// SPDX-License-Identifier: GPL-2.0 /* * Thunderbolt Time Management Unit (TMU) support * * Copyright (C) 2019, Intel Corporation * Authors: Mika Westerberg <mika.westerberg@linux.intel.com> * Rajmohan Mani <rajmohan.mani@intel.com> */ #include <linux/delay.h> #include "tb.h" static int tb_switch_set_tmu_mode_params(struct tb_switch *sw, enum tb_switch_tmu_rate rate) { u32 freq_meas_wind[2] = { 30, 800 }; u32 avg_const[2] = { 4, 8 }; u32 freq, avg, val; int ret; if (rate == TB_SWITCH_TMU_RATE_NORMAL) { freq = freq_meas_wind[0]; avg = avg_const[0]; } else if (rate == TB_SWITCH_TMU_RATE_HIFI) { freq = freq_meas_wind[1]; avg = avg_const[1]; } else { return 0; } ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, sw->tmu.cap + TMU_RTR_CS_0, 1); if (ret) return ret; val &= ~TMU_RTR_CS_0_FREQ_WIND_MASK; val |= FIELD_PREP(TMU_RTR_CS_0_FREQ_WIND_MASK, freq); ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, sw->tmu.cap + TMU_RTR_CS_0, 1); if (ret) return ret; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, sw->tmu.cap + TMU_RTR_CS_15, 1); if (ret) return ret; val &= ~TMU_RTR_CS_15_FREQ_AVG_MASK & ~TMU_RTR_CS_15_DELAY_AVG_MASK & ~TMU_RTR_CS_15_OFFSET_AVG_MASK & ~TMU_RTR_CS_15_ERROR_AVG_MASK; val |= FIELD_PREP(TMU_RTR_CS_15_FREQ_AVG_MASK, avg) | FIELD_PREP(TMU_RTR_CS_15_DELAY_AVG_MASK, avg) | FIELD_PREP(TMU_RTR_CS_15_OFFSET_AVG_MASK, avg) | FIELD_PREP(TMU_RTR_CS_15_ERROR_AVG_MASK, avg); return tb_sw_write(sw, &val, TB_CFG_SWITCH, sw->tmu.cap + TMU_RTR_CS_15, 1); } static const char *tb_switch_tmu_mode_name(const struct tb_switch *sw) { bool root_switch = !tb_route(sw); switch (sw->tmu.rate) { case TB_SWITCH_TMU_RATE_OFF: return "off"; case TB_SWITCH_TMU_RATE_HIFI: /* Root switch does not have upstream directionality */ if (root_switch) return "HiFi"; if (sw->tmu.unidirectional) return "uni-directional, HiFi"; return "bi-directional, HiFi"; case TB_SWITCH_TMU_RATE_NORMAL: if (root_switch) return "normal"; return "uni-directional, normal"; default: return "unknown"; } } static bool tb_switch_tmu_ucap_supported(struct tb_switch *sw) { int ret; u32 val; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, sw->tmu.cap + TMU_RTR_CS_0, 1); if (ret) return false; return !!(val & TMU_RTR_CS_0_UCAP); } static int tb_switch_tmu_rate_read(struct tb_switch *sw) { int ret; u32 val; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, sw->tmu.cap + TMU_RTR_CS_3, 1); if (ret) return ret; val >>= TMU_RTR_CS_3_TS_PACKET_INTERVAL_SHIFT; return val; } static int tb_switch_tmu_rate_write(struct tb_switch *sw, int rate) { int ret; u32 val; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, sw->tmu.cap + TMU_RTR_CS_3, 1); if (ret) return ret; val &= ~TMU_RTR_CS_3_TS_PACKET_INTERVAL_MASK; val |= rate << TMU_RTR_CS_3_TS_PACKET_INTERVAL_SHIFT; return tb_sw_write(sw, &val, TB_CFG_SWITCH, sw->tmu.cap + TMU_RTR_CS_3, 1); } static int tb_port_tmu_write(struct tb_port *port, u8 offset, u32 mask, u32 value) { u32 data; int ret; ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_tmu + offset, 1); if (ret) return ret; data &= ~mask; data |= value; return tb_port_write(port, &data, TB_CFG_PORT, port->cap_tmu + offset, 1); } static int tb_port_tmu_set_unidirectional(struct tb_port *port, bool unidirectional) { u32 val; if (!port->sw->tmu.has_ucap) return 0; val = unidirectional ? TMU_ADP_CS_3_UDM : 0; return tb_port_tmu_write(port, TMU_ADP_CS_3, TMU_ADP_CS_3_UDM, val); } static inline int tb_port_tmu_unidirectional_disable(struct tb_port *port) { return tb_port_tmu_set_unidirectional(port, false); } static inline int tb_port_tmu_unidirectional_enable(struct tb_port *port) { return tb_port_tmu_set_unidirectional(port, true); } static