /** * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM * region from the specified initiator * * @id: tz initiator id * @offset: OCMEM offset * @size: OCMEM size */ int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_OCMEM, .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD, .args[0] = id, .args[1] = offset, .args[2] = size, .arginfo = QCOM_SCM_ARGS(3), }; return qcom_scm_call(__scm->dev, &desc, NULL); } EXPORT_SYMBOL(qcom_scm_ocmem_unlock); /** * qcom_scm_ice_available() - Is the ICE key programming interface available? * * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and * qcom_scm_ice_set_key() are available. */ bool qcom_scm_ice_available(void) { return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES, QCOM_SCM_ES_INVALIDATE_ICE_KEY) && __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES, QCOM_SCM_ES_CONFIG_SET_ICE_KEY); } EXPORT_SYMBOL(qcom_scm_ice_available); /** * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key * @index: the keyslot to invalidate * * The UFSHCI and eMMC standards define a standard way to do this, but it * doesn't work on these SoCs; only this SCM call does. * * It is assumed that the SoC has only one ICE instance being used, as this SCM * call doesn't specify which ICE instance the keyslot belongs to. * * Return: 0 on success; -errno on failure. */ int qcom_scm_ice_invalidate_key(u32 index) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_ES, .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY, .arginfo = QCOM_SCM_ARGS(1), .args[0] = index, .owner = ARM_SMCCC_OWNER_SIP, }; return qcom_scm_call(__scm->dev, &desc, NULL); } EXPORT_SYMBOL(qcom_scm_ice_invalidate_key); /** * qcom_scm_ice_set_key() - Set an inline encryption key * @index: the keyslot into which to set the key * @key: the key to program * @key_size: the size of the key in bytes * @cipher: the encryption algorithm the key is for * @data_unit_size: the encryption data unit size, i.e. the size of each * individual plaintext and ciphertext. Given in 512-byte * units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc. * * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline. * * The UFSHCI and eMMC standards define a standard way to do this, but it * doesn't work on these SoCs; only this SCM call does. * * It is assumed that the SoC has only one ICE instance being used, as this SCM * call doesn't specify which ICE instance the keyslot belongs to. * * Return: 0 on success; -errno on failure. */ int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size, enum qcom_scm_ice_cipher cipher, u32 data_unit_size) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_ES, .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY, .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_VAL), .args[0] = index, .args[2] = key_size, .args[3] = cipher, .args[4] = data_unit_size, .owner = ARM_SMCCC_OWNER_SIP, }; void *keybuf; dma_addr_t key_phys; int ret; /* * 'key' may point to vmalloc()'ed memory, but we need to pass a * physical address that's been properly flushed. The sanctioned way to * do this is by using the DMA API. But as is best practice for crypto * keys, we also must wipe the key after use. This makes kmemdup() + * dma_map_single() not clearly correct, since the DMA API can use * bounce buffers. Instead, just use dma_alloc_coherent(). Programming * keys is normally rare and thus not performance-critical. */ keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys, GFP_KERNEL); if (!keybuf) return -ENOMEM; memcpy(keybuf, key, key_size); desc.args[1] = key_phys; ret = qcom_scm_call(__scm->dev, &desc, NULL); memzero_explicit(keybuf, key_size); dma_free_coherent(__scm->dev, key_size, keybuf, key_phys); return ret; } EXPORT_SYMBOL(qcom_scm_ice_set_key); /** * qcom_scm_hdcp_available() - Check if secure environment supports HDCP. * * Return true if HDCP is