summaryrefslogtreecommitdiffstats
path: root/src/partition/repart.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/partition/repart.c6009
1 files changed, 6009 insertions, 0 deletions
diff --git a/src/partition/repart.c b/src/partition/repart.c
new file mode 100644
index 0000000..9ccacc4
--- /dev/null
+++ b/src/partition/repart.c
@@ -0,0 +1,6009 @@
+/* SPDX-License-Identifier: LGPL-2.1-or-later */
+
+#if HAVE_VALGRIND_MEMCHECK_H
+#include <valgrind/memcheck.h>
+#endif
+
+#include <fcntl.h>
+#include <getopt.h>
+#include <linux/fs.h>
+#include <linux/loop.h>
+#include <sys/file.h>
+#include <sys/ioctl.h>
+#include <sys/stat.h>
+
+#include "sd-device.h"
+#include "sd-id128.h"
+
+#include "alloc-util.h"
+#include "blkid-util.h"
+#include "blockdev-util.h"
+#include "btrfs-util.h"
+#include "chase-symlinks.h"
+#include "conf-files.h"
+#include "conf-parser.h"
+#include "cryptsetup-util.h"
+#include "def.h"
+#include "device-util.h"
+#include "devnum-util.h"
+#include "dirent-util.h"
+#include "efivars.h"
+#include "errno-util.h"
+#include "fd-util.h"
+#include "fdisk-util.h"
+#include "fileio.h"
+#include "format-table.h"
+#include "format-util.h"
+#include "fs-util.h"
+#include "glyph-util.h"
+#include "gpt.h"
+#include "hexdecoct.h"
+#include "hmac.h"
+#include "id128-util.h"
+#include "io-util.h"
+#include "json.h"
+#include "list.h"
+#include "loop-util.h"
+#include "main-func.h"
+#include "mkdir.h"
+#include "mkfs-util.h"
+#include "mount-util.h"
+#include "mountpoint-util.h"
+#include "openssl-util.h"
+#include "parse-argument.h"
+#include "parse-helpers.h"
+#include "pretty-print.h"
+#include "proc-cmdline.h"
+#include "process-util.h"
+#include "random-util.h"
+#include "resize-fs.h"
+#include "rm-rf.h"
+#include "sort-util.h"
+#include "specifier.h"
+#include "stdio-util.h"
+#include "string-table.h"
+#include "string-util.h"
+#include "strv.h"
+#include "sync-util.h"
+#include "tmpfile-util.h"
+#include "terminal-util.h"
+#include "tpm-pcr.h"
+#include "tpm2-util.h"
+#include "user-util.h"
+#include "utf8.h"
+
+/* If not configured otherwise use a minimal partition size of 10M */
+#define DEFAULT_MIN_SIZE (10*1024*1024)
+
+/* Hard lower limit for new partition sizes */
+#define HARD_MIN_SIZE 4096
+
+/* We know up front we're never going to put more than this in a verity sig partition. */
+#define VERITY_SIG_SIZE (HARD_MIN_SIZE * 4)
+
+/* libfdisk takes off slightly more than 1M of the disk size when creating a GPT disk label */
+#define GPT_METADATA_SIZE (1044*1024)
+
+/* LUKS2 takes off 16M of the partition size with its metadata by default */
+#define LUKS2_METADATA_SIZE (16*1024*1024)
+
+/* Note: When growing and placing new partitions we always align to 4K sector size. It's how newer hard disks
+ * are designed, and if everything is aligned to that performance is best. And for older hard disks with 512B
+ * sector size devices were generally assumed to have an even number of sectors, hence at the worst we'll
+ * waste 3K per partition, which is probably fine. */
+
+static enum {
+ EMPTY_REFUSE, /* refuse empty disks, never create a partition table */
+ EMPTY_ALLOW, /* allow empty disks, create partition table if necessary */
+ EMPTY_REQUIRE, /* require an empty disk, create a partition table */
+ EMPTY_FORCE, /* make disk empty, erase everything, create a partition table always */
+ EMPTY_CREATE, /* create disk as loopback file, create a partition table always */
+} arg_empty = EMPTY_REFUSE;
+
+static bool arg_dry_run = true;
+static const char *arg_node = NULL;
+static char *arg_root = NULL;
+static char *arg_image = NULL;
+static char **arg_definitions = NULL;
+static bool arg_discard = true;
+static bool arg_can_factory_reset = false;
+static int arg_factory_reset = -1;
+static sd_id128_t arg_seed = SD_ID128_NULL;
+static bool arg_randomize = false;
+static int arg_pretty = -1;
+static uint64_t arg_size = UINT64_MAX;
+static bool arg_size_auto = false;
+static JsonFormatFlags arg_json_format_flags = JSON_FORMAT_OFF;
+static PagerFlags arg_pager_flags = 0;
+static bool arg_legend = true;
+static void *arg_key = NULL;
+static size_t arg_key_size = 0;
+static EVP_PKEY *arg_private_key = NULL;
+static X509 *arg_certificate = NULL;
+static char *arg_tpm2_device = NULL;
+static uint32_t arg_tpm2_pcr_mask = UINT32_MAX;
+static char *arg_tpm2_public_key = NULL;
+static uint32_t arg_tpm2_public_key_pcr_mask = UINT32_MAX;
+static bool arg_split = false;
+
+STATIC_DESTRUCTOR_REGISTER(arg_root, freep);
+STATIC_DESTRUCTOR_REGISTER(arg_image, freep);
+STATIC_DESTRUCTOR_REGISTER(arg_definitions, strv_freep);
+STATIC_DESTRUCTOR_REGISTER(arg_key, erase_and_freep);
+STATIC_DESTRUCTOR_REGISTER(arg_private_key, EVP_PKEY_freep);
+STATIC_DESTRUCTOR_REGISTER(arg_certificate, X509_freep);
+STATIC_DESTRUCTOR_REGISTER(arg_tpm2_device, freep);
+STATIC_DESTRUCTOR_REGISTER(arg_tpm2_public_key, freep);
+
+typedef struct Partition Partition;
+typedef struct FreeArea FreeArea;
+typedef struct Context Context;
+
+typedef enum EncryptMode {
+ ENCRYPT_OFF,
+ ENCRYPT_KEY_FILE,
+ ENCRYPT_TPM2,
+ ENCRYPT_KEY_FILE_TPM2,
+ _ENCRYPT_MODE_MAX,
+ _ENCRYPT_MODE_INVALID = -EINVAL,
+} EncryptMode;
+
+typedef enum VerityMode {
+ VERITY_OFF,
+ VERITY_DATA,
+ VERITY_HASH,
+ VERITY_SIG,
+ _VERITY_MODE_MAX,
+ _VERITY_MODE_INVALID = -EINVAL,
+} VerityMode;
+
+struct Partition {
+ char *definition_path;
+ char **drop_in_files;
+
+ sd_id128_t type_uuid;
+ sd_id128_t current_uuid, new_uuid;
+ bool new_uuid_is_set;
+ char *current_label, *new_label;
+
+ bool dropped;
+ bool factory_reset;
+ int32_t priority;
+
+ uint32_t weight, padding_weight;
+
+ uint64_t current_size, new_size;
+ uint64_t size_min, size_max;
+
+ uint64_t current_padding, new_padding;
+ uint64_t padding_min, padding_max;
+
+ uint64_t partno;
+ uint64_t offset;
+
+ struct fdisk_partition *current_partition;
+ struct fdisk_partition *new_partition;
+ FreeArea *padding_area;
+ FreeArea *allocated_to_area;
+
+ char *copy_blocks_path;
+ bool copy_blocks_auto;
+ int copy_blocks_fd;
+ uint64_t copy_blocks_size;
+
+ char *format;
+ char **copy_files;
+ char **make_directories;
+ EncryptMode encrypt;
+ VerityMode verity;
+ char *verity_match_key;
+
+ uint64_t gpt_flags;
+ int no_auto;
+ int read_only;
+ int growfs;
+
+ uint8_t *roothash;
+ size_t roothash_size;
+
+ char *split_name_format;
+ char *split_name_resolved;
+
+ Partition *siblings[_VERITY_MODE_MAX];
+
+ LIST_FIELDS(Partition, partitions);
+};
+
+#define PARTITION_IS_FOREIGN(p) (!(p)->definition_path)
+#define PARTITION_EXISTS(p) (!!(p)->current_partition)
+
+struct FreeArea {
+ Partition *after;
+ uint64_t size;
+ uint64_t allocated;
+};
+
+struct Context {
+ LIST_HEAD(Partition, partitions);
+ size_t n_partitions;
+
+ FreeArea **free_areas;
+ size_t n_free_areas;
+
+ uint64_t start, end, total;
+
+ struct fdisk_context *fdisk_context;
+ uint64_t sector_size;
+ uint64_t grain_size;
+
+ sd_id128_t seed;
+};
+
+static const char *encrypt_mode_table[_ENCRYPT_MODE_MAX] = {
+ [ENCRYPT_OFF] = "off",
+ [ENCRYPT_KEY_FILE] = "key-file",
+ [ENCRYPT_TPM2] = "tpm2",
+ [ENCRYPT_KEY_FILE_TPM2] = "key-file+tpm2",
+};
+
+static const char *verity_mode_table[_VERITY_MODE_MAX] = {
+ [VERITY_OFF] = "off",
+ [VERITY_DATA] = "data",
+ [VERITY_HASH] = "hash",
+ [VERITY_SIG] = "signature",
+};
+
+#if HAVE_LIBCRYPTSETUP
+DEFINE_PRIVATE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(encrypt_mode, EncryptMode, ENCRYPT_KEY_FILE);
+#else
+DEFINE_PRIVATE_STRING_TABLE_LOOKUP_FROM_STRING_WITH_BOOLEAN(encrypt_mode, EncryptMode, ENCRYPT_KEY_FILE);
+#endif
+
+DEFINE_PRIVATE_STRING_TABLE_LOOKUP(verity_mode, VerityMode);
+
+static uint64_t round_down_size(uint64_t v, uint64_t p) {
+ return (v / p) * p;
+}
+
+static uint64_t round_up_size(uint64_t v, uint64_t p) {
+
+ v = DIV_ROUND_UP(v, p);
+
+ if (v > UINT64_MAX / p)
+ return UINT64_MAX; /* overflow */
+
+ return v * p;
+}
+
+static Partition *partition_new(void) {
+ Partition *p;
+
+ p = new(Partition, 1);
+ if (!p)
+ return NULL;
+
+ *p = (Partition) {
+ .weight = 1000,
+ .padding_weight = 0,
+ .current_size = UINT64_MAX,
+ .new_size = UINT64_MAX,
+ .size_min = UINT64_MAX,
+ .size_max = UINT64_MAX,
+ .current_padding = UINT64_MAX,
+ .new_padding = UINT64_MAX,
+ .padding_min = UINT64_MAX,
+ .padding_max = UINT64_MAX,
+ .partno = UINT64_MAX,
+ .offset = UINT64_MAX,
+ .copy_blocks_fd = -1,
+ .copy_blocks_size = UINT64_MAX,
+ .no_auto = -1,
+ .read_only = -1,
+ .growfs = -1,
+ };
+
+ return p;
+}
+
+static Partition* partition_free(Partition *p) {
+ if (!p)
+ return NULL;
+
+ free(p->current_label);
+ free(p->new_label);
+ free(p->definition_path);
+ strv_free(p->drop_in_files);
+
+ if (p->current_partition)
+ fdisk_unref_partition(p->current_partition);
+ if (p->new_partition)
+ fdisk_unref_partition(p->new_partition);
+
+ free(p->copy_blocks_path);
+ safe_close(p->copy_blocks_fd);
+
+ free(p->format);
+ strv_free(p->copy_files);
+ strv_free(p->make_directories);
+ free(p->verity_match_key);
+
+ free(p->roothash);
+
+ free(p->split_name_format);
+ free(p->split_name_resolved);
+
+ return mfree(p);
+}
+
+static void partition_foreignize(Partition *p) {
+ assert(p);
+ assert(PARTITION_EXISTS(p));
+
+ /* Reset several parameters set through definition file to make the partition foreign. */
+
+ p->new_label = mfree(p->new_label);
+ p->definition_path = mfree(p->definition_path);
+ p->drop_in_files = strv_free(p->drop_in_files);
+
+ p->copy_blocks_path = mfree(p->copy_blocks_path);
+ p->copy_blocks_fd = safe_close(p->copy_blocks_fd);
+
+ p->format = mfree(p->format);
+ p->copy_files = strv_free(p->copy_files);
+ p->make_directories = strv_free(p->make_directories);
+ p->verity_match_key = mfree(p->verity_match_key);
+
+ p->new_uuid = SD_ID128_NULL;
+ p->new_uuid_is_set = false;
