/* SPDX-License-Identifier: GPL-2.0 * * Clock Tree for the Texas Instruments TLV320AIC32x4 * * Copyright 2019 Annaliese McDermond * * Author: Annaliese McDermond <nh6z@nh6z.net> */ #include <linux/clk-provider.h> #include <linux/clkdev.h> #include <linux/regmap.h> #include <linux/device.h> #include "tlv320aic32x4.h" #define to_clk_aic32x4(_hw) container_of(_hw, struct clk_aic32x4, hw) struct clk_aic32x4 { struct clk_hw hw; struct device *dev; struct regmap *regmap; unsigned int reg; }; /* * struct clk_aic32x4_pll_muldiv - Multiplier/divider settings * @p: Divider * @r: first multiplier * @j: integer part of second multiplier * @d: decimal part of second multiplier */ struct clk_aic32x4_pll_muldiv { u8 p; u16 r; u8 j; u16 d; }; struct aic32x4_clkdesc { const char *name; const char * const *parent_names; unsigned int num_parents; const struct clk_ops *ops; unsigned int reg; }; static int clk_aic32x4_pll_prepare(struct clk_hw *hw) { struct clk_aic32x4 *pll = to_clk_aic32x4(hw); return regmap_update_bits(pll->regmap, AIC32X4_PLLPR, AIC32X4_PLLEN, AIC32X4_PLLEN); } static void clk_aic32x4_pll_unprepare(struct clk_hw *hw) { struct clk_aic32x4 *pll = to_clk_aic32x4(hw); regmap_update_bits(pll->regmap, AIC32X4_PLLPR, AIC32X4_PLLEN, 0); } static int clk_aic32x4_pll_is_prepared(struct clk_hw *hw) { struct clk_aic32x4 *pll = to_clk_aic32x4(hw); unsigned int val; int ret; ret = regmap_read(pll->regmap, AIC32X4_PLLPR, &val); if (ret < 0) return ret; return !!(val & AIC32X4_PLLEN); } static int clk_aic32x4_pll_get_muldiv(struct clk_aic32x4 *pll, struct clk_aic32x4_pll_muldiv *settings) { /* Change to use regmap_bulk_read? */ unsigned int val; int ret; ret = regmap_read(pll->regmap, AIC32X4_PLLPR, &val); if (ret < 0) return ret; settings->r = val & AIC32X4_PLL_R_MASK; settings->p = (val & AIC32X4_PLL_P_MASK) >> AIC32X4_PLL_P_SHIFT; ret = regmap_read(pll->regmap, AIC32X4_PLLJ, &val); if (ret < 0) return ret; settings->j = val; ret = regmap_read(pll->regmap, AIC32X4_PLLDMSB, &val); if (ret < 0) return ret; settings->d = val << 8; ret = regmap_read(pll->regmap, AIC32X4_PLLDLSB, &val); if (ret < 0) return ret; settings->d |= val; return 0; } static int clk_aic32x4_pll_set_muldiv(struct clk_aic32x4 *pll, struct clk_aic32x4_pll_muldiv *settings) { int ret; /* Change to use regmap_bulk_write for some if not all? */ ret = regmap_update_bits(pll->regmap, AIC32X4_PLLPR, AIC32X4_PLL_R_MASK, settings->r); if (ret < 0) return ret; ret = regmap_update_bits(pll->regmap, AIC32X4_PLLPR, AIC32X4_PLL_P_MASK, settings->p << AIC32X4_PLL_P_SHIFT); if (ret < 0) return ret; ret = regmap_write(pll->regmap, AIC32X4_PLLJ, settings->j); if (ret < 0) return ret; ret = regmap_write(pll->regmap, AIC32X4_PLLDMSB, (settings->d >> 8)); if (ret < 0) return ret; ret = regmap_write(pll->regmap, AIC32X4_PLLDLSB, (settings->d & 0xff)); if (ret < 0) return ret; return 0; } static unsigned long clk_aic32x4_pll_calc_rate( struct clk_aic32x4_pll_muldiv *settings, unsigned long parent_rate) { u64 rate; /* * We scale j by 10000 to account for the decimal part of P and divide * it back out later. */ rate = (u64) parent_rate * settings->r * ((settings->j * 10000) + settings->d); return (unsigned long) DIV_ROUND_UP_ULL(rate, settings->p * 10000); } static int clk_aic32x4_pll_calc_muldiv(struct clk_aic32x4_pll_muldiv *settings, unsigned long rate, unsigned long parent_rate) { u64 multiplier; settings->p = parent_rate / AIC32X4_MAX_PLL_CLKIN + 1; if (settings->p > 8) return -1; /* * We scale this figure by 10000 so that we can get the decimal part * of the multiplier. This is because we can't do floating point * math in the kernel. */ multiplier = (u64) rate * settings->p * 