#!/bin/bash # SPDX-License-Identifier: GPL-2.0 # # author: Andrea Mayer # # This script is designed for testing the support of NEXT-C-SID flavor for SRv6 # End behavior. # A basic knowledge of SRv6 architecture [1] and of the compressed SID approach # [2] is assumed for the reader. # # The network topology used in the selftest is depicted hereafter, composed by # two hosts and four routers. Hosts hs-1 and hs-2 are connected through an # IPv4/IPv6 L3 VPN service, offered by routers rt-1, rt-2, rt-3 and rt-4 using # the NEXT-C-SID flavor. The key components for such VPNs are: # # i) The SRv6 H.Encaps/H.Encaps.Red behaviors [1] apply SRv6 Policies on # traffic received by connected hosts, initiating the VPN tunnel; # # ii) The SRv6 End behavior [1] advances the active SID in the SID List # carried by the SRH; # # iii) The NEXT-C-SID mechanism [2] offers the possibility of encoding several # SRv6 segments within a single 128-bit SID address, referred to as a # Compressed SID (C-SID) container. In this way, the length of the SID # List can be drastically reduced. # The NEXT-C-SID is provided as a "flavor" of the SRv6 End behavior # which advances the current C-SID (i.e. the Locator-Node Function defined # in [2]) with the next one carried in the Argument, if available. # When no more C-SIDs are available in the Argument, the SRv6 End behavior # will apply the End function selecting the next SID in the SID List. # # iv) The SRv6 End.DT46 behavior [1] is used for removing the SRv6 Policy and, # thus, it terminates the VPN tunnel. Such a behavior is capable of # handling, at the same time, both tunneled IPv4 and IPv6 traffic. # # [1] https://datatracker.ietf.org/doc/html/rfc8986 # [2] https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression # # # cafe::1 cafe::2 # 10.0.0.1 10.0.0.2 # +--------+ +--------+ # | | | | # | hs-1 | | hs-2 | # | | | | # +---+----+ +----+---+ # cafe::/64 | | cafe::/64 # 10.0.0.0/24 | | 10.0.0.0/24 # +---+----+ +----+---+ # | | fcf0:0:1:2::/64 | | # | rt-1 +-------------------+ rt-2 | # | | | | # +---+----+ +----+---+ # | . . | # | fcf0:0:1:3::/64 . | # | . . | # | . . | # fcf0:0:1:4::/64 | . | fcf0:0:2:3::/64 # | . . | # | . . | # | fcf0:0:2:4::/64 . | # | . . | # +---+----+ +----+---+ # | | | | # | rt-4 +-------------------+ rt-3 | # | | fcf0:0:3:4::/64 | | # +---+----+ +----+---+ # # Every fcf0:0:x:y::/64 network interconnects the SRv6 routers rt-x with rt-y in # the selftest network. # # Local SID/C-SID table # ===================== # # Each SRv6 router is configured with a Local SID/C-SID table in which # SIDs/C-SIDs are stored. Considering an SRv6 router rt-x, SIDs/C-SIDs are # configured in the Local SID/C-SIDs table as follows: # # Local SID/C-SID table for SRv6 router rt-x # +-----------------------------------------------------------+ # |fcff:x::d46 is associated with the non-compressed SRv6 | # | End.DT46 behavior | # +-----------------------------------------------------------+ # |fcbb:0:0x00::/48 is associated with the NEXT-C-SID flavor | # | of SRv6 End behavior | # +-----------------------------------------------------------+ # |fcbb:0:0x00:d46::/64 is associated with the SRv6 End.DT46 | # | behavior when NEXT-C-SID compression is turned on | # +-----------------------------------------------------------+ # # The fcff::/16 prefix is reserved for implementing SRv6 services with regular # (non compressed) SIDs. Reachability of SIDs is ensured by proper configuration # of the IPv6 routing tables in the routers. # Similarly, the fcbb:0::/32 prefix is reserved for implementing SRv6 VPN # services leveraging the NEXT-C-SID compression mechanism. Indeed, the # fcbb:0::/32 is used for encoding the Locator-Block while the Locator-Node # Function is encoded