/* * Copyright (C) 2011 Red Hat, Inc. * * This file is released under the GPL. */ #include "dm-btree.h" #include "dm-btree-internal.h" #include "dm-transaction-manager.h" #include <linux/export.h> #include <linux/device-mapper.h> #define DM_MSG_PREFIX "btree" /* * Removing an entry from a btree * ============================== * * A very important constraint for our btree is that no node, except the * root, may have fewer than a certain number of entries. * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES). * * Ensuring this is complicated by the way we want to only ever hold the * locks on 2 nodes concurrently, and only change nodes in a top to bottom * fashion. * * Each node may have a left or right sibling. When decending the spine, * if a node contains only MIN_ENTRIES then we try and increase this to at * least MIN_ENTRIES + 1. We do this in the following ways: * * [A] No siblings => this can only happen if the node is the root, in which * case we copy the childs contents over the root. * * [B] No left sibling * ==> rebalance(node, right sibling) * * [C] No right sibling * ==> rebalance(left sibling, node) * * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD * ==> delete node adding it's contents to left and right * * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD * ==> rebalance(left, node, right) * * After these operations it's possible that the our original node no * longer contains the desired sub tree. For this reason this rebalancing * is performed on the children of the current node. This also avoids * having a special case for the root. * * Once this rebalancing has occurred we can then step into the child node * for internal nodes. Or delete the entry for leaf nodes. */ /* * Some little utilities for moving node data around. */ static void node_shift(struct btree_node *n, int shift) { uint32_t nr_entries = le32_to_cpu(n->header.nr_entries); uint32_t value_size = le32_to_cpu(n->header.value_size); if (shift < 0) { shift = -shift; BUG_ON(shift > nr_entries); BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift)); memmove(key_ptr(n, 0), key_ptr(n, shift), (nr_entries - shift) * sizeof(__le64)); memmove(value_ptr(n, 0), value_ptr(n, shift), (nr_entries - shift) * value_size); } else { BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries)); memmove(key_ptr(n, shift), key_ptr(n, 0), nr_entries * sizeof(__le64)); memmove(value_ptr(n, shift), value_ptr(n, 0), nr_entries * value_size); } } static int node_copy(struct btree_node *left, struct btree_node *right, int shift) { uint32_t nr_left = le32_to_cpu(left->header.nr_entries); uint32_t value_size = le32_to_cpu(left->header.value_size); if (value_size != le32_to_cpu(right->header.value_size)) { DMERR("mismatched value size"); return -EILSEQ; } if (shift < 0) { shift = -shift; if (nr_left + shift > le32_to_cpu(left->header.max_entries)) { DMERR("bad shift"); return -EINVAL; } memcpy(key_ptr(left, nr_left), key_ptr(right, 0), shift * sizeof(__le64)); memcpy(value_ptr(left, nr_left), value_ptr(right, 0), shift * value_size); } else { if (shift > le32_to_cpu(right->header.max_entries)) { DMERR("bad shift"); return -EINVAL; } memcpy(key_ptr(right, 0), key_ptr(left, nr_left - shift), shift * sizeof(__le64)); memcpy(value_ptr(right, 0), value_ptr(left, nr_left - shift), shift * value_size); } return 0; } /* * Delete a specific entry from a leaf node. */ static void delete_at(struct btree_node *n, unsigned int index) { unsigned int nr_entries = le32_to_cpu(n->header.nr_entries); unsigned int nr_to_copy = nr_entries - (index + 1); uint32_t value_size = le32_to_cpu(n->header.value_size); BUG_ON(index >= nr_entries); if (nr_to_copy) { memmove(key_ptr(n, index), key_ptr(n, index + 1), nr_to_copy * sizeof(__le64)); memmove(value_ptr(n, index), value_ptr(n, index + 1), nr_to_copy * value_size); } n->header.nr_entries = cpu_to_le32(nr_entries - 1); } static unsigned int merge_threshold(struct btree_node *n) { return le32_to_cpu(n->header.max_entries) / 3; } struct child { unsigned int index; struct dm_block *block; struct btree_node *n; }; static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt, struct btree_node *parent, unsigned int index, struct child *result) { int r, inc; dm_block_t root; result->index = index; root = value64(parent, index); r = dm_tm_shadow_block(info->tm, root, &btree_node_validator, &result->block, &inc); if (r) return r; result->n = dm_block_data(result->block); if (inc) inc_children(info->tm, result->n, vt); *((__le64 *) value_ptr(parent, index)) = cpu_to_le64(dm_block_location(result->block)); return 0; } static void exit_child(struct dm_btree_info *info, struct child *c) { dm_tm_unlock(info->tm, c->block); } static int shift(struct btree_node *left, struct btree_node *right, int count) { int r; uint32_t nr_left = le32_to_cpu(left->header.nr_entries); uint32_t nr_right = le32_to_cpu(right->header.nr_entries); uint32_t max_entries = le32_to_cpu(left->header.max_entries); uint32_t r_max_entries = le32_to_cpu(right->header.max_entries); if (max_entries != r_max_entries) { DMERR("node max_entries mismatch"); return -EILSEQ; } if (nr_left - count > max_entries) { DMERR("node shift out of bounds"); return -EINVAL; } if (nr_right + count > max_entries) { DMERR("node shift out of bounds"); return -EINVAL; } if (!count) return 0; if (count > 0) { node_shift(right, count); r = node_copy(left, right, count); if (r) return r; } else { r = node_copy(left, right, count); if (r) return r; node_shift(right, count); } left->header.nr_entries = cpu_to_le32(nr_left - count); right->header.nr_entries = cpu_to_le32(nr_right + count); return 0; } static int __rebalance2(struct dm_btree_info *info, struct btree_node *parent, struct child *l, struct child *r) { int ret; struct btree_node *left = l->n; struct btree_node *right = r->n; uint32_t nr_left = le32_to_cpu(left->header.nr_entries); uint32_t nr_right = le32_to_cpu(right->header.nr_entries); /* * Ensure the number of entries in each child will be greater * than or equal to (max_entries / 3 + 1), so no matter which * child is used for removal, the number will still be not * less than (max_entries / 3). */ unsigned int threshold = 2 * (merge_threshold(left) + 1); if (nr_left + nr_right < threshold) { /* * Merge */ node_copy(left, right, -nr_right); left->header.nr_entries = cpu_to_le32(nr_left + nr_right); delete_at(parent, r->index); /* * We need to decrement the right block, but not it's * children, since they're still referenced by left. */ dm_tm_dec(info->tm, dm_block_location(r->block)); } else { /* * Rebalance. */ unsigned int target_left = (nr_left + nr_right) / 2; ret = shift(left, right, nr_left - target_left); if (ret) return ret; *key_ptr(parent, r->index) = right->keys[0]; } return 0; } static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info, struct dm_btree_value_type *vt, unsigned int left_index) { int r; struct btree_node *parent; struct child left, right; parent = dm_block_data(shadow_current(s)); r = init_child(info, vt, parent, left_index, &left); if (r) return r; r = init_child(info, vt, parent, left_index + 1, &right); if (r) { exit_child(info, &left); return r; } r = __rebalance2(info, parent, &left, &right); exit_child(info, &left); exit_child(info, &right); return r; } /* * We dump as many entries from center as possible into left, then the rest * in right, then rebalance2. This wastes some cpu, but I want something * simple atm. */ static int delete_center_node(struct dm_btree_info *info, struct btree_node *parent, struct child *l, struct child *c, struct child *r, struct btree_node *left, struct btree_node *center, struct btree_node *right, uint32_t nr_left, uint32_t nr_center, uint32_t nr_right) { uint32_t max_entries = le32_to_cpu(left->header.max_entries); unsigned int shift = min(max_entries - nr_left, nr_center); if (nr_left + shift > max_entries) { DMERR("node shift out of bounds"); return -EINVAL; } node_copy(left, center, -shift); left->header.nr_entries = cpu_to_le32(nr_left + shift); if (shift != nr_center) { shift = nr_center - shift; if ((nr_right + shift) > max_entries) { DMERR("node shift out of bounds"); return -EINVAL; } node_shift(right, shift); node_copy(center, right, shift); right->header.nr_entries = cpu_to_le32(nr_right + shift); } *key_ptr(parent, r->index) = right->keys[0]; delete_at(parent, c->index); r->index--; dm_tm_dec(info->tm, dm_block_location(c->block)); return __rebalance2(info, parent, l, r); } /* * Redistributes entries among 3 sibling nodes. */ static int redistribute3(struct dm_btree_info *info, struct btree_node *parent, struct child *l, struct child *c, struct child *r, struct btree_node *left, struct btree_node *center, struct btree_node *right, uint32_t nr_left, uint32_t nr_center, uint32_t nr_right) { int s, ret; uint32_t max_entries = le32_to_cpu(left->header.max_entries); unsigned int total = nr_left + nr_center + nr_right; unsigned int target_right = total / 3; unsigned int remainder = (target_right * 3) != total; unsigned int target_left = target_right + remainder; BUG_ON(target_left > max_entries); BUG_ON(target_right > max_entries); if (nr_left < nr_right) { s = nr_left - target_left; if (s < 0 && nr_center < -s) { /* not enough in central node */ ret = shift(left, center, -nr_center); if (ret) return ret; s += nr_center; ret = shift(left, right, s); if (ret) return ret; nr_right += s; } else { ret = shift(left, center, s); if (ret) return ret; } ret = shift(center, right, target_right - nr_right); if (ret) return ret; } else { s = target_right - nr_right; if (s > 0 && nr_center < s) { /* not enough in central node */ ret = shift(center, right, nr_center); if (ret) return ret; s -= nr_center; ret = shift(left, right, s); if (ret) return ret; nr_left -= s; } else { ret = shift(center, right, s); if (ret) return ret; } ret = shift(left, center, nr_left - target_left); if (ret) return ret; } *key_ptr(parent, c->index) = center->keys[0]; *key_ptr(parent, r->index) = right->keys[0]; return 0; } static int __rebalance3(struct dm_btree_info *info, struct btree_node *parent, struct child *l, struct child *c, struct child *r) { struct btree_node *left = l->n; struct btree_node *center = c->n; struct btree_node *right = r->n; uint32_t nr_left = le32_to_cpu(left->header.nr_entries); uint32_t nr_center = le32_to_cpu(center->header.nr_entries); uint32_t nr_right = le32_to_cpu(right->header.nr_entries); unsigned int threshold = merge_threshold(left) * 4 + 1; if ((left->header.max_entries != center->header.max_entries) || (center->header.max_entries != right->header.max_entries)) { DMERR("bad btree metadata, max_entries differ"); return -EILSEQ; } if ((nr_left + nr_center + nr_right) < threshold) { return delete_center_node(info, parent, l, c, r, left, center, right, nr_left, nr_center, nr_right); } return redistribute3(info, parent, l, c, r, left, center, right, nr_left, nr_center, nr_right); } static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info, struct dm_btree_value_type *vt, unsigned int left_index) { int r; struct btree_node *parent = dm_block_data(shadow_current(s)); struct child left, center, right; /* * FIXME: fill out an array? */ r = init_child(info, vt, parent, left_index, &left); if (r) return r; r = init_child(info, vt, parent, left_index + 1, ¢er); if (r) { exit_child(info, &left); return r; } r = init_child(info, vt, parent, left_index + 2, &right); if (r) { exit_child(info, &left); exit_child(info, ¢er); return r; } r = __rebalance3(info, parent, &left, ¢er, &right); exit_child(info, &left); exit_child(info, ¢er); exit_child(info, &right); return r; } static int rebalance_children(struct shadow_spine *s, struct dm_btree_info *info, struct dm_btree_value_type *vt, uint64_t key) { int i, r, has_left_sibling, has_right_sibling; struct btree_node *n; n = dm_block_data(shadow_current(s)); if (le32_to_cpu(n->header.nr_entries) == 1) { struct dm_block *child; dm_block_t b = value64(n, 0); r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child); if (r) return r; memcpy(n, dm_block_data(child), dm_bm_block_size(dm_tm_get_bm(info->tm))); dm_tm_dec(info->tm, dm_block_location(child)); dm_tm_unlock(info->tm, child); return 0; } i = lower_bound(n, key); if (i < 0) return -ENODATA; has_left_sibling = i > 0; has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1); if (!has_left_sibling) r = rebalance2(s, info, vt, i); else if (!has_right_sibling) r = rebalance2(s, info, vt, i - 1); else r = rebalance3(s, info, vt, i - 1); return r; } static int do_leaf(struct btree_node *n, uint64_t key, unsigned int *index) { int i = lower_bound(n, key); if ((i < 0) || (i >= le32_to_cpu(n->header.nr_entries)) || (le64_to_cpu(n->keys[i]) != key)) return -ENODATA; *index = i; return 0; } /* * Prepares for removal from one level of the hierarchy. The caller must * call delete_at() to remove the entry at index. */ static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info, struct dm_btree_value_type *vt, dm_block_t root, uint64_t key, unsigned int *index) { int i = *index, r; struct btree_node *n; for (;;) { r = shadow_step(s, root, vt); if (r < 0) break; /* * We have to patch up the parent node, ugly, but I don't * see a way to do this automatically as part of the spine * op. */ if (shadow_has_parent(s)) { __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); memcpy(value_ptr(dm_block_data(shadow_parent(s)), i), &location, sizeof(__le64)); } n = dm_block_data(shadow_current(s)); if (le32_to_cpu(n->header.flags) & LEAF_NODE) return do_leaf(n, key, index); r = rebalance_children(s, info, vt, key); if (r) break; n = dm_block_data(shadow_current(s)); if (le32_to_cpu(n->header.flags) & LEAF_NODE) return do_leaf(n, key, index); i = lower_bound(n, key); /* * We know the key is present, or else * rebalance_children would have returned * -ENODATA */ root = value64(n, i); } return r; } int dm_btree_remove(struct dm_btree_info *info, dm_block_t root, uint64_t *keys, dm_block_t *new_root) { unsigned int level, last_level = info->levels - 1; int index = 0, r = 0; struct shadow_spine spine; struct btree_node *n; struct dm_btree_value_type le64_vt; init_le64_type(info->tm, &le64_vt); init_shadow_spine(&spine, info); for (level = 0; level < info->levels; level++) { r = remove_raw(&spine, info, (level == last_level ? &info->value_type : &le64_vt), root, keys[level], (unsigned int *)&index); if (r < 0) break; n = dm_block_data(shadow_current(&spine)); if (level != last_level) { root = value64(n, index); continue; } BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries)); if (info->value_type.dec) info->value_type.dec(info->value_type.context, value_ptr(n, index), 1); delete_at(n, index); } if (!r) *new_root = shadow_root(&spine); exit_shadow_spine(&spine); return r; } EXPORT_SYMBOL_GPL(dm_btree_remove); /*----------------------------------------------------------------*/ static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info, struct dm_btree_value_type *vt, dm_block_t root, uint64_t key, int *index) { int i = *index, r; struct btree_node *n; for (;;) { r = shadow_step(s, root, vt); if (r < 0) break; /* * We have to patch up the parent node, ugly, but I don't * see a way to do this automatically as part of the spine * op. */ if (shadow_has_parent(s)) { __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); memcpy(value_ptr(dm_block_data(shadow_parent(s)), i), &location, sizeof(__le64)); } n = dm_block_data(shadow_current(s)); if (le32_to_cpu(n->header.flags) & LEAF_NODE) { *index = lower_bound(n, key); return 0; } r = rebalance_children(s, info, vt, key); if (r) break; n = dm_block_data(shadow_current(s)); if (le32_to_cpu(n->header.flags) & LEAF_NODE) { *index = lower_bound(n, key); return 0; } i = lower_bound(n, key); /* * We know the key is present, or else * rebalance_children would have returned * -ENODATA */ root = value64(n, i); } return r; } static int remove_one(struct dm_btree_info *info, dm_block_t root, uint64_t *keys, uint64_t end_key, dm_block_t *new_root, unsigned int *nr_removed) { unsigned int level, last_level = info->levels - 1; int index = 0, r = 0; struct shadow_spine spine; struct btree_node *n; struct dm_btree_value_type le64_vt; uint64_t k; init_le64_type(info->tm, &le64_vt); init_shadow_spine(&spine, info); for (level = 0; level < last_level; level++) { r = remove_raw(&spine, info, &le64_vt, root, keys[level], (unsigned int *) &index); if (r < 0) goto out; n = dm_block_data(shadow_current(&spine)); root = value64(n, index); } r = remove_nearest(&spine, info, &info->value_type, root, keys[last_level], &index); if (r < 0) goto out; n = dm_block_data(shadow_current(&spine)); if (index < 0) index = 0; if (index >= le32_to_cpu(n->header.nr_entries)) { r = -ENODATA; goto out; } k = le64_to_cpu(n->keys[index]); if (k >= keys[last_level] && k < end_key) { if (info->value_type.dec) info->value_type.dec(info->value_type.context, value_ptr(n, index), 1); delete_at(n, index); keys[last_level] = k + 1ull; } else r = -ENODATA; out: *new_root = shadow_root(&spine); exit_shadow_spine(&spine); return r; } int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root, uint64_t *first_key, uint64_t end_key, dm_block_t *new_root, unsigned int *nr_removed) { int r; *nr_removed = 0; do { r = remove_one(info, root, first_key, end_key, &root, nr_removed); if (!r) (*nr_removed)++; } while (!r); *new_root = root; return r == -ENODATA ? 0 : r; } EXPORT_SYMBOL_GPL(dm_btree_remove_leaves);