1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
# SPDX-License-Identifier: GPL-2.0-only
%YAML 1.2
---
$id: http://devicetree.org/schemas/leds/common.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Common leds properties
maintainers:
- Jacek Anaszewski <jacek.anaszewski@gmail.com>
- Pavel Machek <pavel@ucw.cz>
description:
LED and flash LED devices provide the same basic functionality as current
regulators, but extended with LED and flash LED specific features like
blinking patterns, flash timeout, flash faults and external flash strobe mode.
Many LED devices expose more than one current output that can be connected
to one or more discrete LED component. Since the arrangement of connections
can influence the way of the LED device initialization, the LED components
have to be tightly coupled with the LED device binding. They are represented
by child nodes of the parent LED device binding.
properties:
led-sources:
description:
List of device current outputs the LED is connected to. The outputs are
identified by the numbers that must be defined in the LED device binding
documentation.
$ref: /schemas/types.yaml#/definitions/uint32-array
function:
description:
LED function. Use one of the LED_FUNCTION_* prefixed definitions
from the header include/dt-bindings/leds/common.h. If there is no
matching LED_FUNCTION available, add a new one.
$ref: /schemas/types.yaml#/definitions/string
color:
description:
Color of the LED. Use one of the LED_COLOR_ID_* prefixed definitions from
the header include/dt-bindings/leds/common.h. If there is no matching
LED_COLOR_ID available, add a new one.
$ref: /schemas/types.yaml#/definitions/uint32
minimum: 0
maximum: 9
function-enumerator:
description:
Integer to be used when more than one instance of the same function is
needed, differing only with an ordinal number.
$ref: /schemas/types.yaml#/definitions/uint32
label:
description:
The label for this LED. If omitted, the label is taken from the node name
(excluding the unit address). It has to uniquely identify a device, i.e.
no other LED class device can be assigned the same label. This property is
deprecated - use 'function' and 'color' properties instead.
function-enumerator has no effect when this property is present.
default-state:
description:
The initial state of the LED. If the LED is already on or off and the
default-state property is set the to same value, then no glitch should be
produced where the LED momentarily turns off (or on). The "keep" setting
will keep the LED at whatever its current state is, without producing a
glitch.
$ref: /schemas/types.yaml#/definitions/string
enum:
- on
- off
- keep
default: off
linux,default-trigger:
description:
This parameter, if present, is a string defining the trigger assigned to
the LED.
$ref: /schemas/types.yaml#/definitions/string
oneOf:
- enum:
# LED will act as a back-light, controlled by the framebuffer system
- backlight
# LED will turn on (but for leds-gpio see "default-state" property in
# Documentation/devicetree/bindings/leds/leds-gpio.yaml)
- default-on
# LED "double" flashes at a load average based rate
- heartbeat
# LED indicates disk activity
- disk-activity
# LED indicates IDE disk activity (deprecated), in new implementations
# use "disk-activity"
- ide-disk
# LED flashes at a fixed, configurable rate
- timer
# LED alters the brightness for the specified duration with one software
# timer (requires "led-pattern" property)
- pattern
# LED is triggered by SD/MMC activity
- pattern: "^mmc[0-9]+$"
led-pattern:
description: |
Array of integers with default pattern for certain triggers.
Each trigger may parse this property differently:
- one-shot : two numbers specifying delay on and delay off (in ms),
- timer : two numbers specifying delay on and delay off (in ms),
- pattern : the pattern is given by a series of tuples, of
brightness and duration (in ms). The exact format is
described in:
Documentation/devicetree/bindings/leds/leds-trigger-pattern.txt
$ref: /schemas/types.yaml#/definitions/uint32-matrix
items:
minItems: 2
maxItems: 2
led-max-microamp:
description:
Maximum LED supply current in microamperes. This property can be made
mandatory for the board configurations introducing a risk of hardware
damage in case an excessive current is set.
For flash LED controllers with configurable current this property is
mandatory for the LEDs in the non-flash modes (e.g. torch or indicator).
panic-indicator:
description:
This property specifies that the LED should be used, if at all possible,
as a panic indicator.
type: boolean
retain-state-shutdown:
description:
This property specifies that the LED should not be turned off or changed
when the system shuts down.
type: boolean
trigger-sources:
description: |
List of devices which should be used as a source triggering this LED
activity. Some LEDs can be related to a specific device and should somehow
indicate its state. E.g. USB 2.0 LED may react to device(s) in a USB 2.0
port(s).
Another common example is switch or router with multiple Ethernet ports
each of them having its own LED assigned (assuming they are not
hardwired). In such cases this property should contain phandle(s) of
related source device(s).
In many cases LED can be related to more than one device (e.g. one USB LED
vs. multiple USB ports). Each source should be represented by a node in
the device tree and be referenced by a phandle and a set of phandle
arguments. A length of arguments should be specified by the
#trigger-source-cells property in the source node.
$ref: /schemas/types.yaml#/definitions/phandle-array
# Required properties for flash LED child nodes:
flash-max-microamp:
description:
Maximum flash LED supply current in microamperes. Required for flash LED
nodes with configurable current.
flash-max-timeout-us:
description:
Maximum timeout in microseconds after which the flash LED is turned off.
Required for flash LED nodes with configurable timeout.
additionalProperties: true
examples:
- |
#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/leds/common.h>
led-controller {
compatible = "gpio-leds";
led-0 {
function = LED_FUNCTION_STATUS;
linux,default-trigger = "heartbeat";
gpios = <&gpio0 0 GPIO_ACTIVE_HIGH>;
};
led-1 {
function = LED_FUNCTION_USB;
gpios = <&gpio0 1 GPIO_ACTIVE_HIGH>;
trigger-sources = <&ohci_port1>, <&ehci_port1>;
};
};
- |
#include <dt-bindings/leds/common.h>
led-controller {
compatible = "maxim,max77693-led";
led {
function = LED_FUNCTION_FLASH;
color = <LED_COLOR_ID_WHITE>;
led-sources = <0>, <1>;
led-max-microamp = <50000>;
flash-max-microamp = <320000>;
flash-max-timeout-us = <500000>;
};
};
- |
#include <dt-bindings/leds/common.h>
i2c {
#address-cells = <1>;
#size-cells = <0>;
led-controller@30 {
compatible = "panasonic,an30259a";
reg = <0x30>;
#address-cells = <1>;
#size-cells = <0>;
led@1 {
reg = <1>;
linux,default-trigger = "heartbeat";
function = LED_FUNCTION_INDICATOR;
function-enumerator = <1>;
};
led@2 {
reg = <2>;
function = LED_FUNCTION_INDICATOR;
function-enumerator = <2>;
};
led@3 {
reg = <3>;
function = LED_FUNCTION_INDICATOR;
function-enumerator = <3>;
};
};
};
...
|