bool tb_port_tmu_is_unidirectional(struct tb_port *port) { int ret; u32 val; ret = tb_port_read(port, &val, TB_CFG_PORT, port->cap_tmu + TMU_ADP_CS_3, 1); if (ret) return false; return val & TMU_ADP_CS_3_UDM; } static int tb_port_tmu_time_sync(struct tb_port *port, bool time_sync) { u32 val = time_sync ? TMU_ADP_CS_6_DTS : 0; return tb_port_tmu_write(port, TMU_ADP_CS_6, TMU_ADP_CS_6_DTS, val); } static int tb_port_tmu_time_sync_disable(struct tb_port *port) { return tb_port_tmu_time_sync(port, true); } static int tb_port_tmu_time_sync_enable(struct tb_port *port) { return tb_port_tmu_time_sync(port, false); } static int tb_switch_tmu_set_time_disruption(struct tb_switch *sw, bool set) { u32 val, offset, bit; int ret; if (tb_switch_is_usb4(sw)) { offset = sw->tmu.cap + TMU_RTR_CS_0; bit = TMU_RTR_CS_0_TD; } else { offset = sw->cap_vsec_tmu + TB_TIME_VSEC_3_CS_26; bit = TB_TIME_VSEC_3_CS_26_TD; } ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); if (ret) return ret; if (set) val |= bit; else val &= ~bit; return tb_sw_write(sw, &val, TB_CFG_SWITCH, offset, 1); } /** * tb_switch_tmu_init() - Initialize switch TMU structures * @sw: Switch to initialized * * This function must be called before other TMU related functions to * makes the internal structures are filled in correctly. Does not * change any hardware configuration. */ int tb_switch_tmu_init(struct tb_switch *sw) { struct tb_port *port; int ret; if (tb_switch_is_icm(sw)) return 0; ret = tb_switch_find_cap(sw, TB_SWITCH_CAP_TMU); if (ret > 0) sw->tmu.cap = ret; tb_switch_for_each_port(sw, port) { int cap; cap = tb_port_find_cap(port, TB_PORT_CAP_TIME1); if (cap > 0) port->cap_tmu = cap; } ret = tb_switch_tmu_rate_read(sw); if (ret < 0) return ret; sw->tmu.rate = ret; sw->tmu.has_ucap = tb_switch_tmu_ucap_supported(sw); if (sw->tmu.has_ucap) { tb_sw_dbg(sw, "TMU: supports uni-directional mode\n"); if (tb_route(sw)) { struct tb_port *up = tb_upstream_port(sw); sw->tmu.unidirectional = tb_port_tmu_is_unidirectional(up); } } else { sw->tmu.unidirectional = false; } tb_sw_dbg(sw, "TMU: current mode: %s\n", tb_switch_tmu_mode_name(sw)); return 0; } /** * tb_switch_tmu_post_time() - Update switch local time * @sw: Switch whose time to update * * Updates switch local time using time posting procedure. */ int tb_switch_tmu_post_time(struct tb_switch *sw) { unsigned int post_time_high_offset, post_time_high = 0; unsigned int post_local_time_offset, post_time_offset; struct tb_switch *root_switch = sw->tb->root_switch; u64 hi, mid, lo, local_time, post_time; int i, ret, retries = 100; u32 gm_local_time[3]; if (!tb_route(sw)) return 0; if (!tb_switch_is_usb4(sw)) return 0; /* Need to be able to read the grand master time */ if (!root_switch->tmu.cap) return 0; ret = tb_sw_read(root_switch, gm_local_time, TB_CFG_SWITCH, root_switch->tmu.cap + TMU_RTR_CS_1, ARRAY_SIZE(gm_local_time)); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(gm_local_time); i++) tb_sw_dbg(root_switch, "local_time[%d]=0x%08x\n", i, gm_local_time[i]); /* Convert to nanoseconds (drop fractional part) */ hi = gm_local_time[2] & TMU_RTR_CS_3_LOCAL_TIME_NS_MASK; mid = gm_local_time[1]; lo = (gm_local_time[0] & TMU_RTR_CS_1_LOCAL_TIME_NS_MASK) >> TMU_RTR_CS_1_LOCAL_TIME_NS_SHIFT; local_time = hi << 48 | mid << 16 | lo; /* Tell the switch that time sync is disrupted for a while */ ret = tb_switch_tmu_set_time_disruption(sw, true); if (ret) return ret; post_local_time_offset = sw->tmu.cap + TMU_RTR_CS_22; post_time_offset = sw->tmu.cap + TMU_RTR_CS_24; post_time_high_offset = sw->tmu.cap + TMU_RTR_CS_25; /* * Write the Grandmaster time to the Post Local Time registers * of the new switch. */ ret = tb_sw_write(sw, &local_time, TB_CFG_SWITCH, post_local_time_offset, 2); if (ret) goto out; /* * Have the new switch update its local time by: * 1) writing 0x1 to the Post Time Low register and 0xffffffff to * Post Time High register. * 2) write 0 to Post Time High register and then wait for * the completion of the post_time register becomes 0. * This means the time has been converged properly. */ post_time = 0xffffffff00000001ULL; ret = tb_sw_write(sw, &post_time, TB_CFG_SWITCH, post_time_offset, 2); if (ret) goto out; ret = tb_sw_write(sw, &post_time_high, TB_CFG_SWITCH, post_time_high_offset, 1); if (ret) goto out; do { usleep_range(5, 10); ret = tb_sw_read(sw, &post_time, TB_CFG_SWITCH, post_time_offset, 2); if (ret) goto out; } while (--retries && post_time); if (!retries) { ret = -ETIMEDOUT; goto out; } tb_sw_dbg(sw, "TMU: updated local time to %#llx\n", local_time); out: tb_switch_tmu_set_time_disruption(sw, false); return ret; } /** * tb_switch_tmu_disable() - Disable TMU of a switch * @sw: Switch whose TMU to disable * * Turns off TMU of @sw if it is enabled. If not enabled does nothing. */ int tb_switch_tmu_disable(struct tb_switch *sw) { /* * No need to disable TMU on devices that don't support CLx since * on these devices e.g. Alpine Ridge and earlier, the TMU mode * HiFi bi-directional is enabled by default and we don't change it. */ if (!tb_switch_is_clx_supported(sw)) return 0; /* Already disabled? */ if (sw->tmu.rate == TB_SWITCH_TMU_RATE_OFF) return 0; if (tb_route(sw)) { bool unidirectional = sw->tmu.unidirectional; struct tb_switch *parent = tb_switch_parent(sw); struct tb_port *down, *up; int ret; down = tb_port_at(tb_route(sw), parent); up = tb_upstream_port(sw); /* * In case of uni-directional time sync, TMU handshake is * initiated by upstream router. In case of bi-directional * time sync, TMU handshake is initiated by downstream router. * We change downstream router's rate to off for both uni/bidir * cases although it is needed only for the bi-directional mode. * We avoid changing upstream router's mode since it might * have another downstream router plugged, that is set to * uni-directional mode and we don't want to change it's TMU * mode. */ ret = tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_OFF); if (ret) return ret; tb_port_tmu_time_sync_disable(up); ret = tb_port_tmu_time_sync_disable(down); if (ret) return ret; if (unidirectional) { /* The switch may be unplugged so ignore any errors */ tb_port_tmu_unidirectional_disable(up); ret = tb_port_tmu_unidirectional_disable(down); if (ret) return ret; } } else { tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_OFF); } sw->tmu.unidirectional = false; sw->tmu.rate = TB_SWITCH_TMU_RATE_OFF; tb_sw_dbg(sw, "TMU: disabled\n"); return 0; } static void __tb_switch_tmu_off(struct tb_switch *sw, bool unidirectional) { struct tb_switch *parent = tb_switch_parent(sw); struct tb_port *down, *up; down = tb_port_at(tb_route(sw), parent); up = tb_upstream_port(sw); /* * In case of any failure in one of the steps when setting * bi-directional or uni-directional TMU mode, get back to the TMU * configurations in off mode. In case of additional failures in * the functions below, ignore them since the caller shall already * report a failure. */ tb_port_tmu_time_sync_disable(down); tb_port_tmu_time_sync_disable(up); if (unidirectional) tb_switch_tmu_rate_write(parent, TB_SWITCH_TMU_RATE_OFF); else tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_OFF); tb_switch_set_tmu_mode_params(sw, sw->tmu.rate); tb_port_tmu_unidirectional_disable(down); tb_port_tmu_unidirectional_disable(up); } /* * This function is called when the previous