+ p->priority = 0;
+ p->weight = 1000;
+ p->padding_weight = 0;
+ p->size_min = UINT64_MAX;
+ p->size_max = UINT64_MAX;
+ p->padding_min = UINT64_MAX;
+ p->padding_max = UINT64_MAX;
+ p->no_auto = -1;
+ p->read_only = -1;
+ p->growfs = -1;
+ p->verity = VERITY_OFF;
+}
+
+static Partition* partition_unlink_and_free(Context *context, Partition *p) {
+ if (!p)
+ return NULL;
+
+ LIST_REMOVE(partitions, context->partitions, p);
+
+ assert(context->n_partitions > 0);
+ context->n_partitions--;
+
+ return partition_free(p);
+}
+
+DEFINE_TRIVIAL_CLEANUP_FUNC(Partition*, partition_free);
+
+static Context *context_new(sd_id128_t seed) {
+ Context *context;
+
+ context = new(Context, 1);
+ if (!context)
+ return NULL;
+
+ *context = (Context) {
+ .start = UINT64_MAX,
+ .end = UINT64_MAX,
+ .total = UINT64_MAX,
+ .seed = seed,
+ };
+
+ return context;
+}
+
+static void context_free_free_areas(Context *context) {
+ assert(context);
+
+ for (size_t i = 0; i < context->n_free_areas; i++)
+ free(context->free_areas[i]);
+
+ context->free_areas = mfree(context->free_areas);
+ context->n_free_areas = 0;
+}
+
+static Context *context_free(Context *context) {
+ if (!context)
+ return NULL;
+
+ while (context->partitions)
+ partition_unlink_and_free(context, context->partitions);
+ assert(context->n_partitions == 0);
+
+ context_free_free_areas(context);
+
+ if (context->fdisk_context)
+ fdisk_unref_context(context->fdisk_context);
+
+ return mfree(context);
+}
+
+DEFINE_TRIVIAL_CLEANUP_FUNC(Context*, context_free);
+
+static int context_add_free_area(
+ Context *context,
+ uint64_t size,
+ Partition *after) {
+
+ FreeArea *a;
+
+ assert(context);
+ assert(!after || !after->padding_area);
+
+ if (!GREEDY_REALLOC(context->free_areas, context->n_free_areas + 1))
+ return -ENOMEM;
+
+ a = new(FreeArea, 1);
+ if (!a)
+ return -ENOMEM;
+
+ *a = (FreeArea) {
+ .size = size,
+ .after = after,
+ };
+
+ context->free_areas[context->n_free_areas++] = a;
+
+ if (after)
+ after->padding_area = a;
+
+ return 0;
+}
+
+static void partition_drop_or_foreignize(Partition *p) {
+ if (!p || p->dropped || PARTITION_IS_FOREIGN(p))
+ return;
+
+ if (PARTITION_EXISTS(p)) {
+ log_info("Can't grow existing partition %s of priority %" PRIi32 ", ignoring.",
+ strna(p->current_label ?: p->new_label), p->priority);
+
+ /* Handle the partition as foreign. Do not set dropped flag. */
+ partition_foreignize(p);
+ } else {
+ log_info("Can't fit partition %s of priority %" PRIi32 ", dropping.",
+ p->definition_path, p->priority);
+
+ p->dropped = true;
+ p->allocated_to_area = NULL;
+ }
+}
+
+static bool context_drop_or_foreignize_one_priority(Context *context) {
+ int32_t priority = 0;
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ if (p->dropped)
+ continue;
+
+ priority = MAX(priority, p->priority);
+ }
+
+ /* Refuse to drop partitions with 0 or negative priorities or partitions of priorities that have at
+ * least one existing priority */
+ if (priority <= 0)
+ return false;
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ if (p->priority < priority)
+ continue;
+
+ partition_drop_or_foreignize(p);
+
+ /* We ensure that all verity sibling partitions have the same priority, so it's safe
+ * to drop all siblings here as well. */
+
+ for (VerityMode mode = VERITY_OFF + 1; mode < _VERITY_MODE_MAX; mode++)
+ partition_drop_or_foreignize(p->siblings[mode]);
+ }
+
+ return true;
+}
+
+static uint64_t partition_min_size(const Context *context, const Partition *p) {
+ uint64_t sz;
+
+ assert(context);
+ assert(p);
+
+ /* Calculate the disk space we really need at minimum for this partition. If the partition already
+ * exists the current size is what we really need. If it doesn't exist yet refuse to allocate less
+ * than 4K.
+ *
+ * DEFAULT_MIN_SIZE is the default SizeMin= we configure if nothing else is specified. */
+
+ if (PARTITION_IS_FOREIGN(p)) {
+ /* Don't allow changing size of partitions not managed by us */
+ assert(p->current_size != UINT64_MAX);
+ return p->current_size;
+ }
+
+ if (p->verity == VERITY_SIG)
+ return VERITY_SIG_SIZE;
+
+ sz = p->current_size != UINT64_MAX ? p->current_size : HARD_MIN_SIZE;
+
+ if (!PARTITION_EXISTS(p)) {
+ uint64_t d = 0;
+
+ if (p->encrypt != ENCRYPT_OFF)
+ d += round_up_size(LUKS2_METADATA_SIZE, context->grain_size);
+
+ if (p->copy_blocks_size != UINT64_MAX)
+ d += round_up_size(p->copy_blocks_size, context->grain_size);
+ else if (p->format || p->encrypt != ENCRYPT_OFF) {
+ uint64_t f;
+
+ /* If we shall synthesize a file system, take minimal fs size into account (assumed to be 4K if not known) */
+ f = p->format ? round_up_size(minimal_size_by_fs_name(p->format), context->grain_size) : UINT64_MAX;
+ d += f == UINT64_MAX ? context->grain_size : f;
+ }
+
+ if (d > sz)
+ sz = d;
+ }
+
+ return MAX(round_up_size(p->size_min != UINT64_MAX ? p->size_min : DEFAULT_MIN_SIZE, context->grain_size), sz);
+}
+
+static uint64_t partition_max_size(const Context *context, const Partition *p) {
+ uint64_t sm;
+
+ /* Calculate how large the partition may become at max. This is generally the configured maximum
+ * size, except when it already exists and is larger than that. In that case it's the existing size,
+ * since we never want to shrink partitions. */
+
+ assert(context);
+ assert(p);
+
+ if (PARTITION_IS_FOREIGN(p)) {
+ /* Don't allow changing size of partitions not managed by us */
+ assert(p->current_size != UINT64_MAX);
+ return p->current_size;
+ }
+
+ if (p->verity == VERITY_SIG)
+ return VERITY_SIG_SIZE;
+
+ if (p->size_max == UINT64_MAX)
+ return UINT64_MAX;
+
+ sm = round_down_size(p->size_max, context->grain_size);
+
+ if (p->current_size != UINT64_MAX)
+ sm = MAX(p->current_size, sm);
+
+ return MAX(partition_min_size(context, p), sm);
+}
+
+static uint64_t partition_min_padding(const Partition *p) {
+ assert(p);
+ return p->padding_min != UINT64_MAX ? p->padding_min : 0;
+}
+
+static uint64_t partition_max_padding(const Partition *p) {
+ assert(p);
+ return p->padding_max;
+}
+
+static uint64_t partition_min_size_with_padding(Context *context, const Partition *p) {
+ uint64_t sz;
+
+ /* Calculate the disk space we need for this partition plus any free space coming after it. This
+ * takes user configured padding into account as well as any additional whitespace needed to align
+ * the next partition to 4K again. */
+
+ assert(context);
+ assert(p);
+
+ sz = partition_min_size(context, p) + partition_min_padding(p);
+
+ if (PARTITION_EXISTS(p)) {
+ /* If the partition wasn't aligned, add extra space so that any we might add will be aligned */
+ assert(p->offset != UINT64_MAX);
+ return round_up_size(p->offset + sz, context->grain_size) - p->offset;
+ }
+
+ /* If this is a new partition we'll place it aligned, hence we just need to round up the required size here */
+ return round_up_size(sz, context->grain_size);
+}
+
+static uint64_t free_area_available(const FreeArea *a) {
+ assert(a);
+
+ /* Determines how much of this free area is not allocated yet */
+
+ assert(a->size >= a->allocated);
+ return a->size - a->allocated;
+}
+
+static uint64_t free_area_current_end(Context *context, const FreeArea *a) {
+ assert(context);
+ assert(a);
+
+ if (!a->after)
+ return free_area_available(a);
+
+ assert(a->after->offset != UINT64_MAX);
+ assert(a->after->current_size != UINT64_MAX);
+
+ /* Calculate where the free area ends, based on the offset of the partition preceding it. */
+ return round_up_size(a->after->offset + a->after->current_size, context->grain_size) + free_area_available(a);
+}
+
+static uint64_t free_area_min_end(Context *context, const FreeArea *a) {
+ assert(context);
+ assert(a);
+
+ if (!a->after)
+ return 0;
+
+ assert(a->after->offset != UINT64_MAX);
+ assert(a->after->current_size != UINT64_MAX);
+
+ /* Calculate where the partition would end when we give it as much as it needs. */
+ return round_up_size(a->after->offset + partition_min_size_with_padding(context, a->after), context->grain_size);
+}
+
+static uint64_t free_area_available_for_new_partitions(Context *context, const FreeArea *a) {
+ assert(context);
+ assert(a);
+
+ /* Similar to free_area_available(), but takes into account that the required size and padding of the
+ * preceding partition is honoured. */
+
+ return LESS_BY(free_area_current_end(context, a), free_area_min_end(context, a));
+}
+
+static int free_area_compare(FreeArea *const *a, FreeArea *const*b, Context *context) {
+ assert(context);
+
+ return CMP(free_area_available_for_new_partitions(context, *a),
+ free_area_available_for_new_partitions(context, *b));
+}
+
+static uint64_t charge_size(Context *context, uint64_t total, uint64_t amount) {
+ assert(context);
+ /* Subtract the specified amount from total, rounding up to multiple of 4K if there's room */
+ assert(amount <= total);
+ return LESS_BY(total, round_up_size(amount, context->grain_size));
+}
+
+static uint64_t charge_weight(uint64_t total, uint64_t amount) {
+ assert(amount <= total);
+ return total - amount;
+}
+
+static bool context_allocate_partitions(Context *context, uint64_t *ret_largest_free_area) {
+ assert(context);
+
+ /* This may be called multiple times. Reset previous assignments. */
+ for (size_t i = 0; i < context->n_free_areas; i++)
+ context->free_areas[i]->allocated = 0;
+
+ /* Sort free areas by size, putting smallest first */
+ typesafe_qsort_r(context->free_areas, context->n_free_areas, free_area_compare, context);
+
+ /* In any case return size of the largest free area (i.e. not the size of all free areas
+ * combined!) */
+ if (ret_largest_free_area)
+ *ret_largest_free_area =
+ context->n_free_areas == 0 ? 0 :
+ free_area_available_for_new_partitions(context, context->free_areas[context->n_free_areas-1]);
+
+ /* Check that each existing partition can fit its area. */