with 16 bits. # # Incoming traffic classification and application of SRv6 Policies # ================================================================ # # An SRv6 ingress router applies different SRv6 Policies to the traffic received # from a connected host, considering the IPv4 or IPv6 destination address. # SRv6 policy enforcement consists of encapsulating the received traffic into a # new IPv6 packet with a given SID List contained in the SRH. # When the SID List contains only one SID, the SRH could be omitted completely # and that SID is stored directly in the IPv6 Destination Address (DA) (this is # called "reduced" encapsulation). # # Test cases for NEXT-C-SID # ========================= # # We consider two test cases for NEXT-C-SID: i) single SID and ii) double SID. # # In the single SID test case we have a number of segments that are all # contained in a single Compressed SID (C-SID) container. Therefore the # resulting SID List has only one SID. Using the reduced encapsulation format # this will result in a packet with no SRH. # # In the double SID test case we have one segment carried in a Compressed SID # (C-SID) container, followed by a regular (non compressed) SID. The resulting # SID List has two segments and it is possible to test the advance to the next # SID when all the C-SIDs in a C-SID container have been processed. Using the # reduced encapsulation format this will result in a packet with an SRH # containing 1 segment. # # For the single SID test case, we use the IPv4 addresses of hs-1 and hs-2, for # the double SID test case, we use their IPv6 addresses. This is only done to # simplify the test setup and avoid adding other hosts or multiple addresses on # the same interface of a host. # # Traffic from hs-1 to hs-2 # ------------------------- # # Packets generated from hs-1 and directed towards hs-2 are handled by rt-1 # which applies the SRv6 Policies as follows: # # i) IPv6 DA=cafe::2, H.Encaps.Red with SID List=fcbb:0:0400:0300:0200:d46:: # ii) IPv4 DA=10.0.0.2, H.Encaps.Red with SID List=fcbb:0:0300::,fcff:2::d46 # # ### i) single SID # # The router rt-1 is configured to enforce the given Policy through the SRv6 # H.Encaps.Red behavior which avoids the presence of the SRH at all, since it # pushes the single SID directly in the IPv6 DA. Such a SID encodes a whole # C-SID container carrying several C-SIDs (e.g. 0400, 0300, etc). # # As the packet reaches the router rt-4, the enabled NEXT-C-SID SRv6 End # behavior (associated with fcbb:0:0400::/48) is triggered. This behavior # analyzes the IPv6 DA and checks whether the Argument of the C-SID container # is zero or not. In this case, the Argument is *NOT* zero and the IPv6 DA is # updated as follows: # # +---------------------------------------------------------------+ # | Before applying the rt-4 enabled NEXT-C-SID SRv6 End behavior | # +---------------------------------------------------------------+ # | +---------- Argument | # | vvvvvvvvvvvvvvvv | # | IPv6 DA fcbb:0:0400:0300:0200:d46:: | # | ^^^^ <-- shifting | # | | | # | Locator-Node Function | # +---------------------------------------------------------------+ # | After applying the rt-4 enabled NEXT-C-SID SRv6 End behavior | # +---------------------------------------------------------------+ # | +---------- Argument | # | vvvvvvvvvvvv | # | IPv6 DA fcbb:0:0300:0200:d46:: | # | ^^^^ | # | | | # | Locator-Node Function | # +---------------------------------------------------------------+ # # After having applied the enabled NEXT-C-SID SRv6 End behavior, the packet is # sent to the next node, i.e. rt-3. # # The enabled NEXT-C-SID SRv6 End behavior on rt-3 is executed as the packet is # received. This behavior processes the packet and updates the IPv6 DA