// SPDX-License-Identifier: GPL-2.0+ /* * Rockchip AXI PCIe endpoint controller driver * * Copyright (c) 2018 Rockchip, Inc. * * Author: Shawn Lin <shawn.lin@rock-chips.com> * Simon Xue <xxm@rock-chips.com> */ #include <linux/configfs.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/pci-epc.h> #include <linux/platform_device.h> #include <linux/pci-epf.h> #include <linux/sizes.h> #include "pcie-rockchip.h" /** * struct rockchip_pcie_ep - private data for PCIe endpoint controller driver * @rockchip: Rockchip PCIe controller * @epc: PCI EPC device * @max_regions: maximum number of regions supported by hardware * @ob_region_map: bitmask of mapped outbound regions * @ob_addr: base addresses in the AXI bus where the outbound regions start * @irq_phys_addr: base address on the AXI bus where the MSI/legacy IRQ * dedicated outbound regions is mapped. * @irq_cpu_addr: base address in the CPU space where a write access triggers * the sending of a memory write (MSI) / normal message (legacy * IRQ) TLP through the PCIe bus. * @irq_pci_addr: used to save the current mapping of the MSI/legacy IRQ * dedicated outbound region. * @irq_pci_fn: the latest PCI function that has updated the mapping of * the MSI/legacy IRQ dedicated outbound region. * @irq_pending: bitmask of asserted legacy IRQs. */ struct rockchip_pcie_ep { struct rockchip_pcie rockchip; struct pci_epc *epc; u32 max_regions; unsigned long ob_region_map; phys_addr_t *ob_addr; phys_addr_t irq_phys_addr; void __iomem *irq_cpu_addr; u64 irq_pci_addr; u8 irq_pci_fn; u8 irq_pending; }; static void rockchip_pcie_clear_ep_ob_atu(struct rockchip_pcie *rockchip, u32 region) { rockchip_pcie_write(rockchip, 0, ROCKCHIP_PCIE_AT_OB_REGION_PCI_ADDR0(region)); rockchip_pcie_write(rockchip, 0, ROCKCHIP_PCIE_AT_OB_REGION_PCI_ADDR1(region)); rockchip_pcie_write(rockchip, 0, ROCKCHIP_PCIE_AT_OB_REGION_DESC0(region)); rockchip_pcie_write(rockchip, 0, ROCKCHIP_PCIE_AT_OB_REGION_DESC1(region)); } static void rockchip_pcie_prog_ep_ob_atu(struct rockchip_pcie *rockchip, u8 fn, u32 r, u64 cpu_addr, u64 pci_addr, size_t size) { int num_pass_bits = fls64(size - 1); u32 addr0, addr1, desc0; if (num_pass_bits < 8) num_pass_bits = 8; addr0 = ((num_pass_bits - 1) & PCIE_CORE_OB_REGION_ADDR0_NUM_BITS) | (lower_32_bits(pci_addr) & PCIE_CORE_OB_REGION_ADDR0_LO_ADDR); addr1 = upper_32_bits(pci_addr); desc0 = ROCKCHIP_PCIE_AT_OB_REGION_DESC0_DEVFN(fn) | AXI_WRAPPER_MEM_WRITE; /* PCI bus address region */ rockchip_pcie_write(rockchip, addr0, ROCKCHIP_PCIE_AT_OB_REGION_PCI_ADDR0(r)); rockchip_pcie_write(rockchip, addr1, ROCKCHIP_PCIE_AT_OB_REGION_PCI_ADDR1(r)); rockchip_pcie_write(rockchip, desc0, ROCKCHIP_PCIE_AT_OB_REGION_DESC0(r)); rockchip_pcie_write(rockchip, 0, ROCKCHIP_PCIE_AT_OB_REGION_DESC1(r)); } static int rockchip_pcie_ep_write_header(struct pci_epc *epc, u8 fn, u8 