+ for (size_t i = 0; i < context->n_free_areas; i++)
+ if (free_area_current_end(context, context->free_areas[i]) <
+ free_area_min_end(context, context->free_areas[i]))
+ return false;
+
+ /* A simple first-fit algorithm. We return true if we can fit the partitions in, otherwise false. */
+ LIST_FOREACH(partitions, p, context->partitions) {
+ bool fits = false;
+ uint64_t required;
+ FreeArea *a = NULL;
+
+ /* Skip partitions we already dropped or that already exist */
+ if (p->dropped || PARTITION_EXISTS(p))
+ continue;
+
+ /* How much do we need to fit? */
+ required = partition_min_size_with_padding(context, p);
+ assert(required % context->grain_size == 0);
+
+ for (size_t i = 0; i < context->n_free_areas; i++) {
+ a = context->free_areas[i];
+
+ if (free_area_available_for_new_partitions(context, a) >= required) {
+ fits = true;
+ break;
+ }
+ }
+
+ if (!fits)
+ return false; /* 😢 Oh no! We can't fit this partition into any free area! */
+
+ /* Assign the partition to this free area */
+ p->allocated_to_area = a;
+
+ /* Budget the minimal partition size */
+ a->allocated += required;
+ }
+
+ return true;
+}
+
+static int context_sum_weights(Context *context, FreeArea *a, uint64_t *ret) {
+ uint64_t weight_sum = 0;
+
+ assert(context);
+ assert(a);
+ assert(ret);
+
+ /* Determine the sum of the weights of all partitions placed in or before the specified free area */
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ if (p->padding_area != a && p->allocated_to_area != a)
+ continue;
+
+ if (p->weight > UINT64_MAX - weight_sum)
+ goto overflow_sum;
+ weight_sum += p->weight;
+
+ if (p->padding_weight > UINT64_MAX - weight_sum)
+ goto overflow_sum;
+ weight_sum += p->padding_weight;
+ }
+
+ *ret = weight_sum;
+ return 0;
+
+overflow_sum:
+ return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Combined weight of partition exceeds unsigned 64bit range, refusing.");
+}
+
+static uint64_t scale_by_weight(uint64_t value, uint64_t weight, uint64_t weight_sum) {
+ assert(weight_sum >= weight);
+
+ for (;;) {
+ if (weight == 0)
+ return 0;
+ if (weight == weight_sum)
+ return value;
+ if (value <= UINT64_MAX / weight)
+ return value * weight / weight_sum;
+
+ /* Rescale weight and weight_sum to make not the calculation overflow. To satisfy the
+ * following conditions, 'weight_sum' is rounded up but 'weight' is rounded down:
+ * - the sum of scale_by_weight() for all weights must not be larger than the input value,
+ * - scale_by_weight() must not be larger than the ideal value (i.e. calculated with uint128_t). */
+ weight_sum = DIV_ROUND_UP(weight_sum, 2);
+ weight /= 2;
+ }
+}
+
+typedef enum GrowPartitionPhase {
+ /* The zeroth phase: do not touch foreign partitions (i.e. those we don't manage). */
+ PHASE_FOREIGN,
+
+ /* The first phase: we charge partitions which need more (according to constraints) than their weight-based share. */
+ PHASE_OVERCHARGE,
+
+ /* The second phase: we charge partitions which need less (according to constraints) than their weight-based share. */
+ PHASE_UNDERCHARGE,
+
+ /* The third phase: we distribute what remains among the remaining partitions, according to the weights */
+ PHASE_DISTRIBUTE,
+
+ _GROW_PARTITION_PHASE_MAX,
+} GrowPartitionPhase;
+
+static bool context_grow_partitions_phase(
+ Context *context,
+ FreeArea *a,
+ GrowPartitionPhase phase,
+ uint64_t *span,
+ uint64_t *weight_sum) {
+
+ bool try_again = false;
+
+ assert(context);
+ assert(a);
+ assert(span);
+ assert(weight_sum);
+
+ /* Now let's look at the intended weights and adjust them taking the minimum space assignments into
+ * account. i.e. if a partition has a small weight but a high minimum space value set it should not
+ * get any additional room from the left-overs. Similar, if two partitions have the same weight they
+ * should get the same space if possible, even if one has a smaller minimum size than the other. */
+ LIST_FOREACH(partitions, p, context->partitions) {
+
+ /* Look only at partitions associated with this free area, i.e. immediately
+ * preceding it, or allocated into it */
+ if (p->allocated_to_area != a && p->padding_area != a)
+ continue;
+
+ if (p->new_size == UINT64_MAX) {
+ uint64_t share, rsz, xsz;
+ bool charge = false;
+
+ /* Calculate how much this space this partition needs if everyone would get
+ * the weight based share */
+ share = scale_by_weight(*span, p->weight, *weight_sum);
+
+ rsz = partition_min_size(context, p);
+ xsz = partition_max_size(context, p);
+
+ if (phase == PHASE_FOREIGN && PARTITION_IS_FOREIGN(p)) {
+ /* Never change of foreign partitions (i.e. those we don't manage) */
+
+ p->new_size = p->current_size;
+ charge = true;
+
+ } else if (phase == PHASE_OVERCHARGE && rsz > share) {
+ /* This partition needs more than its calculated share. Let's assign
+ * it that, and take this partition out of all calculations and start
+ * again. */
+
+ p->new_size = rsz;
+ charge = try_again = true;
+
+ } else if (phase == PHASE_UNDERCHARGE && xsz < share) {
+ /* This partition accepts less than its calculated
+ * share. Let's assign it that, and take this partition out
+ * of all calculations and start again. */
+
+ p->new_size = xsz;
+ charge = try_again = true;
+
+ } else if (phase == PHASE_DISTRIBUTE) {
+ /* This partition can accept its calculated share. Let's
+ * assign it. There's no need to restart things here since
+ * assigning this shouldn't impact the shares of the other
+ * partitions. */
+
+ assert(share >= rsz);
+ p->new_size = CLAMP(round_down_size(share, context->grain_size), rsz, xsz);
+ charge = true;
+ }
+
+ if (charge) {
+ *span = charge_size(context, *span, p->new_size);
+ *weight_sum = charge_weight(*weight_sum, p->weight);
+ }
+ }
+
+ if (p->new_padding == UINT64_MAX) {
+ uint64_t share, rsz, xsz;
+ bool charge = false;
+
+ share = scale_by_weight(*span, p->padding_weight, *weight_sum);
+
+ rsz = partition_min_padding(p);
+ xsz = partition_max_padding(p);
+
+ if (phase == PHASE_OVERCHARGE && rsz > share) {
+ p->new_padding = rsz;
+ charge = try_again = true;
+ } else if (phase == PHASE_UNDERCHARGE && xsz < share) {
+ p->new_padding = xsz;
+ charge = try_again = true;
+ } else if (phase == PHASE_DISTRIBUTE) {
+ assert(share >= rsz);
+ p->new_padding = CLAMP(round_down_size(share, context->grain_size), rsz, xsz);
+ charge = true;
+ }
+
+ if (charge) {
+ *span = charge_size(context, *span, p->new_padding);
+ *weight_sum = charge_weight(*weight_sum, p->padding_weight);
+ }
+ }
+ }
+
+ return !try_again;
+}
+
+static void context_grow_partition_one(Context *context, FreeArea *a, Partition *p, uint64_t *span) {
+ uint64_t m;
+
+ assert(context);
+ assert(a);
+ assert(p);
+ assert(span);
+
+ if (*span == 0)
+ return;
+
+ if (p->allocated_to_area != a)
+ return;
+
+ if (PARTITION_IS_FOREIGN(p))
+ return;
+
+ assert(p->new_size != UINT64_MAX);
+
+ /* Calculate new size and align. */
+ m = round_down_size(p->new_size + *span, context->grain_size);
+ /* But ensure this doesn't shrink the size. */
+ m = MAX(m, p->new_size);
+ /* And ensure this doesn't exceed the maximum size. */
+ m = MIN(m, partition_max_size(context, p));
+
+ assert(m >= p->new_size);
+
+ *span = charge_size(context, *span, m - p->new_size);
+ p->new_size = m;
+}
+
+static int context_grow_partitions_on_free_area(Context *context, FreeArea *a) {
+ uint64_t weight_sum = 0, span;
+ int r;
+
+ assert(context);
+ assert(a);
+
+ r = context_sum_weights(context, a, &weight_sum);
+ if (r < 0)
+ return r;
+
+ /* Let's calculate the total area covered by this free area and the partition before it */
+ span = a->size;
+ if (a->after) {
+ assert(a->after->offset != UINT64_MAX);
+ assert(a->after->current_size != UINT64_MAX);
+
+ span += round_up_size(a->after->offset + a->after->current_size, context->grain_size) - a->after->offset;
+ }
+
+ for (GrowPartitionPhase phase = 0; phase < _GROW_PARTITION_PHASE_MAX;)
+ if (context_grow_partitions_phase(context, a, phase, &span, &weight_sum))
+ phase++; /* go to the next phase */
+
+ /* We still have space left over? Donate to preceding partition if we have one */
+ if (span > 0 && a->after)
+ context_grow_partition_one(context, a, a->after, &span);
+
+ /* What? Even still some space left (maybe because there was no preceding partition, or it had a
+ * size limit), then let's donate it to whoever wants it. */
+ if (span > 0)
+ LIST_FOREACH(partitions, p, context->partitions) {
+ context_grow_partition_one(context, a, p, &span);
+ if (span == 0)
+ break;
+ }
+
+ /* Yuck, still no one? Then make it padding */
+ if (span > 0 && a->after) {
+ assert(a->after->new_padding != UINT64_MAX);
+ a->after->new_padding += span;
+ }
+
+ return 0;
+}
+
+static int context_grow_partitions(Context *context) {
+ int r;
+
+ assert(context);
+
+ for (size_t i = 0; i < context->n_free_areas; i++) {
+ r = context_grow_partitions_on_free_area(context, context->free_areas[i]);
+ if (r < 0)
+ return r;
+ }
+
+ /* All existing partitions that have no free space after them can't change size */
+ LIST_FOREACH(partitions, p, context->partitions) {
+ if (p->dropped)
+ continue;
+
+ if (!PARTITION_EXISTS(p) || p->padding_area) {
+ /* The algorithm above must have initialized this already */
+ assert(p->new_size != UINT64_MAX);
+ continue;
+ }
+
+ assert(p->new_size == UINT64_MAX);
+ p->new_size = p->current_size;
+
+ assert(p->new_padding == UINT64_MAX);
+ p->new_padding = p->current_padding;
+ }
+
+ return 0;
+}
+
+static void context_place_partitions(Context *context) {
+ uint64_t partno = 0;
+
+ assert(context);
+
+ /* Determine next partition number to assign */
+ LIST_FOREACH(partitions, p, context->partitions) {
+ if (!PARTITION_EXISTS(p))
+ continue;
+
+ assert(p->partno != UINT64_MAX);
+ if (p->partno >= partno)
+ partno = p->partno + 1;
+ }
+