10000; do_div(multiplier, parent_rate); /* * J can't be over 64, so R can scale this. * R can't be greater than 4. */ settings->r = ((u32) multiplier / 640000) + 1; if (settings->r > 4) return -1; do_div(multiplier, settings->r); /* * J can't be < 1. */ if (multiplier < 10000) return -1; /* Figure out the integer part, J, and the fractional part, D. */ settings->j = (u32) multiplier / 10000; settings->d = (u32) multiplier % 10000; return 0; } static unsigned long clk_aic32x4_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_aic32x4 *pll = to_clk_aic32x4(hw); struct clk_aic32x4_pll_muldiv settings; int ret; ret = clk_aic32x4_pll_get_muldiv(pll, &settings); if (ret < 0) return 0; return clk_aic32x4_pll_calc_rate(&settings, parent_rate); } static long clk_aic32x4_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct clk_aic32x4_pll_muldiv settings; int ret; ret = clk_aic32x4_pll_calc_muldiv(&settings, rate, *parent_rate); if (ret < 0) return 0; return clk_aic32x4_pll_calc_rate(&settings, *parent_rate); } static int clk_aic32x4_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_aic32x4 *pll = to_clk_aic32x4(hw); struct clk_aic32x4_pll_muldiv settings; int ret; ret = clk_aic32x4_pll_calc_muldiv(&settings, rate, parent_rate); if (ret < 0) return -EINVAL; ret = clk_aic32x4_pll_set_muldiv(pll, &settings); if (ret) return ret; /* 10ms is the delay to wait before the clocks are stable */ msleep(10); return 0; } static int clk_aic32x4_pll_set_parent(struct clk_hw *hw, u8 index) { struct clk_aic32x4 *pll = to_clk_aic32x4(hw); return regmap_update_bits(pll->regmap, AIC32X4_CLKMUX, AIC32X4_PLL_CLKIN_MASK, index << AIC32X4_PLL_CLKIN_SHIFT); } static u8 clk_aic32x4_pll_get_parent(struct clk_hw *hw) { struct clk_aic32x4 *pll = to_clk_aic32x4(hw); unsigned int val; regmap_read(pll->regmap, AIC32X4_PLLPR, &val); return (val & AIC32X4_PLL_CLKIN_MASK) >> AIC32X4_PLL_CLKIN_SHIFT; } static const struct clk_ops aic32x4_pll_ops = { .prepare = clk_aic32x4_pll_prepare, .unprepare = clk_aic32x4_pll_unprepare, .is_prepared = clk_aic32x4_pll_is_prepared, .recalc_rate = clk_aic32x4_pll_recalc_rate, .round_rate = clk_aic32x4_pll_round_rate, .set_rate = clk_aic32x4_pll_set_rate, .set_parent = clk_aic32x4_pll_set_parent, .get_parent = clk_aic32x4_pll_get_parent, }; static int clk_aic32x4_codec_clkin_set_parent(struct clk_hw *hw, u8 index) { struct clk_aic32x4 *mux = to_clk_aic32x4(hw); return regmap_update_bits(mux->regmap, AIC32X4_CLKMUX, AIC32X4_CODEC_CLKIN_MASK, index << AIC32X4_CODEC_CLKIN_SHIFT); } static u8 clk_aic32x4_codec_clkin_get_parent(struct clk_hw *hw) { struct clk_aic32x4 *mux = to_clk_aic32x4(hw); unsigned int val; regmap_read(mux->regmap, AIC32X4_CLKMUX, &val); return (val & AIC32X4_CODEC_CLKIN_MASK) >> AIC32X4_CODEC_CLKIN_SHIFT; } static const struct clk_ops aic32x4_codec_clkin_ops = { .set_parent = clk_aic32x4_codec_clkin_set_parent, .get_parent = clk_aic32x4_codec_clkin_get_parent, }; static int clk_aic32x4_div_prepare(struct clk_hw *hw) { struct clk_aic32x4 *div = to_clk_aic32x4(hw); return regmap_update_bits(div->regmap, div->reg, AIC32X4_DIVEN, AIC32X4_DIVEN); } static void clk_aic32x4_div_unprepare(struct clk_hw *hw) { struct clk_aic32x4 *div = to_clk_aic32x4(hw); regmap_update_bits(div->regmap, div->reg, AIC32X4_DIVEN, 0); } static int clk_aic32x4_div_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_aic32x4 *div = to_clk_aic32x4(hw); u8 divisor; divisor = DIV_ROUND_UP(parent_rate, rate); if (divisor > 128) return -EINVAL; return regmap_update_bits(div->regmap, div->reg, AIC32X4_DIV_MASK, divisor); } static long clk_aic32x4_div_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { unsigned long divisor; divisor = DIV_ROUND_UP(*parent_rate, rate); if (divisor > 128) return -EINVAL; return DIV_ROUND_UP(*parent_rate, divisor); } static unsigned long clk_aic32x4_div_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_aic32x4 *div = to_clk_aic32x4(hw); unsigned int val; regmap_read(div->regmap, div->reg, &val); return DIV_ROUND_UP(parent_rate, val & AIC32X4_DIV_MASK); } static const struct clk_ops aic32x4_div_ops = { .prepare = clk_aic32x4_div_prepare, .unprepare = clk_aic32x4_div_unprepare, .set_rate = clk_aic32x4_div_set_rate, .round_rate = clk_aic32x4_div_round_rate, .recalc_rate = clk_aic32x4_div_recalc_rate, }; static int clk_aic32x4_bdiv_set_parent(struct clk_hw *hw, u8 index) { struct clk_aic32x4 *mux = to_clk_aic32x4(hw); return regmap_update_bits(mux->regmap, AIC32X4_IFACE3, AIC32X4_BDIVCLK_MASK, index); } static u8 clk_aic32x4_bdiv_get_parent(struct clk_hw *hw) { struct clk_aic32x4 *mux = to_clk_aic32x4(hw); unsigned int val; regmap_read(mux->regmap, AIC32X4_IFACE3, &val); return val & AIC32X4_BDIVCLK_MASK; } static const struct clk_ops aic32x4_bdiv_ops = { .prepare = clk_aic32x4_div_prepare, .unprepare = clk_aic32x4_div_unprepare, .set_parent = clk_aic32x4_bdiv_set_parent, .get_parent = clk_aic32x4_bdiv_get_parent, .set_rate = clk_aic32x4_div_set_rate, .round_rate = clk_aic32x4_div_round_rate, .recalc_rate = clk_aic32x4_div_recalc_rate, }; static struct aic32x4_clkdesc aic32x4_clkdesc_array[] = { { .name = "pll", .parent_names = (const char* []) { "mclk", "bclk", "gpio", "din" }, .num_parents = 4, .ops = &aic32x4_pll_ops, .reg = 0, }, { .name = "codec_clkin", .parent_names = (const char *[]) { "mclk", "bclk", "gpio", "pll" }, .num_parents = 4, .ops = &aic32x4_codec_clkin_ops, .reg = 0, }, { .name = "ndac", .parent_names = (const char * []) { "codec_clkin" }, .num_parents = 1, .ops = &aic32x4_div_ops, .reg = AIC32X4_NDAC, }, { .name = "mdac", .parent_names = (const char * []) { "ndac" }, .num_parents = 1, .ops = &aic32x4_div_ops, .reg = AIC32X4_MDAC, }, { .name = "nadc", .parent_names = (const char * []) { "codec_clkin" }, .num_parents = 1, .ops = &aic32x4_div_ops, .reg = AIC32X4_NADC, }, { .name = "madc", .parent_names = (const char * []) { "nadc" }, .num_parents = 1, .ops = &aic32x4_div_ops, .reg = AIC32X4_MADC, }, { .name = "bdiv", .parent_names = (const char *[]) { "ndac", "mdac", "nadc", "madc" }, .num_parents = 4, .ops = &aic32x4_bdiv_ops, .reg = AIC32X4_BCLKN, }, }; static struct clk *aic32x4_register_clk(struct device *dev, struct aic32x4_clkdesc *desc) { struct clk_init_data init; struct clk_aic32x4 *priv; const char *devname = dev_name(dev); init.ops = desc->ops; init.name = desc->name; init.parent_names = desc->parent_names; init.num_parents = desc->num_parents; init.flags = 0; priv = devm_kzalloc(dev, sizeof(struct clk_aic32x4), GFP_KERNEL); if (priv == NULL) return (struct clk *) -ENOMEM; priv->dev = dev; priv->hw.init = &init; priv->regmap = dev_get_regmap(dev, NULL); priv->reg = desc->reg; clk_hw_register_clkdev(&priv->hw, desc->name, devname); return devm_clk_register(dev, &priv->hw); } int aic32x4_register_clocks(struct device *dev, const char *mclk_name) { int i; /* * These lines are here to preserve the current functionality of * the driver with regard to the DT. These should eventually be set * by DT nodes so that the connections can be set up in configuration * rather than code. */ aic32x4_clkdesc_array[0].parent_names = (const char* []) { mclk_name, "bclk", "gpio", "din" }; aic32x4_clkdesc_array[1].parent_names = (const char *[]) { mclk_name, "bclk", "gpio", "pll" }; for (i = 0; i < ARRAY_SIZE(aic32x4_clkdesc_array); ++i) aic32x4_register_clk(dev, &aic32x4_clkdesc_array[i]); return 0; } EXPORT_SYMBOL_GPL(aic32x4_register_clocks);