TMU mode was * TB_SWITCH_TMU_RATE_OFF. */ static int __tb_switch_tmu_enable_bidirectional(struct tb_switch *sw) { struct tb_switch *parent = tb_switch_parent(sw); struct tb_port *up, *down; int ret; up = tb_upstream_port(sw); down = tb_port_at(tb_route(sw), parent); ret = tb_port_tmu_unidirectional_disable(up); if (ret) return ret; ret = tb_port_tmu_unidirectional_disable(down); if (ret) goto out; ret = tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_HIFI); if (ret) goto out; ret = tb_port_tmu_time_sync_enable(up); if (ret) goto out; ret = tb_port_tmu_time_sync_enable(down); if (ret) goto out; return 0; out: __tb_switch_tmu_off(sw, false); return ret; } static int tb_switch_tmu_objection_mask(struct tb_switch *sw) { u32 val; int ret; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, sw->cap_vsec_tmu + TB_TIME_VSEC_3_CS_9, 1); if (ret) return ret; val &= ~TB_TIME_VSEC_3_CS_9_TMU_OBJ_MASK; return tb_sw_write(sw, &val, TB_CFG_SWITCH, sw->cap_vsec_tmu + TB_TIME_VSEC_3_CS_9, 1); } static int tb_switch_tmu_unidirectional_enable(struct tb_switch *sw) { struct tb_port *up = tb_upstream_port(sw); return tb_port_tmu_write(up, TMU_ADP_CS_6, TMU_ADP_CS_6_DISABLE_TMU_OBJ_MASK, TMU_ADP_CS_6_DISABLE_TMU_OBJ_MASK); } /* * This function is called when the previous TMU mode was * TB_SWITCH_TMU_RATE_OFF. */ static int __tb_switch_tmu_enable_unidirectional(struct tb_switch *sw) { struct tb_switch *parent = tb_switch_parent(sw); struct tb_port *up, *down; int ret; up = tb_upstream_port(sw); down = tb_port_at(tb_route(sw), parent); ret = tb_switch_tmu_rate_write(parent, sw->tmu.rate_request); if (ret) return ret; ret = tb_switch_set_tmu_mode_params(sw, sw->tmu.rate_request); if (ret) return ret; ret = tb_port_tmu_unidirectional_enable(up); if (ret) goto out; ret = tb_port_tmu_time_sync_enable(up); if (ret) goto out; ret = tb_port_tmu_unidirectional_enable(down); if (ret) goto out; ret = tb_port_tmu_time_sync_enable(down); if (ret) goto out; return 0; out: __tb_switch_tmu_off(sw, true); return ret; } static void __tb_switch_tmu_change_mode_prev(struct tb_switch *sw) { struct tb_switch *parent = tb_switch_parent(sw); struct tb_port *down, *up; down = tb_port_at(tb_route(sw), parent); up = tb_upstream_port(sw); /* * In case of any failure in one of the steps when change mode, * get back to the TMU configurations in previous mode. * In case of additional failures in the functions below, * ignore them since the caller shall already report a failure. */ tb_port_tmu_set_unidirectional(down, sw->tmu.unidirectional); if (sw->tmu.unidirectional_request) tb_switch_tmu_rate_write(parent, sw->tmu.rate); else tb_switch_tmu_rate_write(sw, sw->tmu.rate); tb_switch_set_tmu_mode_params(sw, sw->tmu.rate); tb_port_tmu_set_unidirectional(up, sw->tmu.unidirectional); } static int __tb_switch_tmu_change_mode(struct tb_switch *sw) { struct tb_switch *parent = tb_switch_parent(sw); struct tb_port *up, *down; int ret; up = tb_upstream_port(sw); down = tb_port_at(tb_route(sw), parent); ret = tb_port_tmu_set_unidirectional(down, sw->tmu.unidirectional_request); if (ret) goto out; if (sw->tmu.unidirectional_request) ret = tb_switch_tmu_rate_write(parent, sw->tmu.rate_request); else ret = tb_switch_tmu_rate_write(sw, sw->tmu.rate_request); if (ret) return ret; ret = tb_switch_set_tmu_mode_params(sw, sw->tmu.rate_request); if (ret) return ret; ret = tb_port_tmu_set_unidirectional(up, sw->tmu.unidirectional_request); if (ret) goto out; ret = tb_port_tmu_time_sync_enable(down); if (ret) goto out; ret = tb_port_tmu_time_sync_enable(up); if (ret) goto out; return 0; out: __tb_switch_tmu_change_mode_prev(sw); return ret; } /** * tb_switch_tmu_enable() - Enable