/* * Copyright (C) 2017 Spreadtrum Communications Inc. * * SPDX-License-Identifier: GPL-2.0 */ #include <linux/delay.h> #include <linux/hwspinlock.h> #include <linux/init.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/reboot.h> #include <linux/spi/spi.h> #include <linux/sizes.h> /* Registers definitions for ADI controller */ #define REG_ADI_CTRL0 0x4 #define REG_ADI_CHN_PRIL 0x8 #define REG_ADI_CHN_PRIH 0xc #define REG_ADI_INT_EN 0x10 #define REG_ADI_INT_RAW 0x14 #define REG_ADI_INT_MASK 0x18 #define REG_ADI_INT_CLR 0x1c #define REG_ADI_GSSI_CFG0 0x20 #define REG_ADI_GSSI_CFG1 0x24 #define REG_ADI_RD_CMD 0x28 #define REG_ADI_RD_DATA 0x2c #define REG_ADI_ARM_FIFO_STS 0x30 #define REG_ADI_STS 0x34 #define REG_ADI_EVT_FIFO_STS 0x38 #define REG_ADI_ARM_CMD_STS 0x3c #define REG_ADI_CHN_EN 0x40 #define REG_ADI_CHN_ADDR(id) (0x44 + (id - 2) * 4) #define REG_ADI_CHN_EN1 0x20c /* Bits definitions for register REG_ADI_GSSI_CFG0 */ #define BIT_CLK_ALL_ON BIT(30) /* Bits definitions for register REG_ADI_RD_DATA */ #define BIT_RD_CMD_BUSY BIT(31) #define RD_ADDR_SHIFT 16 #define RD_VALUE_MASK GENMASK(15, 0) #define RD_ADDR_MASK GENMASK(30, 16) /* Bits definitions for register REG_ADI_ARM_FIFO_STS */ #define BIT_FIFO_FULL BIT(11) #define BIT_FIFO_EMPTY BIT(10) /* * ADI slave devices include RTC, ADC, regulator, charger, thermal and so on. * ADI supports 12/14bit address for r2p0, and additional 17bit for r3p0 or * later versions. Since bit[1:0] are zero, so the spec describe them as * 10/12/15bit address mode. * The 10bit mode supports sigle slave, 12/15bit mode supports 3 slave, the * high two bits is slave_id. * The slave devices address offset is 0x8000 for 10/12bit address mode, * and 0x20000 for 15bit mode. */ #define ADI_10BIT_SLAVE_ADDR_SIZE SZ_4K #define ADI_10BIT_SLAVE_OFFSET 0x8000 #define ADI_12BIT_SLAVE_ADDR_SIZE SZ_16K #define ADI_12BIT_SLAVE_OFFSET 0x8000 #define ADI_15BIT_SLAVE_ADDR_SIZE SZ_128K #define ADI_15BIT_SLAVE_OFFSET 0x20000 /* Timeout (ms) for the trylock of hardware spinlocks */ #define ADI_HWSPINLOCK_TIMEOUT 5000 /* * ADI controller has 50 channels including 2 software channels * and 48 hardware channels. */ #define ADI_HW_CHNS 50 #define ADI_FIFO_DRAIN_TIMEOUT 1000 #define ADI_READ_TIMEOUT 2000 /* * Read back address from REG_ADI_RD_DATA bit[30:16] which maps to: * REG_ADI_RD_CMD bit[14:0] for r2p0 * REG_ADI_RD_CMD bit[16:2] for r3p0 */ #define RDBACK_ADDR_MASK_R2 GENMASK(14, 0) #define RDBACK_ADDR_MASK_R3 GENMASK(16, 2) #define RDBACK_ADDR_SHIFT_R3 2 /* Registers definitions for PMIC watchdog controller */ #define REG_WDG_LOAD_LOW 0x0 #define REG_WDG_LOAD_HIGH 0x4 #define REG_WDG_CTRL 0x8 #define REG_WDG_LOCK 0x20 /* Bits definitions for register REG_WDG_CTRL */ #define BIT_WDG_RUN BIT(1) #define BIT_WDG_NEW BIT(2) #define BIT_WDG_RST BIT(3) /* Bits definitions for register REG_MODULE_EN */ #define BIT_WDG_EN BIT(2) /* Registers definitions for PMIC */ #define PMIC_RST_STATUS 0xee8 #define PMIC_MODULE_EN 0xc08 #define PMIC_CLK_EN 0xc18 #define PMIC_WDG_BASE 0x80 /* Definition of PMIC reset status register */ #define HWRST_STATUS_SECURITY 0x02 #define HWRST_STATUS_RECOVERY 0x20 #define HWRST_STATUS_NORMAL 0x40 #define HWRST_STATUS_ALARM 0x50 #define