supported, false if not. */ bool qcom_scm_hdcp_available(void) { bool avail; int ret = qcom_scm_clk_enable(); if (ret) return ret; avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP, QCOM_SCM_HDCP_INVOKE); qcom_scm_clk_disable(); return avail; } EXPORT_SYMBOL(qcom_scm_hdcp_available); /** * qcom_scm_hdcp_req() - Send HDCP request. * @req: HDCP request array * @req_cnt: HDCP request array count * @resp: response buffer passed to SCM * * Write HDCP register(s) through SCM. */ int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp) { int ret; struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_HDCP, .cmd = QCOM_SCM_HDCP_INVOKE, .arginfo = QCOM_SCM_ARGS(10), .args = { req[0].addr, req[0].val, req[1].addr, req[1].val, req[2].addr, req[2].val, req[3].addr, req[3].val, req[4].addr, req[4].val }, .owner = ARM_SMCCC_OWNER_SIP, }; struct qcom_scm_res res; if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT) return -ERANGE; ret = qcom_scm_clk_enable(); if (ret) return ret; ret = qcom_scm_call(__scm->dev, &desc, &res); *resp = res.result[0]; qcom_scm_clk_disable(); return ret; } EXPORT_SYMBOL(qcom_scm_hdcp_req); int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_SMMU_PROGRAM, .cmd = QCOM_SCM_SMMU_PT_FORMAT, .arginfo = QCOM_SCM_ARGS(3), .args[0] = sec_id, .args[1] = ctx_num, .args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */ .owner = ARM_SMCCC_OWNER_SIP, }; return qcom_scm_call(__scm->dev, &desc, NULL); } EXPORT_SYMBOL(qcom_scm_iommu_set_pt_format); int qcom_scm_qsmmu500_wait_safe_toggle(bool en) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_SMMU_PROGRAM, .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1, .arginfo = QCOM_SCM_ARGS(2), .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL, .args[1] = en, .owner = ARM_SMCCC_OWNER_SIP, }; return qcom_scm_call_atomic(__scm->dev, &desc, NULL); } EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle); bool qcom_scm_lmh_dcvsh_available(void) { return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH); } EXPORT_SYMBOL(qcom_scm_lmh_dcvsh_available); int qcom_scm_lmh_profile_change(u32 profile_id) { struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_LMH, .cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE, .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL), .args[0] = profile_id, .owner = ARM_SMCCC_OWNER_SIP, }; return qcom_scm_call(__scm->dev, &desc, NULL); } EXPORT_SYMBOL(qcom_scm_lmh_profile_change); int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val, u64 limit_node, u32 node_id, u64 version) { dma_addr_t payload_phys; u32 *payload_buf; int ret, payload_size = 5 * sizeof(u32); struct qcom_scm_desc desc = { .svc = QCOM_SCM_SVC_LMH, .cmd = QCOM_SCM_LMH_LIMIT_DCVSH, .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_VAL, QCOM_SCM_VAL), .args[1] = payload_size, .args[2] = limit_node, .args[3] = node_id, .args[4] = version, .owner = ARM_SMCCC_OWNER_SIP, }; payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL); if (!payload_buf) return -ENOMEM; payload_buf[0] = payload_fn; payload_buf[1] = 0; payload_buf[2] = payload_reg; payload_buf[3] = 1; payload_buf[4] = payload_val; desc.args[0] = payload_phys; ret = qcom_scm_call(__scm->dev, &desc, NULL); dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys); return ret; } EXPORT_SYMBOL(qcom_scm_lmh_dcvsh); static int qcom_scm_find_dload_address(struct device *dev, u64 *addr) { struct device_node *tcsr; struct device_node *np = dev->of_node; struct resource res; u32 offset; int ret; tcsr = of_parse_phandle(np, "qcom,dload-mode", 0); if (!tcsr) return 0; ret = of_address_to_resource(tcsr, 0, &res); of_node_put(tcsr); if (ret) return ret; ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset); if (ret < 0) return ret; *addr = res.start + offset; return 0; } /** * qcom_scm_is_available() - Checks if SCM is available */ bool qcom_scm_is_available(void) { return !!