TMU on a router * @sw: Router whose TMU to enable * * Enables TMU of a router to be in uni-directional Normal/HiFi * or bi-directional HiFi mode. Calling tb_switch_tmu_configure() is required * before calling this function, to select the mode Normal/HiFi and * directionality (uni-directional/bi-directional). * In HiFi mode all tunneling should work. In Normal mode, DP tunneling can't * work. Uni-directional mode is required for CLx (Link Low-Power) to work. */ int tb_switch_tmu_enable(struct tb_switch *sw) { bool unidirectional = sw->tmu.unidirectional_request; int ret; if (unidirectional && !sw->tmu.has_ucap) return -EOPNOTSUPP; /* * No need to enable TMU on devices that don't support CLx since on * these devices e.g. Alpine Ridge and earlier, the TMU mode HiFi * bi-directional is enabled by default. */ if (!tb_switch_is_clx_supported(sw)) return 0; if (tb_switch_tmu_is_enabled(sw, sw->tmu.unidirectional_request)) return 0; if (tb_switch_is_titan_ridge(sw) && unidirectional) { /* * Titan Ridge supports CL0s and CL1 only. CL0s and CL1 are * enabled and supported together. */ if (!tb_switch_is_clx_enabled(sw, TB_CL1)) return -EOPNOTSUPP; ret = tb_switch_tmu_objection_mask(sw); if (ret) return ret; ret = tb_switch_tmu_unidirectional_enable(sw); if (ret) return ret; } ret = tb_switch_tmu_set_time_disruption(sw, true); if (ret) return ret; if (tb_route(sw)) { /* * The used mode changes are from OFF to * HiFi-Uni/HiFi-BiDir/Normal-Uni or from Normal-Uni to * HiFi-Uni. */ if (sw->tmu.rate == TB_SWITCH_TMU_RATE_OFF) { if (unidirectional) ret = __tb_switch_tmu_enable_unidirectional(sw); else ret = __tb_switch_tmu_enable_bidirectional(sw); if (ret) return ret; } else if (sw->tmu.rate == TB_SWITCH_TMU_RATE_NORMAL) { ret = __tb_switch_tmu_change_mode(sw); if (ret) return ret; } sw->tmu.unidirectional = unidirectional; } else { /* * Host router port configurations are written as * part of configurations for downstream port of the parent * of the child node - see above. * Here only the host router' rate configuration is written. */ ret = tb_switch_tmu_rate_write(sw, sw->tmu.rate_request); if (ret) return ret; } sw->tmu.rate = sw->tmu.rate_request; tb_sw_dbg(sw, "TMU: mode set to: %s\n", tb_switch_tmu_mode_name(sw)); return tb_switch_tmu_set_time_disruption(sw, false); } /** * tb_switch_tmu_configure() - Configure the TMU rate and directionality * @sw: Router whose mode to change * @rate: Rate to configure Off/Normal/HiFi * @unidirectional: If uni-directional (bi-directional otherwise) * * Selects the rate of the TMU and directionality (uni-directional or * bi-directional). Must be called before tb_switch_tmu_enable(). */ void tb_switch_tmu_configure(struct tb_switch *sw, enum tb_switch_tmu_rate rate, bool unidirectional) { sw->tmu.unidirectional_request = unidirectional; sw->tmu.rate_request = rate; } static int tb_switch_tmu_config_enable(struct device *dev, void *rate) { if (tb_is_switch(dev)) { struct tb_switch *sw = tb_to_switch(dev); tb_switch_tmu_configure(sw, *(enum tb_switch_tmu_rate *)rate, tb_switch_is_clx_enabled(sw, TB_CL1)); if (tb_switch_tmu_enable(sw)) tb_sw_dbg(sw, "fail switching TMU mode for 1st depth router\n"); } return 0; } /** * tb_switch_enable_tmu_1st_child - Configure and enable TMU for 1st chidren * @sw: The router to configure and enable it's children TMU * @rate: Rate of the TMU to configure the router's chidren to * * Configures and enables the TMU mode of 1st depth children of the specified * router to the specified rate. */ void tb_switch_enable_tmu_1st_child(struct tb_switch *sw, enum tb_switch_tmu_rate rate) { device_for_each_child(&sw->dev, &rate, tb_switch_tmu_config_enable); }