// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for pcf857x, pca857x, and pca967x I2C GPIO expanders * * Copyright (C) 2007 David Brownell */ #include <linux/gpio/driver.h> #include <linux/i2c.h> #include <linux/platform_data/pcf857x.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/slab.h> #include <linux/spinlock.h> static const struct i2c_device_id pcf857x_id[] = { { "pcf8574", 8 }, { "pcf8574a", 8 }, { "pca8574", 8 }, { "pca9670", 8 }, { "pca9672", 8 }, { "pca9674", 8 }, { "pcf8575", 16 }, { "pca8575", 16 }, { "pca9671", 16 }, { "pca9673", 16 }, { "pca9675", 16 }, { "max7328", 8 }, { "max7329", 8 }, { } }; MODULE_DEVICE_TABLE(i2c, pcf857x_id); #ifdef CONFIG_OF static const struct of_device_id pcf857x_of_table[] = { { .compatible = "nxp,pcf8574" }, { .compatible = "nxp,pcf8574a" }, { .compatible = "nxp,pca8574" }, { .compatible = "nxp,pca9670" }, { .compatible = "nxp,pca9672" }, { .compatible = "nxp,pca9674" }, { .compatible = "nxp,pcf8575" }, { .compatible = "nxp,pca8575" }, { .compatible = "nxp,pca9671" }, { .compatible = "nxp,pca9673" }, { .compatible = "nxp,pca9675" }, { .compatible = "maxim,max7328" }, { .compatible = "maxim,max7329" }, { } }; MODULE_DEVICE_TABLE(of, pcf857x_of_table); #endif /* * The pcf857x, pca857x, and pca967x chips only expose one read and one * write register. Writing a "one" bit (to match the reset state) lets * that pin be used as an input; it's not an open-drain model, but acts * a bit like one. This is described as "quasi-bidirectional"; read the * chip documentation for details. * * Many other I2C GPIO expander chips (like the pca953x models) have * more complex register models and more conventional circuitry using * push/pull drivers. They often use the same 0x20..0x27 addresses as * pcf857x parts, making the "legacy" I2C driver model problematic. */ struct pcf857x { struct gpio_chip chip; struct i2c_client *client; struct mutex lock; /* protect 'out' */ unsigned out; /* software latch */ unsigned status; /* current status */ unsigned irq_enabled; /* enabled irqs */ int (*write)(struct i2c_client *client, unsigned data); int (*read)(struct i2c_client *client); }; /*-------------------------------------------------------------------------*/ /* Talk to 8-bit I/O expander */ static int i2c_write_le8(struct i2c_client *client, unsigned data) { return i2c_smbus_write_byte(client, data); } static int i2c_read_le8(struct i2c_client *client) { return (int)i2c_smbus_read_byte(client); } /* Talk to 16-bit I/O expander */ static int i2c_write_le16(struct i2c_client *client, unsigned word) { u8 buf[2] = { word & 0xff, word >> 8, }; int status; status = i2c_master_send(client, buf, 2); return (status < 0) ? status : 0; } static int i2c_read_le16(struct i2c_client *client) { u8 buf[2]; int status; status = i2c_master_recv(client, buf, 2); if (status < 0) return status; return (buf[1] << 8) | buf[0]; } /*-------------------------------------------------------------------------*/ static int pcf857x_input(struct gpio_chip *chip, unsigned offset) { struct pcf857x *gpio = gpiochip_get_data(chip); int status; mutex_lock(&gpio->lock); gpio->out |= (1 << offset); status = gpio->write(gpio->client, gpio->out); mutex_unlock(&gpio->lock); return status; } static int pcf857x_get(struct gpio_chip *chip, unsigned offset) { struct pcf857x *gpio = gpiochip_get_data(chip); int value; value = gpio->read(gpio->client); return (value < 0) ? value : !!