HWRST_STATUS_SLEEP 0x60 #define HWRST_STATUS_FASTBOOT 0x30 #define HWRST_STATUS_SPECIAL 0x70 #define HWRST_STATUS_PANIC 0x80 #define HWRST_STATUS_CFTREBOOT 0x90 #define HWRST_STATUS_AUTODLOADER 0xa0 #define HWRST_STATUS_IQMODE 0xb0 #define HWRST_STATUS_SPRDISK 0xc0 #define HWRST_STATUS_FACTORYTEST 0xe0 #define HWRST_STATUS_WATCHDOG 0xf0 /* Use default timeout 50 ms that converts to watchdog values */ #define WDG_LOAD_VAL ((50 * 32768) / 1000) #define WDG_LOAD_MASK GENMASK(15, 0) #define WDG_UNLOCK_KEY 0xe551 struct sprd_adi_wdg { u32 base; u32 rst_sts; u32 wdg_en; u32 wdg_clk; }; struct sprd_adi_data { u32 slave_offset; u32 slave_addr_size; int (*read_check)(u32 val, u32 reg); int (*restart)(struct notifier_block *this, unsigned long mode, void *cmd); void (*wdg_rst)(void *p); }; struct sprd_adi { struct spi_controller *ctlr; struct device *dev; void __iomem *base; struct hwspinlock *hwlock; unsigned long slave_vbase; unsigned long slave_pbase; struct notifier_block restart_handler; const struct sprd_adi_data *data; }; static int sprd_adi_check_addr(struct sprd_adi *sadi, u32 reg) { if (reg >= sadi->data->slave_addr_size) { dev_err(sadi->dev, "slave address offset is incorrect, reg = 0x%x\n", reg); return -EINVAL; } return 0; } static int sprd_adi_drain_fifo(struct sprd_adi *sadi) { u32 timeout = ADI_FIFO_DRAIN_TIMEOUT; u32 sts; do { sts = readl_relaxed(sadi->base + REG_ADI_ARM_FIFO_STS); if (sts & BIT_FIFO_EMPTY) break; cpu_relax(); } while (--timeout); if (timeout == 0) { dev_err(sadi->dev, "drain write fifo timeout\n"); return -EBUSY; } return 0; } static int sprd_adi_fifo_is_full(struct sprd_adi *sadi) { return readl_relaxed(sadi->base + REG_ADI_ARM_FIFO_STS) & BIT_FIFO_FULL; } static int sprd_adi_read_check(u32 val, u32 addr) { u32 rd_addr; rd_addr = (val & RD_ADDR_MASK) >> RD_ADDR_SHIFT; if (rd_addr != addr) { pr_err("ADI read error, addr = 0x%x, val = 0x%x\n", addr, val); return -EIO; } return 0; } static int sprd_adi_read_check_r2(u32 val, u32 reg) { return sprd_adi_read_check(val, reg & RDBACK_ADDR_MASK_R2); } static int sprd_adi_read_check_r3(u32 val, u32 reg) { return sprd_adi_read_check(val, (reg & RDBACK_ADDR_MASK_R3) >> RDBACK_ADDR_SHIFT_R3); } static int sprd_adi_read(struct sprd_adi *sadi, u32 reg, u32 *read_val) { int read_timeout = ADI_READ_TIMEOUT; unsigned long flags; u32 val; int ret = 0; if (sadi->hwlock) { ret = hwspin_lock_timeout_irqsave(sadi->hwlock, ADI_HWSPINLOCK_TIMEOUT, &flags); if (ret) { dev_err(sadi->dev, "get the hw lock failed\n"); return ret; } } ret = sprd_adi_check_addr(sadi, reg); if (ret) goto out; /* * Set the slave address offset need to read into RD_CMD register, * then ADI controller will start to transfer automatically. */ writel_relaxed(reg, sadi->base + REG_ADI_RD_CMD); /* * Wait read operation complete, the BIT_RD_CMD_BUSY will be set * simultaneously when writing read command to register, and the * BIT_RD_CMD_BUSY will be cleared after the read operation is * completed. */ do { val = readl_relaxed(sadi->base + REG_ADI_RD_DATA); if (!