with # fcbb:0:0200:d46::, since the Argument is *NOT* zero. Then, the packet is sent # to the router rt-2. # # The router rt-2 is configured for decapsulating the inner IPv6 packet and, # for this reason, it applies the SRv6 End.DT46 behavior on the received # packet. It is worth noting that the SRv6 End.DT46 behavior does not require # the presence of the SRH: it is fully capable to operate properly on # IPv4/IPv6-in-IPv6 encapsulations. # At the end of the decap operation, the packet is sent to the # host hs-2. # # ### ii) double SID # # The router rt-1 is configured to enforce the given Policy through the SRv6 # H.Encaps.Red. As a result, the first SID fcbb:0:0300:: is stored into the # IPv6 DA, while the SRH pushed into the packet is made of only one SID, i.e. # fcff:2::d46. Hence, the packet sent by hs-1 to hs-2 is encapsulated in an # outer IPv6 header plus the SRH. # # As the packet reaches the node rt-3, the router applies the enabled NEXT-C-SID # SRv6 End behavior. # # +---------------------------------------------------------------+ # | Before applying the rt-3 enabled NEXT-C-SID SRv6 End behavior | # +---------------------------------------------------------------+ # | +---------- Argument | # | vvvv (Argument is all filled with zeros) | # | IPv6 DA fcbb:0:0300:: | # | ^^^^ | # | | | # | Locator-Node Function | # +---------------------------------------------------------------+ # | After applying the rt-3 enabled NEXT-C-SID SRv6 End behavior | # +---------------------------------------------------------------+ # | | # | IPv6 DA fcff:2::d46 | # | ^^^^^^^^^^^ | # | | | # | SID copied from the SID List contained in the SRH | # +---------------------------------------------------------------+ # # Since the Argument of the C-SID container is zero, the behavior can not # update the Locator-Node function with the next C-SID carried in the Argument # itself. Thus, the enabled NEXT-C-SID SRv6 End behavior operates as the # traditional End behavior: it updates the IPv6 DA by copying the next # available SID in the SID List carried by the SRH. After that, the packet is # sent to the node rt-2. # # Once the packet is received by rt-2, the router decapsulates the inner IPv6 # packet using the SRv6 End.DT46 behavior (associated with the SID fcff:2::d46) # and sends it to the host hs-2. # # Traffic from hs-2 to hs-1 # ------------------------- # # Packets generated from hs-2 and directed towards hs-1 are handled by rt-2 # which applies the SRv6 Policies as follows: # # i) IPv6 DA=cafe::1, SID List=fcbb:0:0300:0400:0100:d46:: # ii) IPv4 DA=10.0.0.1, SID List=fcbb:0:0300::,fcff:1::d46 # # For simplicity, such SRv6 Policies were chosen so that, in both use cases (i) # and (ii), the network paths crossed by traffic from hs-2 to hs-1 are the same # as those taken by traffic from hs-1 to hs-2. # In this way, traffic from hs-2 to hs-1 is processed similarly to traffic from # hs-1 to hs-2. So, the traffic processing scheme turns out to be the same as # that adopted in the use cases already examined (of course, it is necessary to # consider the different SIDs/C-SIDs). # Kselftest framework requirement - SKIP code is 4. readonly ksft_skip=4 readonly RDMSUFF="$(mktemp -u XXXXXXXX)" readonly DUMMY_DEVNAME="dum0" readonly VRF_TID=100 readonly VRF_DEVNAME="vrf-${VRF_TID}" readonly RT2HS_DEVNAME="veth-t${VRF_TID}" readonly LOCALSID_TABLE_ID=90 readonly IPv6_RT_NETWORK=fcf0:0 readonly IPv6_HS_NETWORK=cafe readonly IPv4_HS_NETWORK=10.0.0 readonly VPN_LOCATOR_SERVICE=fcff readonly DT46_FUNC=0d46 readonly HEADEND_ENCAP="encap.red" # do not add ':' as separator readonly LCBLOCK_ADDR=fcbb0000 readonly LCBLOCK_BLEN=32 # do not add ':' as separator readonly LCNODEFUNC_FMT="0%d00" readonly LCNODEFUNC_BLEN=16 