+ for (size_t i = 0; i < context->n_free_areas; i++) {
+ FreeArea *a = context->free_areas[i];
+ _unused_ uint64_t left;
+ uint64_t start;
+
+ if (a->after) {
+ assert(a->after->offset != UINT64_MAX);
+ assert(a->after->new_size != UINT64_MAX);
+ assert(a->after->new_padding != UINT64_MAX);
+
+ start = a->after->offset + a->after->new_size + a->after->new_padding;
+ } else
+ start = context->start;
+
+ start = round_up_size(start, context->grain_size);
+ left = a->size;
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ if (p->allocated_to_area != a)
+ continue;
+
+ p->offset = start;
+ p->partno = partno++;
+
+ assert(left >= p->new_size);
+ start += p->new_size;
+ left -= p->new_size;
+
+ assert(left >= p->new_padding);
+ start += p->new_padding;
+ left -= p->new_padding;
+ }
+ }
+}
+
+static int config_parse_type(
+ const char *unit,
+ const char *filename,
+ unsigned line,
+ const char *section,
+ unsigned section_line,
+ const char *lvalue,
+ int ltype,
+ const char *rvalue,
+ void *data,
+ void *userdata) {
+
+ sd_id128_t *type_uuid = ASSERT_PTR(data);
+ int r;
+
+ assert(rvalue);
+
+ r = gpt_partition_type_uuid_from_string(rvalue, type_uuid);
+ if (r < 0)
+ return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse partition type: %s", rvalue);
+
+ return 0;
+}
+
+static int config_parse_label(
+ const char *unit,
+ const char *filename,
+ unsigned line,
+ const char *section,
+ unsigned section_line,
+ const char *lvalue,
+ int ltype,
+ const char *rvalue,
+ void *data,
+ void *userdata) {
+
+ _cleanup_free_ char *resolved = NULL;
+ char **label = ASSERT_PTR(data);
+ int r;
+
+ assert(rvalue);
+
+ /* Nota bene: the empty label is a totally valid one. Let's hence not follow our usual rule of
+ * assigning the empty string to reset to default here, but really accept it as label to set. */
+
+ r = specifier_printf(rvalue, GPT_LABEL_MAX, system_and_tmp_specifier_table, arg_root, NULL, &resolved);
+ if (r < 0) {
+ log_syntax(unit, LOG_WARNING, filename, line, r,
+ "Failed to expand specifiers in Label=, ignoring: %s", rvalue);
+ return 0;
+ }
+
+ if (!utf8_is_valid(resolved)) {
+ log_syntax(unit, LOG_WARNING, filename, line, 0,
+ "Partition label not valid UTF-8, ignoring: %s", rvalue);
+ return 0;
+ }
+
+ r = gpt_partition_label_valid(resolved);
+ if (r < 0) {
+ log_syntax(unit, LOG_WARNING, filename, line, r,
+ "Failed to check if string is valid as GPT partition label, ignoring: \"%s\" (from \"%s\")",
+ resolved, rvalue);
+ return 0;
+ }
+ if (!r) {
+ log_syntax(unit, LOG_WARNING, filename, line, 0,
+ "Partition label too long for GPT table, ignoring: \"%s\" (from \"%s\")",
+ resolved, rvalue);
+ return 0;
+ }
+
+ free_and_replace(*label, resolved);
+ return 0;
+}
+
+static int config_parse_weight(
+ const char *unit,
+ const char *filename,
+ unsigned line,
+ const char *section,
+ unsigned section_line,
+ const char *lvalue,
+ int ltype,
+ const char *rvalue,
+ void *data,
+ void *userdata) {
+
+ uint32_t *w = ASSERT_PTR(data), v;
+ int r;
+
+ assert(rvalue);
+
+ r = safe_atou32(rvalue, &v);
+ if (r < 0) {
+ log_syntax(unit, LOG_WARNING, filename, line, r,
+ "Failed to parse weight value, ignoring: %s", rvalue);
+ return 0;
+ }
+
+ if (v > 1000U*1000U) {
+ log_syntax(unit, LOG_WARNING, filename, line, 0,
+ "Weight needs to be in range 0…10000000, ignoring: %" PRIu32, v);
+ return 0;
+ }
+
+ *w = v;
+ return 0;
+}
+
+static int config_parse_size4096(
+ const char *unit,
+ const char *filename,
+ unsigned line,
+ const char *section,
+ unsigned section_line,
+ const char *lvalue,
+ int ltype,
+ const char *rvalue,
+ void *data,
+ void *userdata) {
+
+ uint64_t *sz = data, parsed;
+ int r;
+
+ assert(rvalue);
+ assert(data);
+
+ r = parse_size(rvalue, 1024, &parsed);
+ if (r < 0)
+ return log_syntax(unit, LOG_ERR, filename, line, r,
+ "Failed to parse size value: %s", rvalue);
+
+ if (ltype > 0)
+ *sz = round_up_size(parsed, 4096);
+ else if (ltype < 0)
+ *sz = round_down_size(parsed, 4096);
+ else
+ *sz = parsed;
+
+ if (*sz != parsed)
+ log_syntax(unit, LOG_NOTICE, filename, line, r, "Rounded %s= size %" PRIu64 " %s %" PRIu64 ", a multiple of 4096.",
+ lvalue, parsed, special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), *sz);
+
+ return 0;
+}
+
+static int config_parse_fstype(
+ const char *unit,
+ const char *filename,
+ unsigned line,
+ const char *section,
+ unsigned section_line,
+ const char *lvalue,
+ int ltype,
+ const char *rvalue,
+ void *data,
+ void *userdata) {
+
+ char **fstype = ASSERT_PTR(data);
+
+ assert(rvalue);
+
+ if (!filename_is_valid(rvalue))
+ return log_syntax(unit, LOG_ERR, filename, line, 0,
+ "File system type is not valid, refusing: %s", rvalue);
+
+ return free_and_strdup_warn(fstype, rvalue);
+}
+
+static int config_parse_copy_files(
+ const char *unit,
+ const char *filename,
+ unsigned line,
+ const char *section,
+ unsigned section_line,
+ const char *lvalue,
+ int ltype,
+ const char *rvalue,
+ void *data,
+ void *userdata) {
+
+ _cleanup_free_ char *source = NULL, *buffer = NULL, *resolved_source = NULL, *resolved_target = NULL;
+ const char *p = rvalue, *target;
+ Partition *partition = ASSERT_PTR(data);
+ int r;
+
+ assert(rvalue);
+
+ r = extract_first_word(&p, &source, ":", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS);
+ if (r < 0)
+ return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to extract source path: %s", rvalue);
+ if (r == 0) {
+ log_syntax(unit, LOG_WARNING, filename, line, 0, "No argument specified: %s", rvalue);
+ return 0;
+ }
+
+ r = extract_first_word(&p, &buffer, ":", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS);
+ if (r < 0)
+ return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to extract target path: %s", rvalue);
+ if (r == 0)
+ target = source; /* No target, then it's the same as the source */
+ else
+ target = buffer;
+
+ if (!isempty(p))
+ return log_syntax(unit, LOG_ERR, filename, line, SYNTHETIC_ERRNO(EINVAL), "Too many arguments: %s", rvalue);
+
+ r = specifier_printf(source, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &resolved_source);
+ if (r < 0) {
+ log_syntax(unit, LOG_WARNING, filename, line, r,
+ "Failed to expand specifiers in CopyFiles= source, ignoring: %s", rvalue);
+ return 0;
+ }
+
+ r = path_simplify_and_warn(resolved_source, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue);
+ if (r < 0)
+ return 0;
+
+ r = specifier_printf(target, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &resolved_target);
+ if (r < 0) {
+ log_syntax(unit, LOG_WARNING, filename, line, r,
+ "Failed to expand specifiers in CopyFiles= target, ignoring: %s", resolved_target);
+ return 0;
+ }
+
+ r = path_simplify_and_warn(resolved_target, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue);
+ if (r < 0)
+ return 0;
+
+ r = strv_consume_pair(&partition->copy_files, TAKE_PTR(resolved_source), TAKE_PTR(resolved_target));
+ if (r < 0)
+ return log_oom();
+
+ return 0;
+}
+
+static int config_parse_copy_blocks(
+ const char *unit,
+ const char *filename,
+ unsigned line,
+ const char *section,
+ unsigned section_line,
+ const char *lvalue,
+ int ltype,
+ const char *rvalue,
+ void *data,
+ void *userdata) {
+
+ _cleanup_free_ char *d = NULL;
+ Partition *partition = ASSERT_PTR(data);
+ int r;
+
+ assert(rvalue);
+
+ if (isempty(rvalue)) {
+ partition->copy_blocks_path = mfree(partition->copy_blocks_path);
+ partition->copy_blocks_auto = false;
+ return 0;
+ }
+
+ if (streq(rvalue, "auto")) {
+ partition->copy_blocks_path = mfree(partition->copy_blocks_path);
+ partition->copy_blocks_auto = true;
+ return 0;
+ }
+
+ r = specifier_printf(rvalue, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &d);
+ if (r < 0) {
+ log_syntax(unit, LOG_WARNING, filename, line, r,
+ "Failed to expand specifiers in CopyBlocks= source path, ignoring: %s", rvalue);
+ return 0;
+ }
+
+ r = path_simplify_and_warn(d, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue);
+ if (r < 0)
+ return 0;
+
+ free_and_replace(partition->copy_blocks_path, d);
+ partition->copy_blocks_auto = false;
+ return 0;
+}
+
+static int config_parse_make_dirs(
+ const char *unit,
+ const char *filename,
+ unsigned line,
+ const char *section,
+ unsigned section_line,
+ const char *lvalue,
+ int ltype,
+ const char *rvalue,
+ void *data,
+ void *userdata) {
+
+ Partition *partition = ASSERT_PTR(data);
+ const char *p = ASSERT_PTR(rvalue);
+ int r;
+
+ for (;;) {
+ _cleanup_free_ char *word = NULL, *d = NULL;
+
+ r = extract_first_word(&p, &word, NULL, EXTRACT_UNQUOTE);
+ if (r == -ENOMEM)
+ return log_oom();
+ if (r < 0) {
+ log_syntax(unit, LOG_WARNING, filename, line, r, "Invalid syntax, ignoring: %s", rvalue);
+ return 0;
+ }
+ if (r == 0)
+ return 0;
+
+ r = specifier_printf(word, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &d);
+ if (r < 0) {
+ log_syntax(unit, LOG_WARNING, filename, line, r,
+ "Failed to expand specifiers in MakeDirectories= parameter, ignoring: %s", word);
+ continue;
+ }
+
+ r = path_simplify_and_warn(d, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue);
+ if (r < 0)
+ continue;
+
+ r = strv_consume(&partition->make_directories, TAKE_PTR(d));
+ if (r < 0)
+ return log_oom();
+ }
+}
+
+static DEFINE_CONFIG_PARSE_ENUM_WITH_DEFAULT(config_parse_encrypt, encrypt_mode, EncryptMode, ENCRYPT_OFF, "Invalid encryption mode");
+
+static int config_parse_gpt_flags(
+ const char *unit,
+ const char *filename,
+ unsigned line,
+ const char *section,
+ unsigned section_line,
+ const char *lvalue,
+ int ltype,
+ const char *rvalue,
+ void *data,
+ void *userdata) {
+
+ uint64_t *gpt_flags = ASSERT_PTR(data);
+ int r;
+
+ assert(rvalue);
+
+ r = safe_atou64(rvalue, gpt_flags);
+ if (r < 0) {
+ log_syntax(unit, LOG_WARNING, filename, line, r,
+ "Failed to parse Flags= value, ignoring: %s", rvalue);
