// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2015 - 2016 Cavium, Inc. */ #include <linux/bitfield.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/of_address.h> #include <linux/of_pci.h> #include <linux/pci-acpi.h> #include <linux/pci-ecam.h> #include <linux/platform_device.h> #include <linux/io-64-nonatomic-lo-hi.h> #include "../pci.h" #if defined(CONFIG_PCI_HOST_THUNDER_PEM) || (defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS)) #define PEM_CFG_WR 0x28 #define PEM_CFG_RD 0x30 /* * Enhanced Configuration Access Mechanism (ECAM) * * N.B. This is a non-standard platform-specific ECAM bus shift value. For * standard values defined in the PCI Express Base Specification see * include/linux/pci-ecam.h. */ #define THUNDER_PCIE_ECAM_BUS_SHIFT 24 struct thunder_pem_pci { u32 ea_entry[3]; void __iomem *pem_reg_base; }; static int thunder_pem_bridge_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { u64 read_val, tmp_val; struct pci_config_window *cfg = bus->sysdata; struct thunder_pem_pci *pem_pci = (struct thunder_pem_pci *)cfg->priv; if (devfn != 0 || where >= 2048) return PCIBIOS_DEVICE_NOT_FOUND; /* * 32-bit accesses only. Write the address to the low order * bits of PEM_CFG_RD, then trigger the read by reading back. * The config data lands in the upper 32-bits of PEM_CFG_RD. */ read_val = where & ~3ull; writeq(read_val, pem_pci->pem_reg_base + PEM_CFG_RD); read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); read_val >>= 32; /* * The config space contains some garbage, fix it up. Also * synthesize an EA capability for the BAR used by MSI-X. */ switch (where & ~3) { case 0x40: read_val &= 0xffff00ff; read_val |= 0x00007000; /* Skip MSI CAP */ break; case 0x70: /* Express Cap */ /* * Change PME interrupt to vector 2 on T88 where it * reads as 0, else leave it alone. */ if (!(read_val & (0x1f << 25))) read_val |= (2u << 25); break; case 0xb0: /* MSI-X Cap */ /* TableSize=2 or 4, Next Cap is EA */ read_val &= 0xc00000ff; /* * If Express Cap(0x70) raw PME vector reads as 0 we are on * T88 and TableSize is reported as 4, else TableSize * is 2. */ writeq(0x70, pem_pci->pem_reg_base + PEM_CFG_RD); tmp_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); tmp_val >>= 32; if (!(tmp_val & (0x1f << 25))) read_val |= 0x0003bc00; else read_val |= 0x0001bc00; break; case 0xb4: /* Table offset=0, BIR=0 */ read_val = 0x00000000; break; case 0xb8: /* BPA offset=0xf0000, BIR=0 */ read_val = 0x000f0000; break; case 0xbc: /* EA, 1 entry, no next Cap */ read_val = 0x00010014; break; case 0xc0: /* DW2 for type-1 */ read_val = 0x00000000; break; case 0xc4: /* Entry BEI=0, PP=0x00, SP=0xff, ES=3 */ read_val = 0x80ff0003; break; case 0xc8: read_val = pem_pci->ea_entry[0]; break; case 0xcc: read_val = pem_pci->ea_entry[1]; break; case 0xd0: read_val = pem_pci->ea_entry[2]; break; default: break; } read_val >>= (8 * (where & 3)); switch (size) { case 1: read_val &= 0xff; break; case 2: read_val &= 0xffff; break; default: break; } *val = read_val; return PCIBIOS_SUCCESSFUL; } static int thunder_pem_config_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct pci_config_window *cfg = bus->sysdata; if (bus->number < cfg->busr.start || bus->number > cfg->busr.end) return PCIBIOS_DEVICE_NOT_FOUND; /* * The first device on the bus is the PEM PCIe bridge. * Special case its config access. */ if (bus->number == cfg->busr.start) return thunder_pem_bridge_read(bus, devfn, where, size, val); return pci_generic_config_read(bus, devfn, where, size, val); } /* * Some of the w1c_bits below also include read-only or non-writable * reserved bits, this makes the code simpler and is OK as the bits * are not affected by writing zeros to them. */ static u32 thunder_pem_bridge_w1c_bits(u64 where_aligned) { u32 w1c_bits = 0; switch (where_aligned) { case 0x04: /* Command/Status */ case 0x1c: /* Base and I/O Limit/Secondary Status */ w1c_bits = 