// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2021 Intel Corporation #include <linux/bug.h> #include <linux/export.h> #include <linux/pci.h> #include <linux/peci.h> #include <linux/slab.h> #include <linux/types.h> #include <asm/unaligned.h> #include "internal.h" #define PECI_GET_DIB_CMD 0xf7 #define PECI_GET_DIB_WR_LEN 1 #define PECI_GET_DIB_RD_LEN 8 #define PECI_GET_TEMP_CMD 0x01 #define PECI_GET_TEMP_WR_LEN 1 #define PECI_GET_TEMP_RD_LEN 2 #define PECI_RDPKGCFG_CMD 0xa1 #define PECI_RDPKGCFG_WR_LEN 5 #define PECI_RDPKGCFG_RD_LEN_BASE 1 #define PECI_WRPKGCFG_CMD 0xa5 #define PECI_WRPKGCFG_WR_LEN_BASE 6 #define PECI_WRPKGCFG_RD_LEN 1 #define PECI_RDIAMSR_CMD 0xb1 #define PECI_RDIAMSR_WR_LEN 5 #define PECI_RDIAMSR_RD_LEN 9 #define PECI_WRIAMSR_CMD 0xb5 #define PECI_RDIAMSREX_CMD 0xd1 #define PECI_RDIAMSREX_WR_LEN 6 #define PECI_RDIAMSREX_RD_LEN 9 #define PECI_RDPCICFG_CMD 0x61 #define PECI_RDPCICFG_WR_LEN 6 #define PECI_RDPCICFG_RD_LEN 5 #define PECI_RDPCICFG_RD_LEN_MAX 24 #define PECI_WRPCICFG_CMD 0x65 #define PECI_RDPCICFGLOCAL_CMD 0xe1 #define PECI_RDPCICFGLOCAL_WR_LEN 5 #define PECI_RDPCICFGLOCAL_RD_LEN_BASE 1 #define PECI_WRPCICFGLOCAL_CMD 0xe5 #define PECI_WRPCICFGLOCAL_WR_LEN_BASE 6 #define PECI_WRPCICFGLOCAL_RD_LEN 1 #define PECI_ENDPTCFG_TYPE_LOCAL_PCI 0x03 #define PECI_ENDPTCFG_TYPE_PCI 0x04 #define PECI_ENDPTCFG_TYPE_MMIO 0x05 #define PECI_ENDPTCFG_ADDR_TYPE_PCI 0x04 #define PECI_ENDPTCFG_ADDR_TYPE_MMIO_D 0x05 #define PECI_ENDPTCFG_ADDR_TYPE_MMIO_Q 0x06 #define PECI_RDENDPTCFG_CMD 0xc1 #define PECI_RDENDPTCFG_PCI_WR_LEN 12 #define PECI_RDENDPTCFG_MMIO_WR_LEN_BASE 10 #define PECI_RDENDPTCFG_MMIO_D_WR_LEN 14 #define PECI_RDENDPTCFG_MMIO_Q_WR_LEN 18 #define PECI_RDENDPTCFG_RD_LEN_BASE 1 #define PECI_WRENDPTCFG_CMD 0xc5 #define PECI_WRENDPTCFG_PCI_WR_LEN_BASE 13 #define PECI_WRENDPTCFG_MMIO_D_WR_LEN_BASE 15 #define PECI_WRENDPTCFG_MMIO_Q_WR_LEN_BASE 19 #define PECI_WRENDPTCFG_RD_LEN 1 /* Device Specific Completion Code (CC) Definition */ #define PECI_CC_SUCCESS 0x40 #define PECI_CC_NEED_RETRY 0x80 #define PECI_CC_OUT_OF_RESOURCE 0x81 #define PECI_CC_UNAVAIL_RESOURCE 0x82 #define PECI_CC_INVALID_REQ 0x90 #define PECI_CC_MCA_ERROR 0x91 #define PECI_CC_CATASTROPHIC_MCA_ERROR 0x93 #define PECI_CC_FATAL_MCA_ERROR 0x94 #define PECI_CC_PARITY_ERR_GPSB_OR_PMSB 0x98 #define PECI_CC_PARITY_ERR_GPSB_OR_PMSB_IERR 0x9B #define PECI_CC_PARITY_ERR_GPSB_OR_PMSB_MCA 0x9C #define PECI_RETRY_BIT BIT(0) #define PECI_RETRY_TIMEOUT msecs_to_jiffies(700) #define PECI_RETRY_INTERVAL_MIN msecs_to_jiffies(1) #define PECI_RETRY_INTERVAL_MAX msecs_to_jiffies(128) static u8 peci_request_data_cc(struct peci_request *req) { return req->rx.buf[0]; } /** * peci_request_status() - return -errno based on PECI completion code * @req: the PECI request that contains response data with completion code * * It can't be used for Ping(), GetDIB() and GetTemp() - for those commands we * don't expect completion code in the response. * * Return: -errno */ int peci_request_status(struct peci_request *req) { u8 cc = peci_request_data_cc(req); if (cc != PECI_CC_SUCCESS) dev_dbg(&req->device->dev, "ret: %#02x\n", cc); switch (cc) { case PECI_CC_SUCCESS: return 0; case PECI_CC_NEED_RETRY: case PECI_CC_OUT_OF_RESOURCE: case PECI_CC_UNAVAIL_RESOURCE: return -EAGAIN; case PECI_CC_INVALID_REQ: return -EINVAL; case PECI_CC_MCA_ERROR: case PECI_CC_CATASTROPHIC_MCA_ERROR: case PECI_CC_FATAL_MCA_ERROR: case PECI_CC_PARITY_ERR_GPSB_OR_PMSB: case PECI_CC_PARITY_ERR_GPSB_OR_PMSB_IERR: case PECI_CC_PARITY_ERR_GPSB_OR_PMSB_MCA: return -EIO; } WARN_ONCE(1, "Unknown PECI completion code: %#02x\n", cc); return -EIO; } EXPORT_SYMBOL_NS_GPL(peci_request_status, PECI); static int peci_request_xfer(struct peci_request *req) { struct peci_device *device = req->device; struct peci_controller *controller = to_peci_controller(device->dev.parent); int ret; mutex_lock(&controller->bus_lock); ret = controller->ops->xfer(controller, device->addr, req); mutex_unlock(&controller->bus_lock); return ret; } static int peci_request_xfer_retry(struct peci_request *req) { long wait_interval = PECI_RETRY_INTERVAL_MIN; struct peci_device *device = req->device; struct peci_controller *controller = to_peci_controller(device->dev.parent); unsigned long start = jiffies; int ret; /* Don't try to use it for ping */ if (WARN_ON(req->tx.len == 0)) return 0; do { ret = peci_request_xfer(req); if (ret) { dev_dbg(&controller->dev, "xfer error: %d\n", ret); return ret; } if (peci_request_status(req) != -EAGAIN) return 0; /* Set the retry bit to indicate a retry attempt */ req->tx.buf[1] |= PECI_RETRY_BIT; if (schedule_timeout_interruptible(wait_interval)) return -ERESTARTSYS; wait_interval = min_t(long, wait_interval * 2, PECI_RETRY_INTERVAL_MAX); } while (time_before(jiffies, start + PECI_RETRY_TIMEOUT)); dev_dbg(&controller->dev, "request timed out\n"); return -ETIMEDOUT; } /** * peci_request_alloc() - allocate &struct peci_requests * @device: PECI device to which request is going to be sent * @tx_len: TX length * @rx_len: RX length * * Return: A pointer to a newly allocated &struct peci_request on success or NULL otherwise. */ struct peci_request *peci_request_alloc(struct peci_device *device, u8 tx_len, u8 rx_len) { struct peci_request *req; /* * TX and RX buffers are fixed length members of peci_request, this is * just a warn for developers to make sure to expand the buffers (or * change the allocation method) if we go over the current limit. */ if (WARN_ON_ONCE(tx_len > PECI_REQUEST_MAX_BUF_SIZE || rx_len > PECI_REQUEST_MAX_BUF_SIZE)) return NULL; /* * PECI controllers that we are using now don't support DMA, this * should be converted to DMA API once support for controllers that do * allow it is added to avoid an extra copy. */ req = kzalloc(sizeof(*req), GFP_KERNEL); if (!req) return NULL; req->device = device; req->tx.len = tx_len; req->rx.len = rx_len; return req; } EXPORT_SYMBOL_NS_GPL(peci_request_alloc, PECI); /** * peci_request_free() - free peci_request * @req: the PECI request to be freed */ void peci_request_free(struct peci_request *req) { kfree(req); } EXPORT_SYMBOL_NS_GPL(peci_request_free, PECI); struct peci_request *peci_xfer_get_dib(struct peci_device *device) { struct peci_request *req; int ret; req = peci_request_alloc(device, PECI_GET_DIB_WR_LEN, PECI_GET_DIB_RD_LEN); if (!req) return