+ return 0;
+ }
+
+ return 0;
+}
+
+static int config_parse_uuid(
+ const char *unit,
+ const char *filename,
+ unsigned line,
+ const char *section,
+ unsigned section_line,
+ const char *lvalue,
+ int ltype,
+ const char *rvalue,
+ void *data,
+ void *userdata) {
+
+ Partition *partition = ASSERT_PTR(data);
+ int r;
+
+ if (isempty(rvalue)) {
+ partition->new_uuid = SD_ID128_NULL;
+ partition->new_uuid_is_set = false;
+ return 0;
+ }
+
+ if (streq(rvalue, "null")) {
+ partition->new_uuid = SD_ID128_NULL;
+ partition->new_uuid_is_set = true;
+ return 0;
+ }
+
+ r = sd_id128_from_string(rvalue, &partition->new_uuid);
+ if (r < 0) {
+ log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse 128bit ID/UUID, ignoring: %s", rvalue);
+ return 0;
+ }
+
+ partition->new_uuid_is_set = true;
+
+ return 0;
+}
+
+static DEFINE_CONFIG_PARSE_ENUM_WITH_DEFAULT(config_parse_verity, verity_mode, VerityMode, VERITY_OFF, "Invalid verity mode");
+
+static int partition_read_definition(Partition *p, const char *path, const char *const *conf_file_dirs) {
+
+ ConfigTableItem table[] = {
+ { "Partition", "Type", config_parse_type, 0, &p->type_uuid },
+ { "Partition", "Label", config_parse_label, 0, &p->new_label },
+ { "Partition", "UUID", config_parse_uuid, 0, p },
+ { "Partition", "Priority", config_parse_int32, 0, &p->priority },
+ { "Partition", "Weight", config_parse_weight, 0, &p->weight },
+ { "Partition", "PaddingWeight", config_parse_weight, 0, &p->padding_weight },
+ { "Partition", "SizeMinBytes", config_parse_size4096, -1, &p->size_min },
+ { "Partition", "SizeMaxBytes", config_parse_size4096, 1, &p->size_max },
+ { "Partition", "PaddingMinBytes", config_parse_size4096, -1, &p->padding_min },
+ { "Partition", "PaddingMaxBytes", config_parse_size4096, 1, &p->padding_max },
+ { "Partition", "FactoryReset", config_parse_bool, 0, &p->factory_reset },
+ { "Partition", "CopyBlocks", config_parse_copy_blocks, 0, p },
+ { "Partition", "Format", config_parse_fstype, 0, &p->format },
+ { "Partition", "CopyFiles", config_parse_copy_files, 0, p },
+ { "Partition", "MakeDirectories", config_parse_make_dirs, 0, p },
+ { "Partition", "Encrypt", config_parse_encrypt, 0, &p->encrypt },
+ { "Partition", "Verity", config_parse_verity, 0, &p->verity },
+ { "Partition", "VerityMatchKey", config_parse_string, 0, &p->verity_match_key },
+ { "Partition", "Flags", config_parse_gpt_flags, 0, &p->gpt_flags },
+ { "Partition", "ReadOnly", config_parse_tristate, 0, &p->read_only },
+ { "Partition", "NoAuto", config_parse_tristate, 0, &p->no_auto },
+ { "Partition", "GrowFileSystem", config_parse_tristate, 0, &p->growfs },
+ { "Partition", "SplitName", config_parse_string, 0, &p->split_name_format },
+ {}
+ };
+ int r;
+ _cleanup_free_ char *filename = NULL;
+ const char* dropin_dirname;
+
+ r = path_extract_filename(path, &filename);
+ if (r < 0)
+ return log_error_errno(r, "Failed to extract filename from path '%s': %m", path);;
+
+ dropin_dirname = strjoina(filename, ".d");
+
+ r = config_parse_many(
+ STRV_MAKE_CONST(path),
+ conf_file_dirs,
+ dropin_dirname,
+ "Partition\0",
+ config_item_table_lookup, table,
+ CONFIG_PARSE_WARN,
+ p,
+ NULL,
+ &p->drop_in_files);
+ if (r < 0)
+ return r;
+
+ if (p->size_min != UINT64_MAX && p->size_max != UINT64_MAX && p->size_min > p->size_max)
+ return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "SizeMinBytes= larger than SizeMaxBytes=, refusing.");
+
+ if (p->padding_min != UINT64_MAX && p->padding_max != UINT64_MAX && p->padding_min > p->padding_max)
+ return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "PaddingMinBytes= larger than PaddingMaxBytes=, refusing.");
+
+ if (sd_id128_is_null(p->type_uuid))
+ return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "Type= not defined, refusing.");
+
+ if ((p->copy_blocks_path || p->copy_blocks_auto) &&
+ (p->format || !strv_isempty(p->copy_files) || !strv_isempty(p->make_directories)))
+ return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "Format=/CopyFiles=/MakeDirectories= and CopyBlocks= cannot be combined, refusing.");
+
+ if ((!strv_isempty(p->copy_files) || !strv_isempty(p->make_directories)) && streq_ptr(p->format, "swap"))
+ return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "Format=swap and CopyFiles= cannot be combined, refusing.");
+
+ if (!p->format && (!strv_isempty(p->copy_files) || !strv_isempty(p->make_directories) || (p->encrypt != ENCRYPT_OFF && !(p->copy_blocks_path || p->copy_blocks_auto)))) {
+ /* Pick "ext4" as file system if we are configured to copy files or encrypt the device */
+ p->format = strdup("ext4");
+ if (!p->format)
+ return log_oom();
+ }
+
+ if (p->verity != VERITY_OFF || p->encrypt != ENCRYPT_OFF) {
+ r = dlopen_cryptsetup();
+ if (r < 0)
+ return log_syntax(NULL, LOG_ERR, path, 1, r,
+ "libcryptsetup not found, Verity=/Encrypt= are not supported: %m");
+ }
+
+ if (p->verity != VERITY_OFF && !p->verity_match_key)
+ return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "VerityMatchKey= must be set if Verity=%s", verity_mode_to_string(p->verity));
+
+ if (p->verity == VERITY_OFF && p->verity_match_key)
+ return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "VerityMatchKey= can only be set if Verity= is not \"%s\"",
+ verity_mode_to_string(p->verity));
+
+ if (IN_SET(p->verity, VERITY_HASH, VERITY_SIG) &&
+ (p->copy_files || p->copy_blocks_path || p->copy_blocks_auto || p->format || p->make_directories))
+ return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "CopyBlocks=/CopyFiles=/Format=/MakeDirectories= cannot be used with Verity=%s",
+ verity_mode_to_string(p->verity));
+
+ if (p->verity != VERITY_OFF && p->encrypt != ENCRYPT_OFF)
+ return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "Encrypting verity hash/data partitions is not supported");
+
+ if (p->verity == VERITY_SIG && !arg_private_key)
+ return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "Verity signature partition requested but no private key provided (--private-key=)");
+
+ if (p->verity == VERITY_SIG && !arg_certificate)
+ return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "Verity signature partition requested but no PEM certificate provided (--certificate=)");
+
+ if (p->verity == VERITY_SIG && (p->size_min != UINT64_MAX || p->size_max != UINT64_MAX))
+ return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "SizeMinBytes=/SizeMaxBytes= cannot be used with Verity=%s",
+ verity_mode_to_string(p->verity));
+
+ /* Verity partitions are read only, let's imply the RO flag hence, unless explicitly configured otherwise. */
+ if ((gpt_partition_type_is_root_verity(p->type_uuid) ||
+ gpt_partition_type_is_usr_verity(p->type_uuid)) &&
+ p->read_only < 0)
+ p->read_only = true;
+
+ /* Default to "growfs" on, unless read-only */
+ if (gpt_partition_type_knows_growfs(p->type_uuid) &&
+ p->read_only <= 0)
+ p->growfs = true;
+
+ if (!p->split_name_format) {
+ char *s = strdup("%t");
+ if (!s)
+ return log_oom();
+
+ p->split_name_format = s;
+ } else if (streq(p->split_name_format, "-"))
+ p->split_name_format = mfree(p->split_name_format);
+
+ return 0;
+}
+
+static int find_verity_sibling(Context *context, Partition *p, VerityMode mode, Partition **ret) {
+ Partition *s = NULL;
+
+ assert(p);
+ assert(p->verity != VERITY_OFF);
+ assert(p->verity_match_key);
+ assert(mode != VERITY_OFF);
+ assert(p->verity != mode);
+ assert(ret);
+
+ /* Try to find the matching sibling partition of the given type for a verity partition. For a data
+ * partition, this is the corresponding hash partition with the same verity name (and vice versa for
+ * the hash partition). */
+
+ LIST_FOREACH(partitions, q, context->partitions) {
+ if (p == q)
+ continue;
+
+ if (q->verity != mode)
+ continue;
+
+ assert(q->verity_match_key);
+
+ if (!streq(p->verity_match_key, q->verity_match_key))
+ continue;
+
+ if (s)
+ return -ENOTUNIQ;
+
+ s = q;
+ }
+
+ if (!s)
+ return -ENXIO;
+
+ *ret = s;
+
+ return 0;
+}
+
+static int context_read_definitions(
+ Context *context,
+ char **directories,
+ const char *root) {
+
+ _cleanup_strv_free_ char **files = NULL;
+ Partition *last = NULL;
+ int r;
+ const char *const *dirs;
+
+ assert(context);
+
+ dirs = (const char* const*) (directories ?: CONF_PATHS_STRV("repart.d"));
+
+ r = conf_files_list_strv(&files, ".conf", directories ? NULL : root, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, dirs);
+ if (r < 0)
+ return log_error_errno(r, "Failed to enumerate *.conf files: %m");
+
+ STRV_FOREACH(f, files) {
+ _cleanup_(partition_freep) Partition *p = NULL;
+
+ p = partition_new();
+ if (!p)
+ return log_oom();
+
+ p->definition_path = strdup(*f);
+ if (!p->definition_path)
+ return log_oom();
+
+ r = partition_read_definition(p, *f, dirs);
+ if (r < 0)
+ return r;
+
+ LIST_INSERT_AFTER(partitions, context->partitions, last, p);
+ last = TAKE_PTR(p);
+ context->n_partitions++;
+ }
+
+ /* Check that each configured verity hash/data partition has a matching verity data/hash partition. */
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ if (p->verity == VERITY_OFF)
+ continue;
+
+ for (VerityMode mode = VERITY_OFF + 1; mode < _VERITY_MODE_MAX; mode++) {
+ Partition *q = NULL;
+
+ if (p->verity == mode)
+ continue;
+
+ if (p->siblings[mode])
+ continue;
+
+ r = find_verity_sibling(context, p, mode, &q);
+ if (r == -ENXIO) {
+ if (mode != VERITY_SIG)
+ return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "Missing verity %s partition for verity %s partition with VerityMatchKey=%s",
+ verity_mode_to_string(mode), verity_mode_to_string(p->verity), p->verity_match_key);
+ } else if (r == -ENOTUNIQ)
+ return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "Multiple verity %s partitions found for verity %s partition with VerityMatchKey=%s",