readonly LCBLOCK_NODEFUNC_BLEN=$((LCBLOCK_BLEN + LCNODEFUNC_BLEN)) readonly CSID_CNTR_PREFIX="dead:beaf::/32" # ID of the router used for testing the C-SID container cfgs readonly CSID_CNTR_RT_ID_TEST=1 # Routing table used for testing the C-SID container cfgs readonly CSID_CNTR_RT_TABLE=91 # C-SID container configurations to be tested # # An entry of the array is defined as "a,b,c" where: # - 'a' and 'b' elements represent respectively the Locator-Block length # (lblen) in bits and the Locator-Node Function length (nflen) in bits. # 'a' and 'b' can be set to default values using the placeholder "d" which # indicates the default kernel values (32 for lblen and 16 for nflen); # otherwise, any numeric value is accepted; # - 'c' indicates whether the C-SID configuration provided by the values 'a' # and 'b' should be considered valid ("y") or invalid ("n"). declare -ra CSID_CONTAINER_CFGS=( "d,d,y" "d,16,y" "16,d,y" "16,32,y" "32,16,y" "48,8,y" "8,48,y" "d,0,n" "0,d,n" "32,0,n" "0,32,n" "17,d,n" "d,17,n" "120,16,n" "16,120,n" "0,128,n" "128,0,n" "130,0,n" "0,130,n" "0,0,n" ) PING_TIMEOUT_SEC=4 PAUSE_ON_FAIL=${PAUSE_ON_FAIL:=no} # IDs of routers and hosts are initialized during the setup of the testing # network ROUTERS='' HOSTS='' SETUP_ERR=1 ret=${ksft_skip} nsuccess=0 nfail=0 log_test() { local rc="$1" local expected="$2" local msg="$3" if [ "${rc}" -eq "${expected}" ]; then nsuccess=$((nsuccess+1)) printf "\n TEST: %-60s [ OK ]\n" "${msg}" else ret=1 nfail=$((nfail+1)) printf "\n TEST: %-60s [FAIL]\n" "${msg}" if [ "${PAUSE_ON_FAIL}" = "yes" ]; then echo echo "hit enter to continue, 'q' to quit" read a [ "$a" = "q" ] && exit 1 fi fi } print_log_test_results() { printf "\nTests passed: %3d\n" "${nsuccess}" printf "Tests failed: %3d\n" "${nfail}" # when a test fails, the value of 'ret' is set to 1 (error code). # Conversely, when all tests are passed successfully, the 'ret' value # is set to 0 (success code). if [ "${ret}" -ne 1 ]; then ret=0 fi } log_section() { echo echo "################################################################################" echo "TEST SECTION: $*" echo "################################################################################" } test_command_or_ksft_skip() { local cmd="$1" if [ ! -x "$(command -v "${cmd}")" ]; then echo "SKIP: Could not run test without \"${cmd}\" tool"; exit "${ksft_skip}" fi } get_nodename() { local name="$1" echo "${name}-${RDMSUFF}" } get_rtname() { local rtid="$1" get_nodename "rt-${rtid}" } get_hsname() { local hsid="$1" get_nodename "hs-${hsid}" } __create_namespace() { local name="$1" ip netns add "${name}" } create_router() { local rtid="$1" local nsname nsname="$(get_rtname "${rtid}")" __create_namespace "${nsname}" } create_host() { local hsid="$1" local nsname nsname="$(get_hsname "${hsid}")" __create_namespace "${nsname}" } cleanup() { local nsname local i # destroy routers for i in ${ROUTERS}; do nsname="$(get_rtname "${i}")" ip netns del "${nsname}" &>/dev/null || true done # destroy hosts for i in ${HOSTS}; do nsname="$(get_hsname "${i}")" ip netns del "${nsname}" &>/dev/null || true done # check whether the setup phase was completed successfully or not. In # case of an error during the setup phase of the testing environment, # the selftest is considered as "skipped". if [ "${SETUP_ERR}" -ne 0 ]; then echo "SKIP: Setting up the testing environment failed" exit "${ksft_skip}" fi exit "${ret}" } add_link_rt_pairs() { local rt="$1" local rt_neighs="$2" local neigh local nsname local neigh_nsname nsname="$(get_rtname "${rt}")" for neigh in ${rt_neighs}; do neigh_nsname="$(get_rtname "${neigh}")" ip link add "veth-rt-${rt}-${neigh}" netns "${nsname}" \ type veth peer name "veth-rt-${neigh}-${rt}" \ netns "${neigh_nsname}" done } get_network_prefix() { local rt="$1" local neigh="$2" local p="${rt}" local q="${neigh}" if [ "${p}" -gt "${q}" ]; then p="${q}"; q="${rt}" fi echo "${IPv6_RT_NETWORK}:${p}:${q}" } # Setup the basic networking for the routers setup_rt_networking() { local rt="$1" local rt_neighs="$2" local nsname local net_prefix local devname local neigh nsname="$(get_rtname "${rt}")" for neigh in ${rt_neighs}; do devname="veth-rt-${rt}-${neigh}" net_prefix="$(get_network_prefix "${rt}" "${neigh}")" ip -netns "${nsname}" addr \ add "${net_prefix}::${rt}/64" dev "${devname}" nodad ip -netns "${nsname}" link set "${devname}" up done ip -netns "${nsname}" link add "${DUMMY_DEVNAME}" type dummy ip -netns "${nsname}" link set "${DUMMY_DEVNAME}" up ip -netns "${nsname}" link set lo up ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.all.accept_dad=0 ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.default.accept_dad=0 ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.all.forwarding=1 ip netns exec "${nsname}" sysctl -wq net.ipv4.conf.all.rp_filter=0 ip netns exec "${nsname}" sysctl -wq net.ipv4.conf.default.rp_filter=0 ip netns exec "${nsname}" sysctl -wq net.ipv4.ip_forward=1 } # build an ipv6 prefix/address based on the input string # Note that the input string does not contain ':' and '::' which are considered # to be implicit. # e.g.: # - input: fbcc00000400300 # - output: fbcc:0000:0400:0300:0000:0000:0000:0000 # ^^^^^^^^^^^^^^^^^^^ # fill the address with 0s build_ipv6_addr() { local addr="$1" local out="" local strlen="${#addr}" local padn local i # add ":" every 4 digits (16 bits) for (( i = 0; i < strlen; i++ )); do if (( i > 0 && i < 32 && (i % 4) == 0 )); then out="${out}:" fi out="${out}${addr:$i:1}" done # fill the remaining bits of the address with 0s padn=$((32 - strlen)) for (( i = padn; i > 0; i-- )); do if (( i > 0 && i < 32 && (i % 4) == 0 )); then out="${out}:" fi out="${out}0" done printf "${out}" } build_csid() { local nodeid="$1" printf "${LCNODEFUNC_FMT}" "${nodeid}" } build_lcnode_func_prefix() { local nodeid="$1" local lcnodefunc local prefix local out lcnodefunc="$(build_csid "${nodeid}")" prefix="$(build_ipv6_addr "${LCBLOCK_ADDR}${lcnodefunc}")" out="${prefix}/${LCBLOCK_NODEFUNC_BLEN}" echo "${out}" } # Setup local SIDs for an SRv6 router setup_rt_local_sids() { local rt="$1" local rt_neighs="$2" local net_prefix local devname local nsname local neigh local lcnode_func_prefix local lcblock_prefix nsname="$(get_rtname "${rt}")" for neigh in ${rt_neighs}; do devname="veth-rt-${rt}-${neigh}" net_prefix="$(get_network_prefix "${rt}" "${neigh}")" # set underlay network routes for SIDs reachability ip -netns "${nsname}" -6 route \ add "${VPN_LOCATOR_SERVICE}:${neigh}::/32" \ table "${LOCALSID_TABLE_ID}" \ via "${net_prefix}::${neigh}" dev "${devname}" # set the underlay network for C-SIDs reachability lcnode_func_prefix="$(build_lcnode_func_prefix "${neigh}")" ip -netns "${nsname}" -6 route \ add "${lcnode_func_prefix}" \ table "${LOCALSID_TABLE_ID}" \ via "${net_prefix}::${neigh}" dev "${devname}" done lcnode_func_prefix="$(build_lcnode_func_prefix "${rt}")" # enabled NEXT-C-SID SRv6 End behavior (note that "dev" is the dummy # dum0 device chosen for the sake of simplicity). ip -netns "${nsname}" -6 route \ add "${lcnode_func_prefix}" \ table "${LOCALSID_TABLE_ID}" \ encap seg6local action End flavors next-csid \ lblen "${LCBLOCK_BLEN}" nflen "${LCNODEFUNC_BLEN}" \ dev "${DUMMY_DEVNAME}" # all SIDs for VPNs start with a common locator. Routes and SRv6 # Endpoint behavior instaces are grouped together in the 'localsid' # table. ip -netns "${nsname}" -6 rule \ add to "${VPN_LOCATOR_SERVICE}::/16" \ lookup "${LOCALSID_TABLE_ID}" prio 999 # common locator block for