__scm; } EXPORT_SYMBOL(qcom_scm_is_available); static int qcom_scm_probe(struct platform_device *pdev) { struct qcom_scm *scm; unsigned long clks; int ret; scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL); if (!scm) return -ENOMEM; ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr); if (ret < 0) return ret; mutex_init(&scm->scm_bw_lock); clks = (unsigned long)of_device_get_match_data(&pdev->dev); scm->path = devm_of_icc_get(&pdev->dev, NULL); if (IS_ERR(scm->path)) return dev_err_probe(&pdev->dev, PTR_ERR(scm->path), "failed to acquire interconnect path\n"); scm->core_clk = devm_clk_get(&pdev->dev, "core"); if (IS_ERR(scm->core_clk)) { if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER) return PTR_ERR(scm->core_clk); if (clks & SCM_HAS_CORE_CLK) { dev_err(&pdev->dev, "failed to acquire core clk\n"); return PTR_ERR(scm->core_clk); } scm->core_clk = NULL; } scm->iface_clk = devm_clk_get(&pdev->dev, "iface"); if (IS_ERR(scm->iface_clk)) { if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER) return PTR_ERR(scm->iface_clk); if (clks & SCM_HAS_IFACE_CLK) { dev_err(&pdev->dev, "failed to acquire iface clk\n"); return PTR_ERR(scm->iface_clk); } scm->iface_clk = NULL; } scm->bus_clk = devm_clk_get(&pdev->dev, "bus"); if (IS_ERR(scm->bus_clk)) { if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER) return PTR_ERR(scm->bus_clk); if (clks & SCM_HAS_BUS_CLK) { dev_err(&pdev->dev, "failed to acquire bus clk\n"); return PTR_ERR(scm->bus_clk); } scm->bus_clk = NULL; } scm->reset.ops = &qcom_scm_pas_reset_ops; scm->reset.nr_resets = 1; scm->reset.of_node = pdev->dev.of_node; ret = devm_reset_controller_register(&pdev->dev, &scm->reset); if (ret) return ret; /* vote for max clk rate for highest performance */ ret = clk_set_rate(scm->core_clk, INT_MAX); if (ret) return ret; __scm = scm; __scm->dev = &pdev->dev; __get_convention(); /* * If requested enable "download mode", from this point on warmboot * will cause the boot stages to enter download mode, unless * disabled below by a clean shutdown/reboot. */ if (download_mode) qcom_scm_set_download_mode(true); return 0; } static void qcom_scm_shutdown(struct platform_device *pdev) { /* Clean shutdown, disable download mode to allow normal restart */ qcom_scm_set_download_mode(false); } static const struct of_device_id qcom_scm_dt_match[] = { { .compatible = "qcom,scm-apq8064", /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */ }, { .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK | SCM_HAS_IFACE_CLK | SCM_HAS_BUS_CLK) }, { .compatible = "qcom,scm-ipq4019" }, { .compatible = "qcom,scm-mdm9607", .data = (void *)(SCM_HAS_CORE_CLK | SCM_HAS_IFACE_CLK | SCM_HAS_BUS_CLK) }, { .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK }, { .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK }, { .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK | SCM_HAS_IFACE_CLK | SCM_HAS_BUS_CLK) }, { .compatible = "qcom,scm-msm8953", .data = (void *)(SCM_HAS_CORE_CLK | SCM_HAS_IFACE_CLK | SCM_HAS_BUS_CLK) }, { .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK | SCM_HAS_IFACE_CLK | SCM_HAS_BUS_CLK) }, { .compatible = "qcom,scm-msm8976", .data = (void *)(SCM_HAS_CORE_CLK | SCM_HAS_IFACE_CLK | SCM_HAS_BUS_CLK) }, { .compatible = "qcom,scm-msm8994" }, { .compatible = "qcom,scm-msm8996" }, { .compatible = "qcom,scm" }, {} }; MODULE_DEVICE_TABLE(of, qcom_scm_dt_match); static struct platform_driver qcom_scm_driver = { .driver = { .name = "qcom_scm", .of_match_table = qcom_scm_dt_match, .suppress_bind_attrs = true, }, .probe = qcom_scm_probe, .shutdown = qcom_scm_shutdown, }; static int __init qcom_scm_init(void) { return platform_driver_register(&qcom_scm_driver); } subsys_initcall(qcom_scm_init); MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver"); MODULE_LICENSE("GPL v2");