+ verity_mode_to_string(mode), verity_mode_to_string(p->verity), p->verity_match_key);
+ else if (r < 0)
+ return log_syntax(NULL, LOG_ERR, p->definition_path, 1, r,
+ "Failed to find verity %s partition for verity %s partition with VerityMatchKey=%s",
+ verity_mode_to_string(mode), verity_mode_to_string(p->verity), p->verity_match_key);
+
+ if (q) {
+ if (q->priority != p->priority)
+ return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL),
+ "Priority mismatch (%i != %i) for verity sibling partitions with VerityMatchKey=%s",
+ p->priority, q->priority, p->verity_match_key);
+
+ p->siblings[mode] = q;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int determine_current_padding(
+ struct fdisk_context *c,
+ struct fdisk_table *t,
+ struct fdisk_partition *p,
+ uint64_t secsz,
+ uint64_t grainsz,
+ uint64_t *ret) {
+
+ size_t n_partitions;
+ uint64_t offset, next = UINT64_MAX;
+
+ assert(c);
+ assert(t);
+ assert(p);
+
+ if (!fdisk_partition_has_end(p))
+ return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition has no end!");
+
+ offset = fdisk_partition_get_end(p);
+ assert(offset < UINT64_MAX);
+ offset++; /* The end is one sector before the next partition or padding. */
+ assert(offset < UINT64_MAX / secsz);
+ offset *= secsz;
+
+ n_partitions = fdisk_table_get_nents(t);
+ for (size_t i = 0; i < n_partitions; i++) {
+ struct fdisk_partition *q;
+ uint64_t start;
+
+ q = fdisk_table_get_partition(t, i);
+ if (!q)
+ return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m");
+
+ if (fdisk_partition_is_used(q) <= 0)
+ continue;
+
+ if (!fdisk_partition_has_start(q))
+ continue;
+
+ start = fdisk_partition_get_start(q);
+ assert(start < UINT64_MAX / secsz);
+ start *= secsz;
+
+ if (start >= offset && (next == UINT64_MAX || next > start))
+ next = start;
+ }
+
+ if (next == UINT64_MAX) {
+ /* No later partition? In that case check the end of the usable area */
+ next = fdisk_get_last_lba(c);
+ assert(next < UINT64_MAX);
+ next++; /* The last LBA is one sector before the end */
+
+ assert(next < UINT64_MAX / secsz);
+ next *= secsz;
+
+ if (offset > next)
+ return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end.");
+ }
+
+ assert(next >= offset);
+ offset = round_up_size(offset, grainsz);
+ next = round_down_size(next, grainsz);
+
+ *ret = LESS_BY(next, offset); /* Saturated subtraction, rounding might have fucked things up */
+ return 0;
+}
+
+static int fdisk_ask_cb(struct fdisk_context *c, struct fdisk_ask *ask, void *data) {
+ _cleanup_free_ char *ids = NULL;
+ int r;
+
+ if (fdisk_ask_get_type(ask) != FDISK_ASKTYPE_STRING)
+ return -EINVAL;
+
+ ids = new(char, SD_ID128_UUID_STRING_MAX);
+ if (!ids)
+ return -ENOMEM;
+
+ r = fdisk_ask_string_set_result(ask, sd_id128_to_uuid_string(*(sd_id128_t*) data, ids));
+ if (r < 0)
+ return r;
+
+ TAKE_PTR(ids);
+ return 0;
+}
+
+static int fdisk_set_disklabel_id_by_uuid(struct fdisk_context *c, sd_id128_t id) {
+ int r;
+
+ r = fdisk_set_ask(c, fdisk_ask_cb, &id);
+ if (r < 0)
+ return r;
+
+ r = fdisk_set_disklabel_id(c);
+ if (r < 0)
+ return r;
+
+ return fdisk_set_ask(c, NULL, NULL);
+}
+
+static int derive_uuid(sd_id128_t base, const char *token, sd_id128_t *ret) {
+ union {
+ uint8_t md[SHA256_DIGEST_SIZE];
+ sd_id128_t id;
+ } result;
+
+ assert(token);
+ assert(ret);
+
+ /* Derive a new UUID from the specified UUID in a stable and reasonably safe way. Specifically, we
+ * calculate the HMAC-SHA256 of the specified token string, keyed by the supplied base (typically the
+ * machine ID). We use the machine ID as key (and not as cleartext!) of the HMAC operation since it's
+ * the machine ID we don't want to leak. */
+
+ hmac_sha256(base.bytes, sizeof(base.bytes), token, strlen(token), result.md);
+
+ /* Take the first half, mark it as v4 UUID */
+ assert_cc(sizeof(result.md) == sizeof(result.id) * 2);
+ *ret = id128_make_v4_uuid(result.id);
+ return 0;
+}
+
+static int context_open_and_lock_backing_fd(int *backing_fd, const char *node) {
+ _cleanup_close_ int fd = -EBADF;
+
+ assert(backing_fd);
+ assert(node);
+
+ if (*backing_fd >= 0)
+ return 0;
+
+ fd = open(node, O_RDONLY|O_CLOEXEC);
+ if (fd < 0)
+ return log_error_errno(errno, "Failed to open device '%s': %m", node);
+
+ /* Tell udev not to interfere while we are processing the device */
+ if (flock(fd, arg_dry_run ? LOCK_SH : LOCK_EX) < 0)
+ return log_error_errno(errno, "Failed to lock device '%s': %m", node);
+
+ log_debug("Device %s opened and locked.", node);
+ *backing_fd = TAKE_FD(fd);
+ return 1;
+}
+
+static int context_load_partition_table(
+ Context *context,
+ const char *node,
+ int *backing_fd) {
+
+ _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL;
+ _cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL;
+ uint64_t left_boundary = UINT64_MAX, first_lba, last_lba, nsectors;
+ _cleanup_free_ char *disk_uuid_string = NULL;
+ bool from_scratch = false;
+ sd_id128_t disk_uuid;
+ size_t n_partitions;
+ unsigned long secsz;
+ uint64_t grainsz;
+ int r;
+
+ assert(context);
+ assert(node);
+ assert(backing_fd);
+ assert(!context->fdisk_context);
+ assert(!context->free_areas);
+ assert(context->start == UINT64_MAX);
+ assert(context->end == UINT64_MAX);
+ assert(context->total == UINT64_MAX);
+
+ c = fdisk_new_context();
+ if (!c)
+ return log_oom();
+
+ /* libfdisk doesn't have an API to operate on arbitrary fds, hence reopen the fd going via the
+ * /proc/self/fd/ magic path if we have an existing fd. Open the original file otherwise. */
+ if (*backing_fd < 0)
+ r = fdisk_assign_device(c, node, arg_dry_run);
+ else
+ r = fdisk_assign_device(c, FORMAT_PROC_FD_PATH(*backing_fd), arg_dry_run);
+ if (r == -EINVAL && arg_size_auto) {
+ struct stat st;
+
+ /* libfdisk returns EINVAL if opening a file of size zero. Let's check for that, and accept
+ * it if automatic sizing is requested. */
+
+ if (*backing_fd < 0)
+ r = stat(node, &st);
+ else
+ r = fstat(*backing_fd, &st);
+ if (r < 0)
+ return log_error_errno(errno, "Failed to stat block device '%s': %m", node);
+
+ if (S_ISREG(st.st_mode) && st.st_size == 0) {
+ /* User the fallback values if we have no better idea */
+ context->sector_size = 512;
+ context->grain_size = 4096;
+ return /* from_scratch = */ true;
+ }
+
+ r = -EINVAL;
+ }
+ if (r < 0)
+ return log_error_errno(r, "Failed to open device '%s': %m", node);
+
+ if (*backing_fd < 0) {
+ /* If we have no fd referencing the device yet, make a copy of the fd now, so that we have one */
+ r = context_open_and_lock_backing_fd(backing_fd, FORMAT_PROC_FD_PATH(fdisk_get_devfd(c)));
+ if (r < 0)
+ return r;
+ }
+
+ /* The offsets/sizes libfdisk returns to us will be in multiple of the sector size of the
+ * device. This is typically 512, and sometimes 4096. Let's query libfdisk once for it, and then use
+ * it for all our needs. Note that the values we use ourselves always are in bytes though, thus mean
+ * the same thing universally. Also note that regardless what kind of sector size is in use we'll
+ * place partitions at multiples of 4K. */
+ secsz = fdisk_get_sector_size(c);
+
+ /* Insist on a power of two, and that it's a multiple of 512, i.e. the traditional sector size. */
+ if (secsz < 512 || !ISPOWEROF2(secsz))
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Sector size %lu is not a power of two larger than 512? Refusing.", secsz);
+
+ /* Use at least 4K, and ensure it's a multiple of the sector size, regardless if that is smaller or
+ * larger */
+ grainsz = secsz < 4096 ? 4096 : secsz;
+
+ log_debug("Sector size of device is %lu bytes. Using grain size of %" PRIu64 ".", secsz, grainsz);
+
+ switch (arg_empty) {
+
+ case EMPTY_REFUSE:
+ /* Refuse empty disks, insist on an existing GPT partition table */
+ if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT))
+ return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has no GPT disk label, not repartitioning.", node);
+
+ break;
+
+ case EMPTY_REQUIRE:
+ /* Require an empty disk, refuse any existing partition table */
+ r = fdisk_has_label(c);
+ if (r < 0)
+ return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node);
+ if (r > 0)
+ return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s already has a disk label, refusing.", node);
+
+ from_scratch = true;
+ break;
+
+ case EMPTY_ALLOW:
+ /* Allow both an empty disk and an existing partition table, but only GPT */
+ r = fdisk_has_label(c);
+ if (r < 0)
+ return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node);
+ if (r > 0) {
+ if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT))
+ return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has non-GPT disk label, not repartitioning.", node);
+ } else
+ from_scratch = true;
+
+ break;
+
+ case EMPTY_FORCE:
+ case EMPTY_CREATE:
+ /* Always reinitiaize the disk, don't consider what there was on the disk before */
+ from_scratch = true;
+ break;
+ }
+
+ if (from_scratch) {
+ r = fdisk_create_disklabel(c, "gpt");
+ if (r < 0)
+ return log_error_errno(r, "Failed to create GPT disk label: %m");
+
+ r = derive_uuid(context->seed, "disk-uuid", &disk_uuid);
+ if (r < 0)
+ return log_error_errno(r, "Failed to acquire disk GPT uuid: %m");
+
+ r = fdisk_set_disklabel_id_by_uuid(c, disk_uuid);
+ if (r < 0)
+ return log_error_errno(r, "Failed to set GPT disk label: %m");
+
+ goto add_initial_free_area;
+ }
+
+ r = fdisk_get_disklabel_id(c, &disk_uuid_string);
+ if (r < 0)
+ return log_error_errno(r, "Failed to get current GPT disk label UUID: %m");
+
+ r = sd_id128_from_string(disk_uuid_string, &disk_uuid);
+ if (r < 0)
+ return log_error_errno(r, "Failed to parse current GPT disk label UUID: %m");
+
+ if (sd_id128_is_null(disk_uuid)) {
+ r = derive_uuid(context->seed, "disk-uuid", &disk_uuid);
+ if (r < 0)
+ return log_error_errno(r, "Failed to acquire disk GPT uuid: %m");