NEXT-C-SIDS compression mechanism. lcblock_prefix="$(build_ipv6_addr "${LCBLOCK_ADDR}")" ip -netns "${nsname}" -6 rule \ add to "${lcblock_prefix}/${LCBLOCK_BLEN}" \ lookup "${LOCALSID_TABLE_ID}" prio 999 } # build and install the SRv6 policy into the ingress SRv6 router as well as the # decap SID in the egress one. # args: # $1 - src host (evaluate automatically the ingress router) # $2 - dst host (evaluate automatically the egress router) # $3 - SRv6 routers configured for steering traffic (End behaviors) # $4 - single SID or double SID # $5 - traffic type (IPv6 or IPv4) __setup_l3vpn() { local src="$1" local dst="$2" local end_rts="$3" local mode="$4" local traffic="$5" local nsname local policy local container local decapsid local lcnfunc local dt local n local rtsrc_nsname local rtdst_nsname rtsrc_nsname="$(get_rtname "${src}")" rtdst_nsname="$(get_rtname "${dst}")" container="${LCBLOCK_ADDR}" # build first SID (C-SID container) for n in ${end_rts}; do lcnfunc="$(build_csid "${n}")" container="${container}${lcnfunc}" done if [ "${mode}" -eq 1 ]; then # single SID policy dt="$(build_csid "${dst}")${DT46_FUNC}" container="${container}${dt}" # build the full ipv6 address for the container policy="$(build_ipv6_addr "${container}")" # build the decap SID used in the decap node container="${LCBLOCK_ADDR}${dt}" decapsid="$(build_ipv6_addr "${container}")" else # double SID policy decapsid="${VPN_LOCATOR_SERVICE}:${dst}::${DT46_FUNC}" policy="$(build_ipv6_addr "${container}"),${decapsid}" fi # apply encap policy if [ "${traffic}" -eq 6 ]; then ip -netns "${rtsrc_nsname}" -6 route \ add "${IPv6_HS_NETWORK}::${dst}" vrf "${VRF_DEVNAME}" \ encap seg6 mode "${HEADEND_ENCAP}" segs "${policy}" \ dev "${VRF_DEVNAME}" ip -netns "${rtsrc_nsname}" -6 neigh \ add proxy "${IPv6_HS_NETWORK}::${dst}" \ dev "${RT2HS_DEVNAME}" else # "dev" must be different from the one where the packet is # received, otherwise the proxy arp does not work. ip -netns "${rtsrc_nsname}" -4 route \ add "${IPv4_HS_NETWORK}.${dst}" vrf "${VRF_DEVNAME}" \ encap seg6 mode "${HEADEND_ENCAP}" segs "${policy}" \ dev "${VRF_DEVNAME}" fi # apply decap # Local End.DT46 behavior (decap) ip -netns "${rtdst_nsname}" -6 route \ add "${decapsid}" \ table "${LOCALSID_TABLE_ID}" \ encap seg6local action End.DT46 vrftable "${VRF_TID}" \ dev "${VRF_DEVNAME}" } # see __setup_l3vpn() setup_ipv4_vpn_2sids() { __setup_l3vpn "$1" "$2" "$3" 2 4 } # see __setup_l3vpn() setup_ipv6_vpn_1sid() { __setup_l3vpn "$1" "$2" "$3" 1 6 } setup_hs() { local hs="$1" local rt="$2" local hsname local rtname hsname="$(get_hsname "${hs}")" rtname="$(get_rtname "${rt}")" ip netns exec "${hsname}" sysctl -wq net.ipv6.conf.all.accept_dad=0 ip netns exec "${hsname}" sysctl -wq net.ipv6.conf.default.accept_dad=0 ip -netns "${hsname}" link add veth0 type veth \ peer name "${RT2HS_DEVNAME}" netns "${rtname}" ip -netns "${hsname}" addr \ add "${IPv6_HS_NETWORK}::${hs}/64" dev veth0 nodad ip -netns "${hsname}" addr add "${IPv4_HS_NETWORK}.${hs}/24" dev veth0 ip -netns "${hsname}" link set veth0 up ip -netns "${hsname}" link set lo up # configure the VRF on the router which is directly connected to the # source host. ip -netns "${rtname}" link \ add "${VRF_DEVNAME}" type vrf table "${VRF_TID}" ip -netns "${rtname}" link set "${VRF_DEVNAME}" up # enslave the veth interface connecting the router with the host to the # VRF in the access router ip -netns "${rtname}" link \ set "${RT2HS_DEVNAME}" master "${VRF_DEVNAME}" # set default routes to unreachable for both ipv6 and ipv4 ip -netns "${rtname}" -6 route \ add unreachable default metric 4278198272 \ vrf "${VRF_DEVNAME}" ip -netns "${rtname}" -4 route \ add unreachable default metric 4278198272 \ vrf "${VRF_DEVNAME}" ip -netns "${rtname}" addr \ add "${IPv6_HS_NETWORK}::254/64" dev "${RT2HS_DEVNAME}" nodad ip -netns "${rtname}" addr \ add "${IPv4_HS_NETWORK}.254/24" dev "${RT2HS_DEVNAME}" ip -netns "${rtname}" link set "${RT2HS_DEVNAME}" up ip netns exec "${rtname}" \ sysctl -wq net.ipv6.conf."