(value & (1 << offset)); } static int pcf857x_output(struct gpio_chip *chip, unsigned offset, int value) { struct pcf857x *gpio = gpiochip_get_data(chip); unsigned bit = 1 << offset; int status; mutex_lock(&gpio->lock); if (value) gpio->out |= bit; else gpio->out &= ~bit; status = gpio->write(gpio->client, gpio->out); mutex_unlock(&gpio->lock); return status; } static void pcf857x_set(struct gpio_chip *chip, unsigned offset, int value) { pcf857x_output(chip, offset, value); } /*-------------------------------------------------------------------------*/ static irqreturn_t pcf857x_irq(int irq, void *data) { struct pcf857x *gpio = data; unsigned long change, i, status; status = gpio->read(gpio->client); /* * call the interrupt handler iff gpio is used as * interrupt source, just to avoid bad irqs */ mutex_lock(&gpio->lock); change = (gpio->status ^ status) & gpio->irq_enabled; gpio->status = status; mutex_unlock(&gpio->lock); for_each_set_bit(i, &change, gpio->chip.ngpio) handle_nested_irq(irq_find_mapping(gpio->chip.irq.domain, i)); return IRQ_HANDLED; } /* * NOP functions */ static void noop(struct irq_data *data) { } static int pcf857x_irq_set_wake(struct irq_data *data, unsigned int on) { struct pcf857x *gpio = irq_data_get_irq_chip_data(data); return irq_set_irq_wake(gpio->client->irq, on); } static void pcf857x_irq_enable(struct irq_data *data) { struct pcf857x *gpio = irq_data_get_irq_chip_data(data); irq_hw_number_t hwirq = irqd_to_hwirq(data); gpiochip_enable_irq(&gpio->chip, hwirq); gpio->irq_enabled |= (1 << hwirq); } static void pcf857x_irq_disable(struct irq_data *data) { struct pcf857x *gpio = irq_data_get_irq_chip_data(data); irq_hw_number_t hwirq = irqd_to_hwirq(data); gpio->irq_enabled &= ~(1 << hwirq); gpiochip_disable_irq(&gpio->chip, hwirq); } static void pcf857x_irq_bus_lock(struct irq_data *data) { struct pcf857x *gpio = irq_data_get_irq_chip_data(data); mutex_lock(&gpio->lock); } static void pcf857x_irq_bus_sync_unlock(struct irq_data *data) { struct pcf857x *gpio = irq_data_get_irq_chip_data(data); mutex_unlock(&gpio->lock); } static const struct irq_chip pcf857x_irq_chip = { .name = "pcf857x", .irq_enable = pcf857x_irq_enable, .irq_disable = pcf857x_irq_disable, .irq_ack = noop, .irq_mask = noop, .irq_unmask = noop, .irq_set_wake = pcf857x_irq_set_wake, .irq_bus_lock = pcf857x_irq_bus_lock, .irq_bus_sync_unlock = pcf857x_irq_bus_sync_unlock, .flags = IRQCHIP_IMMUTABLE, GPIOCHIP_IRQ_RESOURCE_HELPERS, }; /*-------------------------------------------------------------------------*/ static int pcf857x_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct pcf857x_platform_data *pdata = dev_get_platdata(&client->dev); struct device_node *np = client->dev.of_node; struct pcf857x *gpio; unsigned int n_latch = 0; int status; if (IS_ENABLED(CONFIG_OF) && np) of_property_read_u32(np, "lines-initial-states", &n_latch); else if (pdata) n_latch = pdata->n_latch; else dev_dbg(&client->dev, "no platform data\n"); /* Allocate, initialize, and register this gpio_chip. */ gpio = devm_kzalloc(&client->dev, sizeof(*gpio), GFP_KERNEL); if (!gpio) return -ENOMEM; mutex_init(&gpio->lock); gpio->chip.base = pdata ? pdata->gpio_base : -1; gpio->chip.can_sleep = true; gpio->chip.parent = &client->dev; gpio->chip.owner = THIS_MODULE; gpio->chip.get = pcf857x_get; gpio->chip.set = pcf857x_set; gpio->chip.direction_input = pcf857x_input; gpio->chip.direction_output = pcf857x_output; gpio->chip.ngpio = id->driver_data; /* NOTE: the OnSemi jlc1562b is also largely compatible with * these parts, notably for output. It has a low-resolution * DAC instead of pin change IRQs; and its inputs can be the * result of comparators. */ /* 8574 addresses are 0x20..0x27; 8574a uses 0x38..0x3f; * 9670, 9672, 9764, and 9764a use quite a variety. * * NOTE: we don't distinguish here between *4 and *4a parts. */ if (gpio->chip.ngpio == 8) { gpio->write = i2c_write_le8; gpio->read = i2c_read_le8; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE)) status = -EIO; /* fail if there's no chip present */ else status = i2c_smbus_read_byte(client); /* '75/'75c addresses are 0x20..0x27, just like the '74; * the '75c doesn't have a current source pulling high. * 9671, 9673, and 9765 use quite a variety of addresses. * * NOTE: we don't distinguish here between '75 and '75c parts. */ } else if (gpio->chip.ngpio == 16) { gpio->write = i2c_write_le16; gpio->read = i2c_read_le16; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) status = -EIO; /* fail if there's no chip present */ else status = i2c_read_le16(client); } else { dev_dbg(&client->dev, "unsupported number of gpios\n"); status = -EINVAL; } if (status < 0) goto fail; gpio->chip.label = client->name; gpio->client = client; i2c_set_clientdata(client, gpio); /* NOTE: these chips have strange "quasi-bidirectional" I/O pins. * We can't actually know whether a pin is configured (a) as output * and driving the signal low, or (b) as input and reporting a low * value ... without knowing the last value written since the chip * came out of reset (if any). We can't read the latched output. * * In short, the only reliable solution for setting up pin direction * is to do it explicitly. The setup() method can do that, but it * may cause transient glitching since it can't know the last value * written (some pins may need to be driven low). * * Using n_latch avoids that trouble. When left initialized to zero, * our software copy of the "latch" then matches the chip's all-ones * reset state. Otherwise it flags pins to be driven low. */ gpio->out = ~n_latch; gpio->status = gpio->read(gpio->client); /* Enable irqchip if we have an interrupt */ if (client->irq) { struct gpio_irq_chip *girq; status = devm_request_threaded_irq(&client->dev, client->irq, NULL, pcf857x_irq, IRQF_ONESHOT | IRQF_TRIGGER_FALLING | IRQF_SHARED, dev_name(&client->dev), gpio); if (status) goto fail; girq = &gpio->chip.irq; gpio_irq_chip_set_chip(girq, &pcf857x_irq_chip); /* This will let us handle the parent IRQ in the driver */ girq->parent_handler = NULL; girq->num_parents = 0; girq->parents = NULL; girq->default_type = IRQ_TYPE_NONE; girq->handler = handle_level_irq; girq->threaded = true; } status = devm_gpiochip_add_data(&client->dev, &gpio->chip, gpio); if (status < 0) goto fail; /* Let platform code set up the GPIOs and their users. * Now is the first time anyone could use them. */ if (pdata && pdata->setup) { status = pdata->setup(client, gpio->chip.base, gpio->chip.ngpio, pdata->context); if (status < 0) dev_warn(&client->dev, "setup --> %d\n", status); } dev_info(&client->dev, "probed\n"); return 0; fail: dev_dbg(&client->dev, "probe error %d for '%s'\n", status, client->name); return status; } static void pcf857x_remove(struct i2c_client *client) { struct pcf857x_platform_data *pdata = dev_get_platdata(&client->dev); struct pcf857x *gpio = i2c_get_clientdata(client); if (pdata && pdata->teardown) pdata->teardown(client, gpio->chip.base, gpio->chip.ngpio, pdata->context); } static void pcf857x_shutdown(struct i2c_client *client) { struct pcf857x *gpio = i2c_get_clientdata(client); /* Drive all the I/O lines high */ gpio->write(gpio->client, BIT(gpio->chip.ngpio) - 1); } static struct i2c_driver pcf857x_driver = { .driver = { .name = "pcf857x", .of_match_table = of_match_ptr(pcf857x_of_table), }, .probe = pcf857x_probe, .remove = pcf857x_remove, .shutdown = pcf857x_shutdown, .id_table = pcf857x_id, }; static int __init pcf857x_init(void) { return i2c_add_driver(&pcf857x_driver); } /* register after i2c postcore initcall and before * subsys initcalls that may rely on these GPIOs */ subsys_initcall(pcf857x_init); static void __exit pcf857x_exit(void) { i2c_del_driver(&pcf857x_driver); } module_exit(pcf857x_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Brownell");