vfn, struct pci_epf_header *hdr) { u32 reg; struct rockchip_pcie_ep *ep = epc_get_drvdata(epc); struct rockchip_pcie *rockchip = &ep->rockchip; /* All functions share the same vendor ID with function 0 */ if (fn == 0) { u32 vid_regs = (hdr->vendorid & GENMASK(15, 0)) | (hdr->subsys_vendor_id & GENMASK(31, 16)) << 16; rockchip_pcie_write(rockchip, vid_regs, PCIE_CORE_CONFIG_VENDOR); } reg = rockchip_pcie_read(rockchip, PCIE_EP_CONFIG_DID_VID); reg = (reg & 0xFFFF) | (hdr->deviceid << 16); rockchip_pcie_write(rockchip, reg, PCIE_EP_CONFIG_DID_VID); rockchip_pcie_write(rockchip, hdr->revid | hdr->progif_code << 8 | hdr->subclass_code << 16 | hdr->baseclass_code << 24, ROCKCHIP_PCIE_EP_FUNC_BASE(fn) + PCI_REVISION_ID); rockchip_pcie_write(rockchip, hdr->cache_line_size, ROCKCHIP_PCIE_EP_FUNC_BASE(fn) + PCI_CACHE_LINE_SIZE); rockchip_pcie_write(rockchip, hdr->subsys_id << 16, ROCKCHIP_PCIE_EP_FUNC_BASE(fn) + PCI_SUBSYSTEM_VENDOR_ID); rockchip_pcie_write(rockchip, hdr->interrupt_pin << 8, ROCKCHIP_PCIE_EP_FUNC_BASE(fn) + PCI_INTERRUPT_LINE); return 0; } static int rockchip_pcie_ep_set_bar(struct pci_epc *epc, u8 fn, u8 vfn, struct pci_epf_bar *epf_bar) { struct rockchip_pcie_ep *ep = epc_get_drvdata(epc); struct rockchip_pcie *rockchip = &ep->rockchip; dma_addr_t bar_phys = epf_bar->phys_addr; enum pci_barno bar = epf_bar->barno; int flags = epf_bar->flags; u32 addr0, addr1, reg, cfg, b, aperture, ctrl; u64 sz; /* BAR size is 2^(aperture + 7) */ sz = max_t(size_t, epf_bar->size, MIN_EP_APERTURE); /* * roundup_pow_of_two() returns an unsigned long, which is not suited * for 64bit values. */ sz = 1ULL << fls64(sz - 1); aperture = ilog2(sz) - 7; /* 128B -> 0, 256B -> 1, 512B -> 2, ... */ if ((flags & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) { ctrl = ROCKCHIP_PCIE_CORE_BAR_CFG_CTRL_IO_32BITS; } else { bool is_prefetch = !!(flags & PCI_BASE_ADDRESS_MEM_PREFETCH); bool is_64bits = sz > SZ_2G; if (is_64bits && (bar & 1)) return -EINVAL; if (is_64bits && is_prefetch) ctrl = ROCKCHIP_PCIE_CORE_BAR_CFG_CTRL_PREFETCH_MEM_64BITS; else if (is_prefetch) ctrl = ROCKCHIP_PCIE_CORE_BAR_CFG_CTRL_PREFETCH_MEM_32BITS; else if (is_64bits) ctrl = ROCKCHIP_PCIE_CORE_BAR_CFG_CTRL_MEM_64BITS; else ctrl = ROCKCHIP_PCIE_CORE_BAR_CFG_CTRL_MEM_32BITS; } if (bar < BAR_4) { reg = ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG0(fn); b = bar; } else { reg = ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG1(fn); b = bar - BAR_4; } addr0 = lower_32_bits(bar_phys); addr1 = upper_32_bits(bar_phys); cfg = rockchip_pcie_read(rockchip, reg); cfg &= ~(ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG_BAR_APERTURE_MASK(b) | ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG_BAR_CTRL_MASK(b)); cfg |= (ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG_BAR_APERTURE(b, aperture) | ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG_BAR_CTRL(b, ctrl)); rockchip_pcie_write(rockchip, cfg, reg); rockchip_pcie_write(rockchip, addr0, ROCKCHIP_PCIE_AT_IB_EP_FUNC_BAR_ADDR0(fn, bar)); rockchip_pcie_write(rockchip, addr1, ROCKCHIP_PCIE_AT_IB_EP_FUNC_BAR_ADDR1(fn, bar)); return 0; } static void rockchip_pcie_ep_clear_bar(struct pci_epc *epc, u8 fn, u8 vfn, struct pci_epf_bar *epf_bar) { struct rockchip_pcie_ep *ep = epc_get_drvdata(epc); struct rockchip_pcie *rockchip = &ep->rockchip; u32 reg, cfg, b, ctrl; enum pci_barno bar = epf_bar->barno; if (bar < BAR_4) { reg = ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG0(fn); b = bar; } else { reg = ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG1(fn); b = bar - BAR_4; } ctrl = ROCKCHIP_PCIE_CORE_BAR_CFG_CTRL_DISABLED; cfg = rockchip_pcie_read(rockchip, reg); cfg &= ~(ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG_BAR_APERTURE_MASK(b) | ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG_BAR_CTRL_MASK(b)); cfg |= ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG_BAR_CTRL(b, ctrl); rockchip_pcie_write(rockchip, cfg, reg); rockchip_pcie_write(rockchip, 0x0, ROCKCHIP_PCIE_AT_IB_EP_FUNC_BAR_ADDR0(fn, bar)); rockchip_pcie_write(rockchip, 0x0, ROCKCHIP_PCIE_AT_IB_EP_FUNC_BAR_ADDR1(fn, bar)); } static inline u32 rockchip_ob_region(phys_addr_t addr) { return (addr >> ilog2(SZ_1M)) & 0x1f; } static int rockchip_pcie_ep_map_addr(struct pci_epc *epc, u8 fn, u8 vfn, phys_addr_t addr, u64 pci_addr, size_t size) { struct rockchip_pcie_ep *ep = epc_get_drvdata(epc); struct rockchip_pcie *pcie = &ep->rockchip; u32 r = rockchip_ob_region(addr); rockchip_pcie_prog_ep_ob_atu(pcie, fn, r, addr, pci_addr, size); set_bit(r, &ep->ob_region_map); ep->ob_addr[r] = addr; return 0; } static void rockchip_pcie_ep_unmap_addr(struct pci_epc *epc, u8 fn, u8 vfn, phys_addr_t addr) { struct rockchip_pcie_ep *ep = epc_get_drvdata(epc); struct rockchip_pcie *rockchip = &ep->rockchip; u32 r; for (r = 0; r < ep->max_regions; r++) if (ep->ob_addr[r] == addr) break; if (r == ep->max_regions) return; rockchip_pcie_clear_ep_ob_atu(rockchip, r); ep->ob_addr[r] = 0; clear_bit(r, &ep->ob_region_map); } static int rockchip_pcie_ep_set_msi(struct pci_epc *epc, u8 fn, u8 vfn, u8 multi_msg_cap) { struct rockchip_pcie_ep *ep = epc_get_drvdata(epc); struct rockchip_pcie *rockchip = &ep->rockchip; u32 flags; flags = rockchip_pcie_read(rockchip, ROCKCHIP_PCIE_EP_FUNC_BASE(fn) + ROCKCHIP_PCIE_EP_MSI_CTRL_REG); flags &= ~ROCKCHIP_PCIE_EP_MSI_CTRL_MMC_MASK; flags |= (multi_msg_cap << ROCKCHIP_PCIE_EP_MSI_CTRL_MMC_OFFSET) | (PCI_MSI_FLAGS_64BIT << ROCKCHIP_PCIE_EP_MSI_FLAGS_OFFSET); flags &= ~ROCKCHIP_PCIE_EP_MSI_CTRL_MASK_MSI_CAP; rockchip_pcie_write(rockchip, flags, ROCKCHIP_PCIE_EP_FUNC_BASE(fn) + ROCKCHIP_PCIE_EP_MSI_CTRL_REG); return 0; } static int rockchip_pcie_ep_get_msi(struct pci_epc *epc, u8 fn, u8 vfn) { struct rockchip_pcie_ep *ep = epc_get_drvdata(epc); struct rockchip_pcie *rockchip = &ep->rockchip; u32 flags; flags = rockchip_pcie_read(rockchip, ROCKCHIP_PCIE_EP_FUNC_BASE(fn) + ROCKCHIP_PCIE_EP_MSI_CTRL_REG); if (!