0xff000000; break; case 0x44: /* Power Management Control and Status */ w1c_bits = 0xfffffe00; break; case 0x78: /* Device Control/Device Status */ case 0x80: /* Link Control/Link Status */ case 0x88: /* Slot Control/Slot Status */ case 0x90: /* Root Status */ case 0xa0: /* Link Control 2 Registers/Link Status 2 */ w1c_bits = 0xffff0000; break; case 0x104: /* Uncorrectable Error Status */ case 0x110: /* Correctable Error Status */ case 0x130: /* Error Status */ case 0x160: /* Link Control 4 */ w1c_bits = 0xffffffff; break; default: break; } return w1c_bits; } /* Some bits must be written to one so they appear to be read-only. */ static u32 thunder_pem_bridge_w1_bits(u64 where_aligned) { u32 w1_bits; switch (where_aligned) { case 0x1c: /* I/O Base / I/O Limit, Secondary Status */ /* Force 32-bit I/O addressing. */ w1_bits = 0x0101; break; case 0x24: /* Prefetchable Memory Base / Prefetchable Memory Limit */ /* Force 64-bit addressing */ w1_bits = 0x00010001; break; default: w1_bits = 0; break; } return w1_bits; } static int thunder_pem_bridge_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct pci_config_window *cfg = bus->sysdata; struct thunder_pem_pci *pem_pci = (struct thunder_pem_pci *)cfg->priv; u64 write_val, read_val; u64 where_aligned = where & ~3ull; u32 mask = 0; if (devfn != 0 || where >= 2048) return PCIBIOS_DEVICE_NOT_FOUND; /* * 32-bit accesses only. If the write is for a size smaller * than 32-bits, we must first read the 32-bit value and merge * in the desired bits and then write the whole 32-bits back * out. */ switch (size) { case 1: writeq(where_aligned, pem_pci->pem_reg_base + PEM_CFG_RD); read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); read_val >>= 32; mask = ~(0xff << (8 * (where & 3))); read_val &= mask; val = (val & 0xff) << (8 * (where & 3)); val |= (u32)read_val; break; case 2: writeq(where_aligned, pem_pci->pem_reg_base + PEM_CFG_RD); read_val = readq(pem_pci->pem_reg_base + PEM_CFG_RD); read_val >>= 32; mask = ~(0xffff << (8 * (where & 3))); read_val &= mask; val = (val & 0xffff) << (8 * (where & 3)); val |= (u32)read_val; break; default: break; } /* * By expanding the write width to 32 bits, we may * inadvertently hit some W1C bits that were not intended to * be written. Calculate the mask that must be applied to the * data to be written to avoid these cases. */ if (mask) { u32 w1c_bits = thunder_pem_bridge_w1c_bits(where); if (w1c_bits) { mask &= w1c_bits; val &= ~mask; } } /* * Some bits must be read-only with value of one. Since the * access method allows these to be cleared if a zero is * written, force them to one before writing. */ val |= thunder_pem_bridge_w1_bits(where_aligned); /* * Low order bits are the config address, the high order 32 * bits are the data to be written. */ write_val = (((u64)val) << 32) | where_aligned; writeq(write_val, pem_pci->pem_reg_base + PEM_CFG_WR); return PCIBIOS_SUCCESSFUL; } static int thunder_pem_config_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct pci_config_window *cfg = bus->sysdata; if (bus->number < cfg->busr.start || bus->number > cfg->busr.end) return PCIBIOS_DEVICE_NOT_FOUND; /* * The first device on the bus is the PEM PCIe bridge. * Special case its config access. */ if (bus->number == cfg->busr.start) return thunder_pem_bridge_write(bus, devfn, where, size, val); return pci_generic_config_write(bus, devfn, where, size, val); } static int thunder_pem_init(struct device *dev, struct pci_config_window *cfg, struct resource *res_pem) { struct thunder_pem_pci *pem_pci; resource_size_t bar4_start; pem_pci = devm_kzalloc(dev, sizeof(*pem_pci), GFP_KERNEL); if (!pem_pci) return -ENOMEM; pem_pci->pem_reg_base = devm_ioremap(dev, res_pem->start, 0x10000); if (!pem_pci->pem_reg_base) return -ENOMEM; /* * The MSI-X BAR for the PEM and AER interrupts is located at * a fixed offset from the PEM register base. Generate a * fragment of the synthesized