/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Generic barrier definitions. * * It should be possible to use these on really simple architectures, * but it serves more as a starting point for new ports. * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef __ASM_GENERIC_BARRIER_H #define __ASM_GENERIC_BARRIER_H #ifndef __ASSEMBLY__ #include <linux/compiler.h> #include <linux/kcsan-checks.h> #include <asm/rwonce.h> #ifndef nop #define nop() asm volatile ("nop") #endif /* * Architectures that want generic instrumentation can define __ prefixed * variants of all barriers. */ #ifdef __mb #define mb() do { kcsan_mb(); __mb(); } while (0) #endif #ifdef __rmb #define rmb() do { kcsan_rmb(); __rmb(); } while (0) #endif #ifdef __wmb #define wmb() do { kcsan_wmb(); __wmb(); } while (0) #endif #ifdef __dma_mb #define dma_mb() do { kcsan_mb(); __dma_mb(); } while (0) #endif #ifdef __dma_rmb #define dma_rmb() do { kcsan_rmb(); __dma_rmb(); } while (0) #endif #ifdef __dma_wmb #define dma_wmb() do { kcsan_wmb(); __dma_wmb(); } while (0) #endif /* * Force strict CPU ordering. And yes, this is required on UP too when we're * talking to devices. * * Fall back to compiler barriers if nothing better is provided. */ #ifndef mb #define mb() barrier() #endif #ifndef rmb #define rmb() mb() #endif #ifndef wmb #define wmb() mb() #endif #ifndef dma_mb #define dma_mb() mb() #endif #ifndef dma_rmb #define dma_rmb() rmb() #endif #ifndef dma_wmb #define dma_wmb() wmb() #endif #ifndef __smp_mb #define __smp_mb() mb() #endif #ifndef __smp_rmb #define __smp_rmb() rmb() #endif #ifndef __smp_wmb #define __smp_wmb() wmb() #endif #ifdef CONFIG_SMP #ifndef smp_mb #define smp_mb() do { kcsan_mb(); __smp_mb(); } while (0) #endif #ifndef smp_rmb #define smp_rmb() do { kcsan_rmb(); __smp_rmb(); } while (0) #endif #ifndef smp_wmb #define smp_wmb() do { kcsan_wmb(); __smp_wmb(); } while (0) #endif #else /* !CONFIG_SMP */ #ifndef smp_mb #define smp_mb() barrier() #endif #ifndef smp_rmb #define smp_rmb() barrier() #endif #ifndef smp_wmb #define smp_wmb() barrier() #endif #endif /* CONFIG_SMP */ #ifndef __smp_store_mb #define __smp_store_mb(var, value) do { WRITE_ONCE(var, value); __smp_mb(); } while (0) #endif #ifndef __smp_mb__before_atomic #define __smp_mb__before_atomic() __smp_mb() #endif #ifndef __smp_mb__after_atomic #define __smp_mb__after_atomic() __smp_mb() #endif #ifndef __smp_store_release #define __smp_store_release(p, v) \ do { \ compiletime_assert_atomic_type(*p); \ __smp_mb(); \ WRITE_ONCE(*p, v); \ } while (0) #endif #ifndef __smp_load_acquire #define __smp_load_acquire(p) \ ({ \ __unqual_scalar_typeof(*p) ___p1 = READ_ONCE(*p); \ compiletime_assert_atomic_type(*p); \ __smp_mb(); \ (typeof(*p))___p1; \ }) #endif #ifdef CONFIG_SMP #ifndef smp_store_mb #define smp_store_mb(var, value) do { kcsan_mb(); __smp_store_mb(var, value); } while (0) #endif #ifndef smp_mb__before_atomic #define smp_mb__before_atomic() do { kcsan_mb(); __smp_mb__before_atomic(); } while (0) #endif #ifndef smp_mb__after_atomic #define smp_mb__after_atomic() do { kcsan_mb(); __smp_mb__after_atomic(); } while (0) #endif #ifndef smp_store_release #define smp_store_release(p, v) do { kcsan_release(); __smp_store_release(p, v); } while (0) #endif #ifndef smp_load_acquire #define smp_load_acquire(p) __smp_load_acquire(p) #endif #else /* !CONFIG_SMP */ #ifndef smp_store_mb #define smp_store_mb(var, value) do { WRITE_ONCE(var, value); barrier(); } while (0) #endif #ifndef smp_mb__before_atomic #define smp_mb__before_atomic() barrier() #endif #ifndef smp_mb__after_atomic #define smp_mb__after_atomic() barrier() #endif #ifndef smp_store_release #define smp_store_release(p, v) \ do { \ compiletime_assert_atomic_type(*p); \ barrier(); \ WRITE_ONCE(*p, v); \ } while (0) #endif #ifndef smp_load_acquire #define smp_load_acquire(p) \ ({ \ __unqual_scalar_typeof(*p) ___p1 = READ_ONCE(*p); \ compiletime_assert_atomic_type(*p); \ barrier(); \ (typeof(*p))___p1; \ }) #endif #endif /* CONFIG_SMP */ /* Barriers for virtual machine guests when talking to an SMP host */ #define virt_mb() do { kcsan_mb(); __smp_mb(); } while (0) #define virt_rmb() do { kcsan_rmb(); __smp_rmb(); } while (0) #define virt_wmb() do { kcsan_wmb(); __smp_wmb(); } while (0) #define virt_store_mb(var, value) do { kcsan_mb(); __smp_store_mb(var, value); } while (0) #define virt_mb__before_atomic() do { kcsan_mb(); __smp_mb__before_atomic(); } while (0) #define virt_mb__after_atomic() do { kcsan_mb(); __smp_mb__after_atomic(); } while (0) #define virt_store_release(p, v) do { kcsan_release(); __smp_store_release(p, v); } while (0) #define virt_load_acquire(p) __smp_load_acquire(p) /** * smp_acquire__after_ctrl_dep() - Provide ACQUIRE ordering after a control dependency * * A control dependency provides a LOAD->STORE order, the additional RMB * provides LOAD->LOAD order, together they provide LOAD->{LOAD,STORE} order, * aka. (load)-ACQUIRE. * * Architectures that do not do load speculation can have this be barrier(). */ #ifndef smp_acquire__after_ctrl_dep #define smp_acquire__after_ctrl_dep() smp_rmb() #endif /** * smp_cond_load_relaxed() - (Spin) wait for cond with no ordering guarantees * @ptr: pointer to the variable to wait on * @cond: boolean expression to wait for * * Equivalent to using READ_ONCE() on the condition variable. * * Due to C lacking lambda expressions we load the value of *ptr into a * pre-named variable @VAL to be used in @cond. */ #ifndef smp_cond_load_relaxed #define smp_cond_load_relaxed(ptr, cond_expr) ({ \ typeof(ptr) __PTR = (ptr); \ __unqual_scalar_typeof(*ptr) VAL; \ for (;;) { \ VAL = READ_ONCE(*__PTR); \ if (cond_expr) \ break; \ cpu_relax(); \ } \ (typeof(*ptr))VAL; \ }) #endif /** * smp_cond_load_acquire() - (Spin) wait for cond with ACQUIRE ordering * @ptr: pointer to the variable to wait on * @cond: boolean expression to wait for * * Equivalent to using smp_load_acquire() on the condition variable but employs * the control dependency of the wait to reduce the barrier on many platforms. */ #ifndef smp_cond_load_acquire #define smp_cond_load_acquire(ptr, cond_expr) ({ \ __unqual_scalar_typeof(*ptr) _val; \ _val = smp_cond_load_relaxed(ptr, cond_expr); \ smp_acquire__after_ctrl_dep(); \ (typeof(*ptr))_val; \ }) #endif /* * pmem_wmb() ensures that all stores for which the modification * are written to persistent storage by preceding instructions have * updated persistent storage before any data access or data transfer * caused by subsequent instructions is initiated. */ #ifndef pmem_wmb #define pmem_wmb() wmb() #endif /* * ioremap_wc() maps I/O memory as memory with write-combining attributes. For * this kind of memory accesses, the CPU may wait for prior accesses to be * merged with subsequent ones. In some situation, such wait is bad for the * performance. io_stop_wc() can be used to prevent the merging of * write-combining memory accesses before this macro with those after it. */ #ifndef io_stop_wc #define io_stop_wc() do { } while (0) #endif #endif /* !__ASSEMBLY__ */ #endif /* __ASM_GENERIC_BARRIER_H */