${RT2HS_DEVNAME}".proxy_ndp=1 ip netns exec "${rtname}" \ sysctl -wq net.ipv4.conf."${RT2HS_DEVNAME}".proxy_arp=1 # disable the rp_filter otherwise the kernel gets confused about how # to route decap ipv4 packets. ip netns exec "${rtname}" \ sysctl -wq net.ipv4.conf."${RT2HS_DEVNAME}".rp_filter=0 ip netns exec "${rtname}" sh -c "echo 1 > /proc/sys/net/vrf/strict_mode" } setup() { local i # create routers ROUTERS="1 2 3 4"; readonly ROUTERS for i in ${ROUTERS}; do create_router "${i}" done # create hosts HOSTS="1 2"; readonly HOSTS for i in ${HOSTS}; do create_host "${i}" done # set up the links for connecting routers add_link_rt_pairs 1 "2 3 4" add_link_rt_pairs 2 "3 4" add_link_rt_pairs 3 "4" # set up the basic connectivity of routers and routes required for # reachability of SIDs. setup_rt_networking 1 "2 3 4" setup_rt_networking 2 "1 3 4" setup_rt_networking 3 "1 2 4" setup_rt_networking 4 "1 2 3" # set up the hosts connected to routers setup_hs 1 1 setup_hs 2 2 # set up default SRv6 Endpoints (i.e. SRv6 End and SRv6 End.DT46) setup_rt_local_sids 1 "2 3 4" setup_rt_local_sids 2 "1 3 4" setup_rt_local_sids 3 "1 2 4" setup_rt_local_sids 4 "1 2 3" # set up SRv6 Policies # create an IPv6 VPN between hosts hs-1 and hs-2. # # Direction hs-1 -> hs-2 # - rt-1 encap (H.Encaps.Red) # - rt-4 SRv6 End behavior (NEXT-C-SID flavor) # - rt-3 SRv6 End behavior (NEXT-C-SID flavor) # - rt-2 SRv6 End.DT46 behavior setup_ipv6_vpn_1sid 1 2 "4 3" # Direction hs2 -> hs-1 # - rt-2 encap (H.Encaps.Red) # - rt-3 SRv6 End behavior (NEXT-C-SID flavor) # - rt-4 SRv6 End behavior (NEXT-C-SID flavor) # - rt-1 SRv6 End.DT46 behavior setup_ipv6_vpn_1sid 2 1 "3 4" # create an IPv4 VPN between hosts hs-1 and hs-2 # # Direction hs-1 -> hs-2 # - rt-1 encap (H.Encaps.Red) # - rt-3 SRv6 End behavior (NEXT-C-SID flavor) # - rt-2 SRv6 End.DT46 behavior setup_ipv4_vpn_2sids 1 2 "3" # Direction hs-2 -> hs-1 # - rt-2 encap (H.Encaps.Red) # - rt-3 SRv6 End behavior (NEXT-C-SID flavor) # - rt-1 SRv6 End.DT46 behavior setup_ipv4_vpn_2sids 2 1 "3" # testing environment was set up successfully SETUP_ERR=0 } check_rt_connectivity() { local rtsrc="$1" local rtdst="$2" local prefix local rtsrc_nsname rtsrc_nsname="$(get_rtname "${rtsrc}")" prefix="$(get_network_prefix "${rtsrc}" "${rtdst}")" ip netns exec "${rtsrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \ "${prefix}::${rtdst}" >/dev/null 2>&1 } check_and_log_rt_connectivity() { local rtsrc="$1" local rtdst="$2" check_rt_connectivity "${rtsrc}" "${rtdst}" log_test $? 0 "Routers connectivity: rt-${rtsrc} -> rt-${rtdst}" } check_hs_ipv6_connectivity() { local hssrc="$1" local hsdst="$2" local hssrc_nsname hssrc_nsname="$(get_hsname "${hssrc}")" ip netns exec "${hssrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \ "${IPv6_HS_NETWORK}::${hsdst}" >/dev/null 2>&1 } check_hs_ipv4_connectivity() { local hssrc="$1" local hsdst="$2" local hssrc_nsname hssrc_nsname="$(get_hsname "${hssrc}")" ip netns exec "${hssrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \ "${IPv4_HS_NETWORK}.${hsdst}" >/dev/null 2>&1 } check_and_log_hs2gw_connectivity() { local hssrc="$1" check_hs_ipv6_connectivity "${hssrc}" 254 log_test $? 0 "IPv6 Hosts connectivity: hs-${hssrc} -> gw" check_hs_ipv4_connectivity "${hssrc}" 254 log_test $? 0 "IPv4 Hosts connectivity: hs-${hssrc} -> gw" } check_and_log_hs_ipv6_connectivity() { local hssrc="$1" local hsdst="$2" check_hs_ipv6_connectivity "${hssrc}" "${hsdst}" log_test $? 