(flags & ROCKCHIP_PCIE_EP_MSI_CTRL_ME)) return -EINVAL; return ((flags & ROCKCHIP_PCIE_EP_MSI_CTRL_MME_MASK) >> ROCKCHIP_PCIE_EP_MSI_CTRL_MME_OFFSET); } static void rockchip_pcie_ep_assert_intx(struct rockchip_pcie_ep *ep, u8 fn, u8 intx, bool do_assert) { struct rockchip_pcie *rockchip = &ep->rockchip; intx &= 3; if (do_assert) { ep->irq_pending |= BIT(intx); rockchip_pcie_write(rockchip, PCIE_CLIENT_INT_IN_ASSERT | PCIE_CLIENT_INT_PEND_ST_PEND, PCIE_CLIENT_LEGACY_INT_CTRL); } else { ep->irq_pending &= ~BIT(intx); rockchip_pcie_write(rockchip, PCIE_CLIENT_INT_IN_DEASSERT | PCIE_CLIENT_INT_PEND_ST_NORMAL, PCIE_CLIENT_LEGACY_INT_CTRL); } } static int rockchip_pcie_ep_send_legacy_irq(struct rockchip_pcie_ep *ep, u8 fn, u8 intx) { u16 cmd; cmd = rockchip_pcie_read(&ep->rockchip, ROCKCHIP_PCIE_EP_FUNC_BASE(fn) + ROCKCHIP_PCIE_EP_CMD_STATUS); if (cmd & PCI_COMMAND_INTX_DISABLE) return -EINVAL; /* * Should add some delay between toggling INTx per TRM vaguely saying * it depends on some cycles of the AHB bus clock to function it. So * add sufficient 1ms here. */ rockchip_pcie_ep_assert_intx(ep, fn, intx, true); mdelay(1); rockchip_pcie_ep_assert_intx(ep, fn, intx, false); return 0; } static int rockchip_pcie_ep_send_msi_irq(struct rockchip_pcie_ep *ep, u8 fn, u8 interrupt_num) { struct rockchip_pcie *rockchip = &ep->rockchip; u32 flags, mme, data, data_mask; u8 msi_count; u64 pci_addr; u32 r; /* Check MSI enable bit */ flags = rockchip_pcie_read(&ep->rockchip, ROCKCHIP_PCIE_EP_FUNC_BASE(fn) + ROCKCHIP_PCIE_EP_MSI_CTRL_REG); if (!(flags & ROCKCHIP_PCIE_EP_MSI_CTRL_ME)) return -EINVAL; /* Get MSI numbers from MME */ mme = ((flags & ROCKCHIP_PCIE_EP_MSI_CTRL_MME_MASK) >> ROCKCHIP_PCIE_EP_MSI_CTRL_MME_OFFSET); msi_count = 1 << mme; if (!interrupt_num || interrupt_num > msi_count) return -EINVAL; /* Set MSI private data */ data_mask = msi_count - 1; data = rockchip_pcie_read(rockchip, ROCKCHIP_PCIE_EP_FUNC_BASE(fn) + ROCKCHIP_PCIE_EP_MSI_CTRL_REG + PCI_MSI_DATA_64); data = (data & ~data_mask) | ((interrupt_num - 1) & data_mask); /* Get MSI PCI address */ pci_addr = rockchip_pcie_read(rockchip, ROCKCHIP_PCIE_EP_FUNC_BASE(fn) + ROCKCHIP_PCIE_EP_MSI_CTRL_REG + PCI_MSI_ADDRESS_HI); pci_addr <<= 32; pci_addr |= rockchip_pcie_read(rockchip, ROCKCHIP_PCIE_EP_FUNC_BASE(fn) + ROCKCHIP_PCIE_EP_MSI_CTRL_REG + PCI_MSI_ADDRESS_LO); /* Set the outbound region if needed. */ if (unlikely(ep->irq_pci_addr != (pci_addr & PCIE_ADDR_MASK) || ep->irq_pci_fn != fn)) { r = rockchip_ob_region(ep->irq_phys_addr); rockchip_pcie_prog_ep_ob_atu(rockchip, fn, r, ep->irq_phys_addr, pci_addr & PCIE_ADDR_MASK, ~PCIE_ADDR_MASK + 1); ep->irq_pci_addr = (pci_addr & PCIE_ADDR_MASK); ep->irq_pci_fn = fn; } writew(data, ep->irq_cpu_addr + (pci_addr & ~PCIE_ADDR_MASK)); return 0; } static int rockchip_pcie_ep_raise_irq(struct pci_epc *epc, u8 fn, u8 vfn, enum pci_epc_irq_type type, u16 interrupt_num) { struct rockchip_pcie_ep *ep = epc_get_drvdata(epc); switch (type) { case PCI_EPC_IRQ_LEGACY: return rockchip_pcie_ep_send_legacy_irq(ep, fn, 0); case PCI_EPC_IRQ_MSI: return rockchip_pcie_ep_send_msi_irq(ep, fn, interrupt_num); default: return -EINVAL; } } static int rockchip_pcie_ep_start(struct pci_epc *epc) { struct rockchip_pcie_ep *ep = epc_get_drvdata(epc); struct rockchip_pcie *rockchip = &ep->rockchip; struct pci_epf *epf; u32 cfg; cfg = BIT(0); list_for_each_entry(epf, &epc->pci_epf, list) cfg |= BIT(epf->func_no); rockchip_pcie_write(rockchip, cfg, PCIE_CORE_PHY_FUNC_CFG); return 0; } static const struct pci_epc_features rockchip_pcie_epc_features = { .linkup_notifier = false, .msi_capable = true, .msix_capable = false, .align = 256, }; static const struct pci_epc_features* rockchip_pcie_ep_get_features(struct pci_epc *epc, u8 func_no, u8 vfunc_no) { return &rockchip_pcie_epc_features; } static const struct pci_epc_ops rockchip_pcie_epc_ops = { .write_header = rockchip_pcie_ep_write_header, .set_bar = rockchip_pcie_ep_set_bar, .clear_bar = rockchip_pcie_ep_clear_bar, .map_addr = rockchip_pcie_ep_map_addr, .unmap_addr = rockchip_pcie_ep_unmap_addr, .set_msi = rockchip_pcie_ep_set_msi, .get_msi = rockchip_pcie_ep_get_msi, .raise_irq = rockchip_pcie_ep_raise_irq, .start = rockchip_pcie_ep_start, .get_features = rockchip_pcie_ep_get_features, }; static int rockchip_pcie_parse_ep_dt(struct rockchip_pcie *rockchip, struct rockchip_pcie_ep *ep) { struct device *dev = rockchip->dev; int err; err = rockchip_pcie_parse_dt(rockchip); if (err) return err; err = rockchip_pcie_get_phys(rockchip); if (err) return err; err = of_property_read_u32(dev->of_node, "rockchip,max-outbound-regions", &ep->max_regions); if (err < 0 || ep->max_regions > MAX_REGION_LIMIT) ep->max_regions = MAX_REGION_LIMIT; ep->ob_region_map = 0; err = of_property_read_u8(dev->of_node, "max-functions", &ep->epc->max_functions); if (err < 0) ep->epc->max_functions = 1; return 0; } static const struct of_device_id rockchip_pcie_ep_of_match[] = { { .compatible = "rockchip,rk3399-pcie-ep"}, {}, }; static int rockchip_pcie_ep_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rockchip_pcie_ep *ep; struct rockchip_pcie *rockchip; struct pci_epc *epc; size_t max_regions; struct pci_epc_mem_window *windows = NULL; int err, i; u32 cfg_msi, cfg_msix_cp; ep = devm_kzalloc(dev, sizeof(*ep), GFP_KERNEL); if (!ep) return -ENOMEM; rockchip = &ep->rockchip; rockchip->is_rc = false; rockchip->dev = dev; epc = devm_pci_epc_create(dev, &rockchip_pcie_epc_ops); if (IS_ERR(epc)) { dev_err(dev, "failed to create epc device\n"); return PTR_ERR(epc); } ep->epc = epc; epc_set_drvdata(epc, ep); err = rockchip_pcie_parse_ep_dt(rockchip, ep); if (err) return err; err = rockchip_pcie_enable_clocks(rockchip); if (err) return err; err = rockchip_pcie_init_port(rockchip); if (err) goto err_disable_clocks; /* Establish the link automatically */ rockchip_pcie_write(rockchip, PCIE_CLIENT_LINK_TRAIN_ENABLE, PCIE_CLIENT_CONFIG); max_regions = ep->max_regions; ep->ob_addr = devm_kcalloc(dev, max_regions, sizeof(*ep->ob_addr), GFP_KERNEL); if (!ep->ob_addr) { err = -ENOMEM; goto err_uninit_port; } /* Only enable function 0 by default */ rockchip_pcie_write(rockchip, BIT(0), PCIE_CORE_PHY_FUNC_CFG); windows = devm_kcalloc(dev, ep->max_regions, sizeof(struct pci_epc_mem_window), GFP_KERNEL); if (!windows) { err = -ENOMEM; goto err_uninit_port; } for (i = 0; i < ep->max_regions; i++) { windows[i].phys_base = rockchip->mem_res->start + (SZ_1M * i); windows[i].size = SZ_1M; windows[i].page_size = SZ_1M; } err = pci_epc_multi_mem_init(epc, windows, ep->max_regions); devm_kfree(dev, windows); if (err < 0) { dev_err(dev, "failed to initialize the memory space\n"); goto err_uninit_port; } ep->irq_cpu_addr = pci_epc_mem_alloc_addr(epc, &ep->irq_phys_addr, SZ_1M); if (!ep->irq_cpu_addr) { dev_err(dev, "failed to reserve memory space for MSI\n"); err = -ENOMEM; goto err_epc_mem_exit; } ep->irq_pci_addr = ROCKCHIP_PCIE_EP_DUMMY_IRQ_ADDR; /* * MSI-X is not supported but the controller still advertises the MSI-X * capability by default, which can lead to the Root Complex side * allocating MSI-X vectors which cannot be used. Avoid this by skipping * the MSI-X capability entry in the PCIe capabilities linked-list: get * the next pointer from the MSI-X entry and set that in the MSI * capability entry (which is the previous entry). This way the MSI-X * entry is skipped (left out of the linked-list) and not advertised. */ cfg_msi = rockchip_pcie_read(rockchip, PCIE_EP_CONFIG_BASE + ROCKCHIP_PCIE_EP_MSI_CTRL_REG); cfg_msi &= ~ROCKCHIP_PCIE_EP_MSI_CP1_MASK; cfg_msix_cp = rockchip_pcie_read(rockchip, PCIE_EP_CONFIG_BASE + ROCKCHIP_PCIE_EP_MSIX_CAP_REG) & ROCKCHIP_PCIE_EP_MSIX_CAP_CP_MASK; cfg_msi |= cfg_msix_cp; rockchip_pcie_write(rockchip, cfg_msi, PCIE_EP_CONFIG_BASE + ROCKCHIP_PCIE_EP_MSI_CTRL_REG); rockchip_pcie_write(rockchip, PCIE_CLIENT_CONF_ENABLE, PCIE_CLIENT_CONFIG); return 0; err_epc_mem_exit: pci_epc_mem_exit(epc); err_uninit_port: rockchip_pcie_deinit_phys(rockchip); err_disable_clocks: rockchip_pcie_disable_clocks(rockchip); return err; } static struct platform_driver rockchip_pcie_ep_driver = { .driver = { .name = "rockchip-pcie-ep", .of_match_table = rockchip_pcie_ep_of_match, }, .probe = rockchip_pcie_ep_probe, }; builtin_platform_driver(rockchip_pcie_ep_driver);