ERR_PTR(-ENOMEM); req->tx.buf[0] = PECI_GET_DIB_CMD; ret = peci_request_xfer(req); if (ret) { peci_request_free(req); return ERR_PTR(ret); } return req; } EXPORT_SYMBOL_NS_GPL(peci_xfer_get_dib, PECI); struct peci_request *peci_xfer_get_temp(struct peci_device *device) { struct peci_request *req; int ret; req = peci_request_alloc(device, PECI_GET_TEMP_WR_LEN, PECI_GET_TEMP_RD_LEN); if (!req) return ERR_PTR(-ENOMEM); req->tx.buf[0] = PECI_GET_TEMP_CMD; ret = peci_request_xfer(req); if (ret) { peci_request_free(req); return ERR_PTR(ret); } return req; } EXPORT_SYMBOL_NS_GPL(peci_xfer_get_temp, PECI); static struct peci_request * __pkg_cfg_read(struct peci_device *device, u8 index, u16 param, u8 len) { struct peci_request *req; int ret; req = peci_request_alloc(device, PECI_RDPKGCFG_WR_LEN, PECI_RDPKGCFG_RD_LEN_BASE + len); if (!req) return ERR_PTR(-ENOMEM); req->tx.buf[0] = PECI_RDPKGCFG_CMD; req->tx.buf[1] = 0; req->tx.buf[2] = index; put_unaligned_le16(param, &req->tx.buf[3]); ret = peci_request_xfer_retry(req); if (ret) { peci_request_free(req); return ERR_PTR(ret); } return req; } static u32 __get_pci_addr(u8 bus, u8 dev, u8 func, u16 reg) { return reg | PCI_DEVID(bus, PCI_DEVFN(dev, func)) << 12; } static struct peci_request * __pci_cfg_local_read(struct peci_device *device, u8 bus, u8 dev, u8 func, u16 reg, u8 len) { struct peci_request *req; u32 pci_addr; int ret; req = peci_request_alloc(device, PECI_RDPCICFGLOCAL_WR_LEN, PECI_RDPCICFGLOCAL_RD_LEN_BASE + len); if (!req) return ERR_PTR(-ENOMEM); pci_addr = __get_pci_addr(bus, dev, func, reg); req->tx.buf[0] = PECI_RDPCICFGLOCAL_CMD; req->tx.buf[1] = 0; put_unaligned_le24(pci_addr, &req->tx.buf[2]); ret = peci_request_xfer_retry(req); if (ret) { peci_request_free(req); return ERR_PTR(ret); } return req; } static struct peci_request * __ep_pci_cfg_read(struct peci_device *device, u8 msg_type, u8 seg, u8 bus, u8 dev, u8 func, u16 reg, u8 len) { struct peci_request *req; u32 pci_addr; int ret; req = peci_request_alloc(device, PECI_RDENDPTCFG_PCI_WR_LEN, PECI_RDENDPTCFG_RD_LEN_BASE + len); if (!req) return ERR_PTR(-ENOMEM); pci_addr = __get_pci_addr(bus, dev, func, reg); req->tx.buf[0] = PECI_RDENDPTCFG_CMD; req->tx.buf[1] = 0; req->tx.buf[2] = msg_type; req->tx.buf[3] = 0; req->tx.buf[4] = 0; req->tx.buf[5] = 0; req->tx.buf[6] = PECI_ENDPTCFG_ADDR_TYPE_PCI; req->tx.buf[7] = seg; /* PCI Segment */ put_unaligned_le32(pci_addr, &req->tx.buf[8]); ret = peci_request_xfer_retry(req); if (ret) { peci_request_free(req); return ERR_PTR(ret); } return req; } static struct peci_request * __ep_mmio_read(struct peci_device *device, u8 bar, u8 addr_type, u8 seg, u8 bus, u8 dev, u8 func, u64 offset, u8 tx_len, u8 len) { struct peci_request *req; int ret; req = peci_request_alloc(device, tx_len, PECI_RDENDPTCFG_RD_LEN_BASE + len); if (!req) return ERR_PTR(-ENOMEM); req->tx.buf[0] = PECI_RDENDPTCFG_CMD; req->tx.buf[1] = 0; req->tx.buf[2] = PECI_ENDPTCFG_TYPE_MMIO; req->tx.buf[3] = 0; /* Endpoint ID */ req->tx.buf[4] = 0; /* Reserved */ req->tx.buf[5] = bar; req->tx.buf[6] = addr_type; req->tx.buf[7] = seg; /* PCI Segment */ req->tx.buf[8] = PCI_DEVFN(dev, func); req->tx.buf[9] = bus; /* PCI