+
+ r = fdisk_set_disklabel_id(c);
+ if (r < 0)
+ return log_error_errno(r, "Failed to set GPT disk label: %m");
+ }
+
+ r = fdisk_get_partitions(c, &t);
+ if (r < 0)
+ return log_error_errno(r, "Failed to acquire partition table: %m");
+
+ n_partitions = fdisk_table_get_nents(t);
+ for (size_t i = 0; i < n_partitions; i++) {
+ _cleanup_free_ char *label_copy = NULL;
+ Partition *last = NULL;
+ struct fdisk_partition *p;
+ struct fdisk_parttype *pt;
+ const char *pts, *ids, *label;
+ uint64_t sz, start;
+ bool found = false;
+ sd_id128_t ptid, id;
+ size_t partno;
+
+ p = fdisk_table_get_partition(t, i);
+ if (!p)
+ return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m");
+
+ if (fdisk_partition_is_used(p) <= 0)
+ continue;
+
+ if (fdisk_partition_has_start(p) <= 0 ||
+ fdisk_partition_has_size(p) <= 0 ||
+ fdisk_partition_has_partno(p) <= 0)
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number.");
+
+ pt = fdisk_partition_get_type(p);
+ if (!pt)
+ return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition: %m");
+
+ pts = fdisk_parttype_get_string(pt);
+ if (!pts)
+ return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition as string: %m");
+
+ r = sd_id128_from_string(pts, &ptid);
+ if (r < 0)
+ return log_error_errno(r, "Failed to parse partition type UUID %s: %m", pts);
+
+ ids = fdisk_partition_get_uuid(p);
+ if (!ids)
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a UUID.");
+
+ r = sd_id128_from_string(ids, &id);
+ if (r < 0)
+ return log_error_errno(r, "Failed to parse partition UUID %s: %m", ids);
+
+ label = fdisk_partition_get_name(p);
+ if (!isempty(label)) {
+ label_copy = strdup(label);
+ if (!label_copy)
+ return log_oom();
+ }
+
+ sz = fdisk_partition_get_size(p);
+ assert(sz <= UINT64_MAX/secsz);
+ sz *= secsz;
+
+ start = fdisk_partition_get_start(p);
+ assert(start <= UINT64_MAX/secsz);
+ start *= secsz;
+
+ partno = fdisk_partition_get_partno(p);
+
+ if (left_boundary == UINT64_MAX || left_boundary > start)
+ left_boundary = start;
+
+ /* Assign this existing partition to the first partition of the right type that doesn't have
+ * an existing one assigned yet. */
+ LIST_FOREACH(partitions, pp, context->partitions) {
+ last = pp;
+
+ if (!sd_id128_equal(pp->type_uuid, ptid))
+ continue;
+
+ if (!pp->current_partition) {
+ pp->current_uuid = id;
+ pp->current_size = sz;
+ pp->offset = start;
+ pp->partno = partno;
+ pp->current_label = TAKE_PTR(label_copy);
+
+ pp->current_partition = p;
+ fdisk_ref_partition(p);
+
+ r = determine_current_padding(c, t, p, secsz, grainsz, &pp->current_padding);
+ if (r < 0)
+ return r;
+
+ if (pp->current_padding > 0) {
+ r = context_add_free_area(context, pp->current_padding, pp);
+ if (r < 0)
+ return r;
+ }
+
+ found = true;
+ break;
+ }
+ }
+
+ /* If we have no matching definition, create a new one. */
+ if (!found) {
+ _cleanup_(partition_freep) Partition *np = NULL;
+
+ np = partition_new();
+ if (!np)
+ return log_oom();
+
+ np->current_uuid = id;
+ np->type_uuid = ptid;
+ np->current_size = sz;
+ np->offset = start;
+ np->partno = partno;
+ np->current_label = TAKE_PTR(label_copy);
+
+ np->current_partition = p;
+ fdisk_ref_partition(p);
+
+ r = determine_current_padding(c, t, p, secsz, grainsz, &np->current_padding);
+ if (r < 0)
+ return r;
+
+ if (np->current_padding > 0) {
+ r = context_add_free_area(context, np->current_padding, np);
+ if (r < 0)
+ return r;
+ }
+
+ LIST_INSERT_AFTER(partitions, context->partitions, last, TAKE_PTR(np));
+ context->n_partitions++;
+ }
+ }
+
+add_initial_free_area:
+ nsectors = fdisk_get_nsectors(c);
+ assert(nsectors <= UINT64_MAX/secsz);
+ nsectors *= secsz;
+
+ first_lba = fdisk_get_first_lba(c);
+ assert(first_lba <= UINT64_MAX/secsz);
+ first_lba *= secsz;
+
+ last_lba = fdisk_get_last_lba(c);
+ assert(last_lba < UINT64_MAX);
+ last_lba++;
+ assert(last_lba <= UINT64_MAX/secsz);
+ last_lba *= secsz;
+
+ assert(last_lba >= first_lba);
+
+ if (left_boundary == UINT64_MAX) {
+ /* No partitions at all? Then the whole disk is up for grabs. */
+
+ first_lba = round_up_size(first_lba, grainsz);
+ last_lba = round_down_size(last_lba, grainsz);
+
+ if (last_lba > first_lba) {
+ r = context_add_free_area(context, last_lba - first_lba, NULL);
+ if (r < 0)
+ return r;
+ }
+ } else {
+ /* Add space left of first partition */
+ assert(left_boundary >= first_lba);
+
+ first_lba = round_up_size(first_lba, grainsz);
+ left_boundary = round_down_size(left_boundary, grainsz);
+ last_lba = round_down_size(last_lba, grainsz);
+
+ if (left_boundary > first_lba) {
+ r = context_add_free_area(context, left_boundary - first_lba, NULL);
+ if (r < 0)
+ return r;
+ }
+ }
+
+ context->start = first_lba;
+ context->end = last_lba;
+ context->total = nsectors;
+ context->sector_size = secsz;
+ context->grain_size = grainsz;
+ context->fdisk_context = TAKE_PTR(c);
+
+ return from_scratch;
+}
+
+static void context_unload_partition_table(Context *context) {
+ assert(context);
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+
+ /* Entirely remove partitions that have no configuration */
+ if (PARTITION_IS_FOREIGN(p)) {
+ partition_unlink_and_free(context, p);
+ continue;
+ }
+
+ /* Otherwise drop all data we read off the block device and everything we might have
+ * calculated based on it */
+
+ p->dropped = false;
+ p->current_size = UINT64_MAX;
+ p->new_size = UINT64_MAX;
+ p->current_padding = UINT64_MAX;
+ p->new_padding = UINT64_MAX;
+ p->partno = UINT64_MAX;
+ p->offset = UINT64_MAX;
+
+ if (p->current_partition) {
+ fdisk_unref_partition(p->current_partition);
+ p->current_partition = NULL;
+ }
+
+ if (p->new_partition) {
+ fdisk_unref_partition(p->new_partition);
+ p->new_partition = NULL;
+ }
+
+ p->padding_area = NULL;
+ p->allocated_to_area = NULL;
+
+ p->current_uuid = SD_ID128_NULL;
+ p->current_label = mfree(p->current_label);
+ }
+
+ context->start = UINT64_MAX;
+ context->end = UINT64_MAX;
+ context->total = UINT64_MAX;
+
+ if (context->fdisk_context) {
+ fdisk_unref_context(context->fdisk_context);
+ context->fdisk_context = NULL;
+ }
+
+ context_free_free_areas(context);
+}
+
+static int format_size_change(uint64_t from, uint64_t to, char **ret) {
+ char *t;
+
+ if (from != UINT64_MAX) {
+ if (from == to || to == UINT64_MAX)
+ t = strdup(FORMAT_BYTES(from));
+ else
+ t = strjoin(FORMAT_BYTES(from), " ", special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), " ", FORMAT_BYTES(to));
+ } else if (to != UINT64_MAX)
+ t = strjoin(special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), " ", FORMAT_BYTES(to));
+ else {
+ *ret = NULL;
+ return 0;
+ }
+
+ if (!t)
+ return log_oom();
+
+ *ret = t;
+ return 1;
+}
+
+static const char *partition_label(const Partition *p) {
+ assert(p);
+
+ if (p->new_label)
+ return p->new_label;
+
+ if (p->current_label)
+ return p->current_label;
+
+ return gpt_partition_type_uuid_to_string(p->type_uuid);
+}
+
+static int context_dump_partitions(Context *context, const char *node) {
+ _cleanup_(table_unrefp) Table *t = NULL;
+ uint64_t sum_padding = 0, sum_size = 0;
+ int r;
+ const size_t roothash_col = 13, dropin_files_col = 14;
+ bool has_roothash = false, has_dropin_files = false;
+
+ if ((arg_json_format_flags & JSON_FORMAT_OFF) && context->n_partitions == 0) {
+ log_info("Empty partition table.");
+ return 0;
+ }
+
+ t = table_new("type", "label", "uuid", "file", "node", "offset", "old size", "raw size", "size", "old padding", "raw padding", "padding", "activity", "roothash", "drop-in files");
+ if (!t)
+ return log_oom();
+
+ if (!DEBUG_LOGGING) {
+ if (arg_json_format_flags & JSON_FORMAT_OFF)
+ (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4,
+ (size_t) 8, (size_t) 11, roothash_col, dropin_files_col);
+ else
+ (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4,
+ (size_t) 5, (size_t) 6, (size_t) 7, (size_t) 9, (size_t) 10,
+ (size_t) 12, roothash_col, dropin_files_col);
+ }
+
+ (void) table_set_align_percent(t, table_get_cell(t, 0, 5), 100);
+ (void) table_set_align_percent(t, table_get_cell(t, 0, 6), 100);
+ (void) table_set_align_percent(t, table_get_cell(t, 0, 7), 100);
+ (void) table_set_align_percent(t, table_get_cell(t, 0, 8), 100);
+ (void) table_set_align_percent(t, table_get_cell(t, 0, 9), 100);
+ (void) table_set_align_percent(t, table_get_cell(t, 0, 10), 100);
+ (void) table_set_align_percent(t, table_get_cell(t, 0, 11), 100);
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ _cleanup_free_ char *size_change = NULL, *padding_change = NULL, *partname = NULL, *rh = NULL;
+ char uuid_buffer[SD_ID128_UUID_STRING_MAX];
+ const char *label, *activity = NULL;
+
+ if (p->dropped)
+ continue;
+
+ if (p->current_size == UINT64_MAX)
+ activity = "create";
+ else if (p->current_size != p->new_size)
+ activity = "resize";
+
+ label = partition_label(p);
+ partname = p->partno != UINT64_MAX ? fdisk_partname(node, p->partno+1) : NULL;
+
+ r = format_size_change(p->current_size, p->new_size, &size_change);
+ if (r < 0)
+ return r;
+
+ r = format_size_change(p->current_padding, p->new_padding, &padding_change);
+ if (r < 0)
+ return r;
+
+ if (p->new_size != UINT64_MAX)
+ sum_size += p->new_size;
+ if (p->new_padding != UINT64_MAX)
+ sum_padding += p->new_padding;
+
+ if (p->verity == VERITY_HASH) {
+ rh = p->roothash ? hexmem(p->roothash, p->roothash_size) : strdup("TBD");
+ if (!rh)
+ return log_oom();
+ }
+
+ r = table_add_many(
+ t,
+ TABLE_STRING, gpt_partition_type_uuid_to_string_harder(p->type_uuid, uuid_buffer),
+ TABLE_STRING, empty_to_null(label) ?: "-", TABLE_SET_COLOR, empty_to_null(label) ? NULL : ansi_grey(),
+ TABLE_UUID, p->new_uuid_is_set ? p->new_uuid : p->current_uuid,
+ TABLE_STRING, p->definition_path ? basename(p->definition_path) : "-", TABLE_SET_COLOR, p->definition_path ? NULL : ansi_grey(),