Enhanced Allocation capability * structure here for the BAR. */ bar4_start = res_pem->start + 0xf00000; pem_pci->ea_entry[0] = lower_32_bits(bar4_start) | 2; pem_pci->ea_entry[1] = lower_32_bits(res_pem->end - bar4_start) & ~3u; pem_pci->ea_entry[2] = upper_32_bits(bar4_start); cfg->priv = pem_pci; return 0; } #if defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS) #define PEM_RES_BASE 0x87e0c0000000ULL #define PEM_NODE_MASK GENMASK_ULL(45, 44) #define PEM_INDX_MASK GENMASK_ULL(26, 24) #define PEM_MIN_DOM_IN_NODE 4 #define PEM_MAX_DOM_IN_NODE 10 static void thunder_pem_reserve_range(struct device *dev, int seg, struct resource *r) { resource_size_t start = r->start, end = r->end; struct resource *res; const char *regionid; regionid = kasprintf(GFP_KERNEL, "PEM RC:%d", seg); if (!regionid) return; res = request_mem_region(start, end - start + 1, regionid); if (res) res->flags &= ~IORESOURCE_BUSY; else kfree(regionid); dev_info(dev, "%pR %s reserved\n", r, res ? "has been" : "could not be"); } static void thunder_pem_legacy_fw(struct acpi_pci_root *root, struct resource *res_pem) { int node = acpi_get_node(root->device->handle); int index; if (node == NUMA_NO_NODE) node = 0; index = root->segment - PEM_MIN_DOM_IN_NODE; index -= node * PEM_MAX_DOM_IN_NODE; res_pem->start = PEM_RES_BASE | FIELD_PREP(PEM_NODE_MASK, node) | FIELD_PREP(PEM_INDX_MASK, index); res_pem->flags = IORESOURCE_MEM; } static int thunder_pem_acpi_init(struct pci_config_window *cfg) { struct device *dev = cfg->parent; struct acpi_device *adev = to_acpi_device(dev); struct acpi_pci_root *root = acpi_driver_data(adev); struct resource *res_pem; int ret; res_pem = devm_kzalloc(&adev->dev, sizeof(*res_pem), GFP_KERNEL); if (!res_pem) return -ENOMEM; ret = acpi_get_rc_resources(dev, "CAVA02B", root->segment, res_pem); /* * If we fail to gather resources it means that we run with old * FW where we need to calculate PEM-specific resources manually. */ if (ret) { thunder_pem_legacy_fw(root, res_pem); /* * Reserve 64K size PEM specific resources. The full 16M range * size is required for thunder_pem_init() call. */ res_pem->end = res_pem->start + SZ_64K - 1; thunder_pem_reserve_range(dev, root->segment, res_pem); res_pem->end = res_pem->start + SZ_16M - 1; /* Reserve PCI configuration space as well. */ thunder_pem_reserve_range(dev, root->segment, &cfg->res); } return thunder_pem_init(dev, cfg, res_pem); } const struct pci_ecam_ops thunder_pem_ecam_ops = { .bus_shift = THUNDER_PCIE_ECAM_BUS_SHIFT, .init = thunder_pem_acpi_init, .pci_ops = { .map_bus = pci_ecam_map_bus, .read = thunder_pem_config_read, .write = thunder_pem_config_write, } }; #endif #ifdef CONFIG_PCI_HOST_THUNDER_PEM static int thunder_pem_platform_init(struct pci_config_window *cfg) { struct device *dev = cfg->parent; struct platform_device *pdev = to_platform_device(dev); struct resource *res_pem; if (!dev->of_node) return -EINVAL; /* * The second register range is the PEM bridge to the PCIe * bus. It has a different config access method than those * devices behind the bridge. */ res_pem = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res_pem) { dev_err(dev, "missing \"reg[1]\"property\n"); return -EINVAL; } return thunder_pem_init(dev, cfg, res_pem); } static const struct pci_ecam_ops pci_thunder_pem_ops = { .bus_shift = THUNDER_PCIE_ECAM_BUS_SHIFT, .init = thunder_pem_platform_init, .pci_ops = { .map_bus = pci_ecam_map_bus, .read = thunder_pem_config_read, .write = thunder_pem_config_write, } }; static const struct of_device_id thunder_pem_of_match[] = { { .compatible = "cavium,pci-host-thunder-pem", .data = &pci_thunder_pem_ops, }, { }, }; static struct platform_driver thunder_pem_driver = { .driver = { .name = KBUILD_MODNAME, .of_match_table = thunder_pem_of_match, .suppress_bind_attrs = true, }, .probe = pci_host_common_probe, }; builtin_platform_driver(thunder_pem_driver); #endif #endif