Bus */ if (addr_type == PECI_ENDPTCFG_ADDR_TYPE_MMIO_D) put_unaligned_le32(offset, &req->tx.buf[10]); else put_unaligned_le64(offset, &req->tx.buf[10]); ret = peci_request_xfer_retry(req); if (ret) { peci_request_free(req); return ERR_PTR(ret); } return req; } u8 peci_request_data_readb(struct peci_request *req) { return req->rx.buf[1]; } EXPORT_SYMBOL_NS_GPL(peci_request_data_readb, PECI); u16 peci_request_data_readw(struct peci_request *req) { return get_unaligned_le16(&req->rx.buf[1]); } EXPORT_SYMBOL_NS_GPL(peci_request_data_readw, PECI); u32 peci_request_data_readl(struct peci_request *req) { return get_unaligned_le32(&req->rx.buf[1]); } EXPORT_SYMBOL_NS_GPL(peci_request_data_readl, PECI); u64 peci_request_data_readq(struct peci_request *req) { return get_unaligned_le64(&req->rx.buf[1]); } EXPORT_SYMBOL_NS_GPL(peci_request_data_readq, PECI); u64 peci_request_dib_read(struct peci_request *req) { return get_unaligned_le64(&req->rx.buf[0]); } EXPORT_SYMBOL_NS_GPL(peci_request_dib_read, PECI); s16 peci_request_temp_read(struct peci_request *req) { return get_unaligned_le16(&req->rx.buf[0]); } EXPORT_SYMBOL_NS_GPL(peci_request_temp_read, PECI); #define __read_pkg_config(x, type) \ struct peci_request *peci_xfer_pkg_cfg_##x(struct peci_device *device, u8 index, u16 param) \ { \ return __pkg_cfg_read(device, index, param, sizeof(type)); \ } \ EXPORT_SYMBOL_NS_GPL(peci_xfer_pkg_cfg_##x, PECI) __read_pkg_config(readb, u8); __read_pkg_config(readw, u16); __read_pkg_config(readl, u32); __read_pkg_config(readq, u64); #define __read_pci_config_local(x, type) \ struct peci_request * \ peci_xfer_pci_cfg_local_##x(struct peci_device *device, u8 bus, u8 dev, u8 func, u16 reg) \ { \ return __pci_cfg_local_read(device, bus, dev, func, reg, sizeof(type)); \ } \ EXPORT_SYMBOL_NS_GPL(peci_xfer_pci_cfg_local_##x, PECI) __read_pci_config_local(readb, u8); __read_pci_config_local(readw, u16); __read_pci_config_local(readl, u32); #define __read_ep_pci_config(x, msg_type, type) \ struct peci_request * \ peci_xfer_ep_pci_cfg_##x(struct peci_device *device, u8 seg, u8 bus, u8 dev, u8 func, u16 reg) \ { \ return __ep_pci_cfg_read(device, msg_type, seg, bus, dev, func, reg, sizeof(type)); \ } \ EXPORT_SYMBOL_NS_GPL(peci_xfer_ep_pci_cfg_##x, PECI) __read_ep_pci_config(local_readb, PECI_ENDPTCFG_TYPE_LOCAL_PCI, u8); __read_ep_pci_config(local_readw, PECI_ENDPTCFG_TYPE_LOCAL_PCI, u16); __read_ep_pci_config(local_readl, PECI_ENDPTCFG_TYPE_LOCAL_PCI, u32); __read_ep_pci_config(readb, PECI_ENDPTCFG_TYPE_PCI, u8); __read_ep_pci_config(readw, PECI_ENDPTCFG_TYPE_PCI, u16); __read_ep_pci_config(readl, PECI_ENDPTCFG_TYPE_PCI, u32); #define __read_ep_mmio(x, y, addr_type, type1, type2) \ struct peci_request *peci_xfer_ep_mmio##y##_##x(struct peci_device *device, u8 bar, u8 seg, \ u8 bus, u8 dev, u8 func, u64 offset) \ { \ return __ep_mmio_read(device, bar, addr_type, seg, bus, dev, func, \ offset, PECI_RDENDPTCFG_MMIO_WR_LEN_BASE + sizeof(type1), \ sizeof(type2)); \ } \ EXPORT_SYMBOL_NS_GPL(peci_xfer_ep_mmio##y##_##x, PECI) __read_ep_mmio(readl, 32, PECI_ENDPTCFG_ADDR_TYPE_MMIO_D, u32, u32); __read_ep_mmio(readl, 64, PECI_ENDPTCFG_ADDR_TYPE_MMIO_Q, u64, u32);