(val & BIT_RD_CMD_BUSY)) break; cpu_relax(); } while (--read_timeout); if (read_timeout == 0) { dev_err(sadi->dev, "ADI read timeout\n"); ret = -EBUSY; goto out; } /* * The return value before adi r5p0 includes data and read register * address, from bit 0to bit 15 are data, and from bit 16 to bit 30 * are read register address. Then we can check the returned register * address to validate data. */ if (sadi->data->read_check) { ret = sadi->data->read_check(val, reg); if (ret < 0) goto out; } *read_val = val & RD_VALUE_MASK; out: if (sadi->hwlock) hwspin_unlock_irqrestore(sadi->hwlock, &flags); return ret; } static int sprd_adi_write(struct sprd_adi *sadi, u32 reg, u32 val) { u32 timeout = ADI_FIFO_DRAIN_TIMEOUT; unsigned long flags; int ret; if (sadi->hwlock) { ret = hwspin_lock_timeout_irqsave(sadi->hwlock, ADI_HWSPINLOCK_TIMEOUT, &flags); if (ret) { dev_err(sadi->dev, "get the hw lock failed\n"); return ret; } } ret = sprd_adi_check_addr(sadi, reg); if (ret) goto out; ret = sprd_adi_drain_fifo(sadi); if (ret < 0) goto out; /* * we should wait for write fifo is empty before writing data to PMIC * registers. */ do { if (!sprd_adi_fifo_is_full(sadi)) { /* we need virtual register address to write. */ writel_relaxed(val, (void __iomem *)(sadi->slave_vbase + reg)); break; } cpu_relax(); } while (--timeout); if (timeout == 0) { dev_err(sadi->dev, "write fifo is full\n"); ret = -EBUSY; } out: if (sadi->hwlock) hwspin_unlock_irqrestore(sadi->hwlock, &flags); return ret; } static int sprd_adi_transfer_one(struct spi_controller *ctlr, struct spi_device *spi_dev, struct spi_transfer *t) { struct sprd_adi *sadi = spi_controller_get_devdata(ctlr); u32 reg, val; int ret; if (t->rx_buf) { reg = *(u32 *)t->rx_buf; ret = sprd_adi_read(sadi, reg, &val); *(u32 *)t->rx_buf = val; } else if (t->tx_buf) { u32 *p = (u32 *)t->tx_buf; reg = *p++; val = *p; ret = sprd_adi_write(sadi, reg, val); } else { dev_err(sadi->dev, "no buffer for transfer\n"); ret = -EINVAL; } return ret; } static void sprd_adi_set_wdt_rst_mode(void *p) { #if IS_ENABLED(CONFIG_SPRD_WATCHDOG) u32 val; struct sprd_adi *sadi = (struct sprd_adi *)p; /* Init watchdog reset mode */ sprd_adi_read(sadi, PMIC_RST_STATUS, &val); val |= HWRST_STATUS_WATCHDOG; sprd_adi_write(sadi, PMIC_RST_STATUS, val); #endif } static int sprd_adi_restart(struct notifier_block *this, unsigned long mode, void *cmd, struct sprd_adi_wdg *wdg) { struct sprd_adi *sadi = container_of(this, struct sprd_adi, restart_handler); u32 val, reboot_mode = 0; if (!cmd) reboot_mode = HWRST_STATUS_NORMAL; else if (!strncmp(cmd, "recovery", 8)) reboot_mode = HWRST_STATUS_RECOVERY; else if (!strncmp(cmd, "alarm", 5)) reboot_mode = HWRST_STATUS_ALARM; else if (!strncmp(cmd, "fastsleep", 9)) reboot_mode = HWRST_STATUS_SLEEP; else if (!strncmp(cmd, "bootloader", 10)) reboot_mode = HWRST_STATUS_FASTBOOT; else if (!strncmp(cmd, "panic", 5)) reboot_mode = HWRST_STATUS_PANIC; else if (!strncmp(cmd, "special", 7)) reboot_mode = HWRST_STATUS_SPECIAL; else if (!strncmp(cmd, "cftreboot", 9)) reboot_mode = HWRST_STATUS_CFTREBOOT; else if (!strncmp(cmd, "autodloader", 11)) reboot_mode = HWRST_STATUS_AUTODLOADER; else if (!strncmp(cmd, "iqmode", 6)) reboot_mode = HWRST_STATUS_IQMODE; else if (!strncmp(cmd, "sprdisk", 7)) reboot_mode = HWRST_STATUS_SPRDISK; else if (!strncmp(cmd, "tospanic", 8)) reboot_mode = HWRST_STATUS_SECURITY; else if (!strncmp(cmd, "factorytest", 11)) reboot_mode = HWRST_STATUS_FACTORYTEST; else reboot_mode = HWRST_STATUS_NORMAL; /* Record the reboot mode */ sprd_adi_read(sadi, wdg->rst_sts, &val); val &= ~HWRST_STATUS_WATCHDOG; val |= reboot_mode; sprd_adi_write(sadi, wdg->rst_sts, val); /* Enable the interface clock of the watchdog */ sprd_adi_read(sadi, wdg->wdg_en, &val); val |= BIT_WDG_EN; sprd_adi_write(sadi, wdg->wdg_en, val); /* Enable the work clock of the watchdog */ sprd_adi_read(sadi, wdg->wdg_clk, &val); val |= BIT_WDG_EN; sprd_adi_write(sadi, wdg->wdg_clk, val); /* Unlock the watchdog */ sprd_adi_write(sadi, wdg->base + REG_WDG_LOCK, WDG_UNLOCK_KEY); sprd_adi_read(sadi, wdg->base + REG_WDG_CTRL, &val); val |= BIT_WDG_NEW; sprd_adi_write(sadi, wdg->base + REG_WDG_CTRL, val); /* Load the watchdog timeout value, 50ms is always enough. */ sprd_adi_write(sadi, wdg->base + REG_WDG_LOAD_HIGH, 0); sprd_adi_write(sadi, wdg->base + REG_WDG_LOAD_LOW, WDG_LOAD_VAL & WDG_LOAD_MASK); /* Start the watchdog to reset system */ sprd_adi_read(sadi, wdg->base + REG_WDG_CTRL, &val); val |= BIT_WDG_RUN | BIT_WDG_RST; sprd_adi_write(sadi, wdg->base + REG_WDG_CTRL, val); /* Lock the watchdog */ sprd_adi_write(sadi, wdg->base + REG_WDG_LOCK, ~WDG_UNLOCK_KEY); mdelay(1000); dev_emerg(sadi->dev, "Unable to restart system\n"); return NOTIFY_DONE; } static int sprd_adi_restart_sc9860(struct notifier_block *this, unsigned long mode, void *cmd) { struct sprd_adi_wdg wdg = { .base = PMIC_WDG_BASE, .rst_sts = PMIC_RST_STATUS, .wdg_en = PMIC_MODULE_EN, .wdg_clk = PMIC_CLK_EN, }; return sprd_adi_restart(this, mode, cmd, &wdg); } static void sprd_adi_hw_init(struct sprd_adi *sadi) { struct device_node *np = sadi->dev->of_node; int i, size, chn_cnt; const __be32 *list; u32 tmp; /* Set all channels as default priority */ writel_relaxed(0, sadi->base + REG_ADI_CHN_PRIL); writel_relaxed(0, sadi->base + REG_ADI_CHN_PRIH); /* Set clock auto gate mode */ tmp = readl_relaxed(sadi->base + REG_ADI_GSSI_CFG0); tmp &= ~BIT_CLK_ALL_ON; writel_relaxed(tmp, sadi->base + REG_ADI_GSSI_CFG0); /* Set hardware channels setting */ list = of_get_property(np, "sprd,hw-channels", &size); if (!list || !size) { dev_info(sadi->dev, "no hw channels setting in node\n"); return; } chn_cnt = size / 8; for (i = 0; i < chn_cnt; i++) { u32 value; u32 chn_id = be32_to_cpu(*list++); u32 chn_config = be32_to_cpu(*list++); /* Channel 0 and 1 are software channels */ if (chn_id < 2) continue; writel_relaxed(chn_config, sadi->base + REG_ADI_CHN_ADDR(chn_id)); if (chn_id < 32) { value = readl_relaxed(sadi->base + REG_ADI_CHN_EN); value |= BIT(chn_id); writel_relaxed(value, sadi->base + REG_ADI_CHN_EN); } else if (chn_id < ADI_HW_CHNS) { value = readl_relaxed(sadi->base + REG_ADI_CHN_EN1); value |= BIT(chn_id - 32); writel_relaxed(value, sadi->base + REG_ADI_CHN_EN1); } } } static int sprd_adi_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; const struct sprd_adi_data *data; struct spi_controller *ctlr; struct sprd_adi *sadi; struct resource *res; u16 num_chipselect; int ret; if (!np) { dev_err(&pdev->dev, "can not find the adi bus node\n"); return -ENODEV; } data = of_device_get_match_data(&pdev->dev); if (!data) { dev_err(&pdev->dev, "no matching driver data found\n"); return -EINVAL; } pdev->id = of_alias_get_id(np, "spi"); num_chipselect = of_get_child_count(np); ctlr = spi_alloc_master(&pdev->dev, sizeof(struct sprd_adi)); if (!ctlr) return -ENOMEM; dev_set_drvdata(&pdev->dev, ctlr); sadi = spi_controller_get_devdata(ctlr); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); sadi->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(sadi->base)) { ret = PTR_ERR(sadi->base); goto put_ctlr; } sadi->slave_vbase = (unsigned long)sadi->base + data->slave_offset; sadi->slave_pbase = res->start + data->slave_offset; sadi->ctlr = ctlr; sadi->dev = &pdev->dev; sadi->data = data; ret = of_hwspin_lock_get_id(np, 0); if (ret > 0 || (IS_ENABLED(CONFIG_HWSPINLOCK) && ret == 0)) { sadi->hwlock = devm_hwspin_lock_request_specific(&pdev->dev, ret); if (!sadi->hwlock) { ret = -ENXIO; goto put_ctlr; } } else { switch (ret) { case -ENOENT: dev_info(&pdev->dev, "no hardware spinlock supplied\n"); break; default: dev_err_probe(&pdev->dev, ret, "failed to find hwlock id\n"); goto put_ctlr; } } sprd_adi_hw_init(sadi); if (sadi->data->wdg_rst) sadi->data->wdg_rst(sadi); ctlr->dev.of_node = pdev->dev.of_node; ctlr->bus_num = pdev->id; ctlr->num_chipselect = num_chipselect; ctlr->flags = SPI_MASTER_HALF_DUPLEX; ctlr->bits_per_word_mask = 0; ctlr->transfer_one = sprd_adi_transfer_one; ret = devm_spi_register_controller(&pdev->dev, ctlr); if (ret) { dev_err(&pdev->dev, "failed to register SPI controller\n"); goto put_ctlr; } if (sadi->data->restart) { sadi->restart_handler.notifier_call = sadi->data->restart; sadi->restart_handler.priority = 128; ret = register_restart_handler(&sadi->restart_handler); if (ret) { dev_err(&pdev->dev, "can not register restart handler\n"); goto put_ctlr; } } return 0; put_ctlr: spi_controller_put(ctlr); return ret; } static int sprd_adi_remove(struct platform_device *pdev) { struct spi_controller *ctlr = dev_get_drvdata(&pdev->dev); struct sprd_adi *sadi = spi_controller_get_devdata(ctlr); unregister_restart_handler(&sadi->restart_handler); return 0; } static struct sprd_adi_data sc9860_data = { .slave_offset = ADI_10BIT_SLAVE_OFFSET, .slave_addr_size = ADI_10BIT_SLAVE_ADDR_SIZE, .read_check = sprd_adi_read_check_r2, .restart = sprd_adi_restart_sc9860, .wdg_rst = sprd_adi_set_wdt_rst_mode, }; static struct sprd_adi_data sc9863_data = { .slave_offset = ADI_12BIT_SLAVE_OFFSET, .slave_addr_size = ADI_12BIT_SLAVE_ADDR_SIZE, .read_check = sprd_adi_read_check_r3, }; static struct sprd_adi_data ums512_data = { .slave_offset = ADI_15BIT_SLAVE_OFFSET, .slave_addr_size = ADI_15BIT_SLAVE_ADDR_SIZE, .read_check = sprd_adi_read_check_r3, }; static const struct of_device_id sprd_adi_of_match[] = { { .compatible = "sprd,sc9860-adi", .data = &sc9860_data, }, { .compatible = "sprd,sc9863-adi", .data = &sc9863_data, }, { .compatible = "sprd,ums512-adi", .data = &ums512_data, }, { }, }; MODULE_DEVICE_TABLE(of, sprd_adi_of_match); static struct platform_driver sprd_adi_driver = { .driver = { .name = "sprd-adi", .of_match_table = sprd_adi_of_match, }, .probe = sprd_adi_probe, .remove = sprd_adi_remove, }; module_platform_driver(sprd_adi_driver); MODULE_DESCRIPTION("Spreadtrum ADI Controller Driver"); MODULE_AUTHOR("Baolin Wang <Baolin.Wang@spreadtrum.com>"); MODULE_LICENSE("GPL v2");