0 "IPv6 Hosts connectivity: hs-${hssrc} -> hs-${hsdst}" } check_and_log_hs_ipv4_connectivity() { local hssrc="$1" local hsdst="$2" check_hs_ipv4_connectivity "${hssrc}" "${hsdst}" log_test $? 0 "IPv4 Hosts connectivity: hs-${hssrc} -> hs-${hsdst}" } router_tests() { local i local j log_section "IPv6 routers connectivity test" for i in ${ROUTERS}; do for j in ${ROUTERS}; do if [ "${i}" -eq "${j}" ]; then continue fi check_and_log_rt_connectivity "${i}" "${j}" done done } host2gateway_tests() { local hs log_section "IPv4/IPv6 connectivity test among hosts and gateways" for hs in ${HOSTS}; do check_and_log_hs2gw_connectivity "${hs}" done } host_vpn_tests() { log_section "SRv6 VPN connectivity test hosts (h1 <-> h2, IPv6)" check_and_log_hs_ipv6_connectivity 1 2 check_and_log_hs_ipv6_connectivity 2 1 log_section "SRv6 VPN connectivity test hosts (h1 <-> h2, IPv4)" check_and_log_hs_ipv4_connectivity 1 2 check_and_log_hs_ipv4_connectivity 2 1 } __nextcsid_end_behavior_test() { local nsname="$1" local cmd="$2" local blen="$3" local flen="$4" local layout="" if [ "${blen}" != "d" ]; then layout="${layout} lblen ${blen}" fi if [ "${flen}" != "d" ]; then layout="${layout} nflen ${flen}" fi ip -netns "${nsname}" -6 route \ "${cmd}" "${CSID_CNTR_PREFIX}" \ table "${CSID_CNTR_RT_TABLE}" \ encap seg6local action End flavors next-csid ${layout} \ dev "${DUMMY_DEVNAME}" &>/dev/null return "$?" } rt_x_nextcsid_end_behavior_test() { local rt="$1" local blen="$2" local flen="$3" local nsname local ret nsname="$(get_rtname "${rt}")" __nextcsid_end_behavior_test "${nsname}" "add" "${blen}" "${flen}" ret="$?" __nextcsid_end_behavior_test "${nsname}" "del" "${blen}" "${flen}" return "${ret}" } __parse_csid_container_cfg() { local cfg="$1" local index="$2" local out echo "${cfg}" | cut -d',' -f"${index}" } csid_container_cfg_tests() { local valid local blen local flen local cfg local ret log_section "C-SID Container config tests (legend: d='kernel default')" for cfg in "${CSID_CONTAINER_CFGS[@]}"; do blen="$(__parse_csid_container_cfg "${cfg}" 1)" flen="$(__parse_csid_container_cfg "${cfg}" 2)" valid="$(__parse_csid_container_cfg "${cfg}" 3)" rt_x_nextcsid_end_behavior_test \ "${CSID_CNTR_RT_ID_TEST}" \ "${blen}" \ "${flen}" ret="$?" if [ "${valid}" == "y" ]; then log_test "${ret}" 0 \ "Accept valid C-SID container cfg (lblen=${blen}, nflen=${flen})" else log_test "${ret}" 2 \ "Reject invalid C-SID container cfg (lblen=${blen}, nflen=${flen})" fi done } test_iproute2_supp_or_ksft_skip() { if ! ip route help 2>&1 | grep -qo "next-csid"; then echo "SKIP: Missing SRv6 NEXT-C-SID flavor support in iproute2" exit "${ksft_skip}" fi } test_dummy_dev_or_ksft_skip() { local test_netns test_netns="dummy-$(mktemp -u XXXXXXXX)" if ! ip netns add "${test_netns}"; then echo "SKIP: Cannot set up netns for testing dummy dev support" exit "${ksft_skip}" fi modprobe dummy &>/dev/null || true if ! ip -netns "${test_netns}" link \ add "${DUMMY_DEVNAME}" type dummy; then echo "SKIP: dummy dev not supported" ip netns del "${test_netns}" exit "${ksft_skip}" fi ip netns del "${test_netns}" } test_vrf_or_ksft_skip() { modprobe vrf &>/dev/null || true if [ ! -e /proc/sys/net/vrf/strict_mode ]; then echo "SKIP: vrf sysctl does not exist" exit "${ksft_skip}" fi } if [ "$(id -u)" -ne 0 ]; then echo "SKIP: Need root privileges" exit "${ksft_skip}" fi # required programs to carry out this selftest test_command_or_ksft_skip ip test_command_or_ksft_skip ping test_command_or_ksft_skip sysctl test_command_or_ksft_skip grep test_command_or_ksft_skip cut test_iproute2_supp_or_ksft_skip test_dummy_dev_or_ksft_skip test_vrf_or_ksft_skip set -e trap cleanup EXIT setup set +e csid_container_cfg_tests router_tests host2gateway_tests host_vpn_tests print_log_test_results