+ TABLE_STRING, partname ?: "-", TABLE_SET_COLOR, partname ? NULL : ansi_highlight(),
+ TABLE_UINT64, p->offset,
+ TABLE_UINT64, p->current_size == UINT64_MAX ? 0 : p->current_size,
+ TABLE_UINT64, p->new_size,
+ TABLE_STRING, size_change, TABLE_SET_COLOR, !p->partitions_next && sum_size > 0 ? ansi_underline() : NULL,
+ TABLE_UINT64, p->current_padding == UINT64_MAX ? 0 : p->current_padding,
+ TABLE_UINT64, p->new_padding,
+ TABLE_STRING, padding_change, TABLE_SET_COLOR, !p->partitions_next && sum_padding > 0 ? ansi_underline() : NULL,
+ TABLE_STRING, activity ?: "unchanged",
+ TABLE_STRING, rh,
+ TABLE_STRV, p->drop_in_files);
+ if (r < 0)
+ return table_log_add_error(r);
+
+ has_roothash = has_roothash || !isempty(rh);
+ has_dropin_files = has_dropin_files || !strv_isempty(p->drop_in_files);
+ }
+
+ if ((arg_json_format_flags & JSON_FORMAT_OFF) && (sum_padding > 0 || sum_size > 0)) {
+ const char *a, *b;
+
+ a = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", FORMAT_BYTES(sum_size));
+ b = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", FORMAT_BYTES(sum_padding));
+
+ r = table_add_many(
+ t,
+ TABLE_EMPTY,
+ TABLE_EMPTY,
+ TABLE_EMPTY,
+ TABLE_EMPTY,
+ TABLE_EMPTY,
+ TABLE_EMPTY,
+ TABLE_EMPTY,
+ TABLE_EMPTY,
+ TABLE_STRING, a,
+ TABLE_EMPTY,
+ TABLE_EMPTY,
+ TABLE_STRING, b,
+ TABLE_EMPTY,
+ TABLE_EMPTY,
+ TABLE_EMPTY);
+ if (r < 0)
+ return table_log_add_error(r);
+ }
+
+ if (!has_roothash) {
+ r = table_hide_column_from_display(t, roothash_col);
+ if (r < 0)
+ return log_error_errno(r, "Failed to set columns to display: %m");
+ }
+
+ if (!has_dropin_files) {
+ r = table_hide_column_from_display(t, dropin_files_col);
+ if (r < 0)
+ return log_error_errno(r, "Failed to set columns to display: %m");
+ }
+
+ return table_print_with_pager(t, arg_json_format_flags, arg_pager_flags, arg_legend);
+}
+
+static void context_bar_char_process_partition(
+ Context *context,
+ Partition *bar[],
+ size_t n,
+ Partition *p,
+ size_t *ret_start) {
+
+ uint64_t from, to, total;
+ size_t x, y;
+
+ assert(context);
+ assert(bar);
+ assert(n > 0);
+ assert(p);
+
+ if (p->dropped)
+ return;
+
+ assert(p->offset != UINT64_MAX);
+ assert(p->new_size != UINT64_MAX);
+
+ from = p->offset;
+ to = from + p->new_size;
+
+ assert(context->total > 0);
+ total = context->total;
+
+ assert(from <= total);
+ x = from * n / total;
+
+ assert(to <= total);
+ y = to * n / total;
+
+ assert(x <= y);
+ assert(y <= n);
+
+ for (size_t i = x; i < y; i++)
+ bar[i] = p;
+
+ *ret_start = x;
+}
+
+static int partition_hint(const Partition *p, const char *node, char **ret) {
+ _cleanup_free_ char *buf = NULL;
+ const char *label;
+ sd_id128_t id;
+
+ /* Tries really hard to find a suitable description for this partition */
+
+ if (p->definition_path) {
+ buf = strdup(basename(p->definition_path));
+ goto done;
+ }
+
+ label = partition_label(p);
+ if (!isempty(label)) {
+ buf = strdup(label);
+ goto done;
+ }
+
+ if (p->partno != UINT64_MAX) {
+ buf = fdisk_partname(node, p->partno+1);
+ goto done;
+ }
+
+ if (p->new_uuid_is_set)
+ id = p->new_uuid;
+ else if (!sd_id128_is_null(p->current_uuid))
+ id = p->current_uuid;
+ else
+ id = p->type_uuid;
+
+ buf = strdup(SD_ID128_TO_UUID_STRING(id));
+
+done:
+ if (!buf)
+ return -ENOMEM;
+
+ *ret = TAKE_PTR(buf);
+ return 0;
+}
+
+static int context_dump_partition_bar(Context *context, const char *node) {
+ _cleanup_free_ Partition **bar = NULL;
+ _cleanup_free_ size_t *start_array = NULL;
+ Partition *last = NULL;
+ bool z = false;
+ size_t c, j = 0;
+
+ assert_se((c = columns()) >= 2);
+ c -= 2; /* We do not use the leftmost and rightmost character cell */
+
+ bar = new0(Partition*, c);
+ if (!bar)
+ return log_oom();
+
+ start_array = new(size_t, context->n_partitions);
+ if (!start_array)
+ return log_oom();
+
+ LIST_FOREACH(partitions, p, context->partitions)
+ context_bar_char_process_partition(context, bar, c, p, start_array + j++);
+
+ putc(' ', stdout);
+
+ for (size_t i = 0; i < c; i++) {
+ if (bar[i]) {
+ if (last != bar[i])
+ z = !z;
+
+ fputs(z ? ansi_green() : ansi_yellow(), stdout);
+ fputs(special_glyph(SPECIAL_GLYPH_DARK_SHADE), stdout);
+ } else {
+ fputs(ansi_normal(), stdout);
+ fputs(special_glyph(SPECIAL_GLYPH_LIGHT_SHADE), stdout);
+ }
+
+ last = bar[i];
+ }
+
+ fputs(ansi_normal(), stdout);
+ putc('\n', stdout);
+
+ for (size_t i = 0; i < context->n_partitions; i++) {
+ _cleanup_free_ char **line = NULL;
+
+ line = new0(char*, c);
+ if (!line)
+ return log_oom();
+
+ j = 0;
+ LIST_FOREACH(partitions, p, context->partitions) {
+ _cleanup_free_ char *d = NULL;
+ j++;
+
+ if (i < context->n_partitions - j) {
+
+ if (line[start_array[j-1]]) {
+ const char *e;
+
+ /* Upgrade final corner to the right with a branch to the right */
+ e = startswith(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_RIGHT));
+ if (e) {
+ d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), e);
+ if (!d)
+ return log_oom();
+ }
+ }
+
+ if (!d) {
+ d = strdup(special_glyph(SPECIAL_GLYPH_TREE_VERTICAL));
+ if (!d)
+ return log_oom();
+ }
+
+ } else if (i == context->n_partitions - j) {
+ _cleanup_free_ char *hint = NULL;
+
+ (void) partition_hint(p, node, &hint);
+
+ if (streq_ptr(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_VERTICAL)))
+ d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), " ", strna(hint));
+ else
+ d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_RIGHT), " ", strna(hint));
+
+ if (!d)
+ return log_oom();
+ }
+
+ if (d)
+ free_and_replace(line[start_array[j-1]], d);
+ }
+
+ putc(' ', stdout);
+
+ j = 0;
+ while (j < c) {
+ if (line[j]) {
+ fputs(line[j], stdout);
+ j += utf8_console_width(line[j]);
+ } else {
+ putc(' ', stdout);
+ j++;
+ }
+ }
+
+ putc('\n', stdout);
+
+ for (j = 0; j < c; j++)
+ free(line[j]);
+ }
+
+ return 0;
+}
+
+static bool context_has_roothash(Context *context) {
+ LIST_FOREACH(partitions, p, context->partitions)
+ if (p->roothash)
+ return true;
+
+ return false;
+}
+
+static int context_dump(Context *context, const char *node, bool late) {
+ int r;
+
+ assert(context);
+ assert(node);
+
+ if (arg_pretty == 0 && FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF))
+ return 0;
+
+ /* If we're outputting JSON, only dump after doing all operations so we can include the roothashes
+ * in the output. */
+ if (!late && !FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF))
+ return 0;
+
+ /* If we're not outputting JSON, only dump again after doing all operations if there are any
+ * roothashes that we need to communicate to the user. */
+ if (late && FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF) && !context_has_roothash(context))
+ return 0;
+
+ r = context_dump_partitions(context, node);
+ if (r < 0)
+ return r;
+
+ /* Make sure we only write the partition bar once, even if we're writing the partition table twice to
+ * communicate roothashes. */
+ if (FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF) && !late) {
+ putc('\n', stdout);
+
+ r = context_dump_partition_bar(context, node);
+ if (r < 0)
+ return r;
+
+ putc('\n', stdout);
+ }
+
+ fflush(stdout);
+
+ return 0;
+}
+
+
+static bool context_changed(const Context *context) {
+ assert(context);
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ if (p->dropped)
+ continue;
+
+ if (p->allocated_to_area)
+ return true;
+
+ if (p->new_size != p->current_size)
+ return true;
+ }
+
+ return false;
+}
+
+static int context_wipe_range(Context *context, uint64_t offset, uint64_t size) {
+ _cleanup_(blkid_free_probep) blkid_probe probe = NULL;
+ int r;
+
+ assert(context);
+ assert(offset != UINT64_MAX);
+ assert(size != UINT64_MAX);
+
+ probe = blkid_new_probe();
+ if (!probe)
+ return log_oom();
+
+ errno = 0;
+ r = blkid_probe_set_device(probe, fdisk_get_devfd(context->fdisk_context), offset, size);
+ if (r < 0)
+ return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to allocate device probe for wiping.");
+
+ errno = 0;
+ if (blkid_probe_enable_superblocks(probe, true) < 0 ||
+ blkid_probe_set_superblocks_flags(probe, BLKID_SUBLKS_MAGIC|BLKID_SUBLKS_BADCSUM) < 0 ||
+ blkid_probe_enable_partitions(probe, true) < 0 ||
+ blkid_probe_set_partitions_flags(probe, BLKID_PARTS_MAGIC) < 0)
+ return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to enable superblock and partition probing.");
+
+ for (;;) {
+ errno = 0;
+ r = blkid_do_probe(probe);
+ if (r < 0)
+ return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to probe for file systems.");
+ if (r > 0)
+ break;
+
+ errno = 0;
+ if (blkid_do_wipe(probe, false) < 0)
+ return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to wipe file system signature.");
+ }
+
+ return 0;
+}
+
+static int context_wipe_partition(Context *context, Partition *p) {
+ int r;
+
+ assert(context);
+ assert(p);
+ assert(!PARTITION_EXISTS(p)); /* Safety check: never wipe existing partitions */
+
+ assert(p->offset != UINT64_MAX);
+ assert(p->new_size != UINT64_MAX);
+
+ r = context_wipe_range(context, p->offset, p->new_size);
+ if (r < 0)
+ return r;
+
+ log_info("Successfully wiped file system signatures from future partition %" PRIu64 ".", p->partno);
+ return 0;
+}
+
+static int context_discard_range(
+ Context *context,
+ uint64_t offset,
+ uint64_t size) {
+
+ struct stat st;
+ int fd;
+
+ assert(context);
+ assert(offset != UINT64_MAX);
+ assert(size != UINT64_MAX);
+
+ if (size <= 0)
+ return 0;
+
+ assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
+
+ if (fstat(fd, &st) < 0)
+ return -errno;
+
+ if (S_ISREG(st.st_mode)) {
+ if (fallocate(fd, FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE, offset, size) < 0) {
+ if (ERRNO_IS_NOT_SUPPORTED(errno))
+ return -EOPNOTSUPP;
+
+ return -errno;
+ }
+
+ return 1;
+ }
+
+ if (S_ISBLK(st.st_mode)) {
+ uint64_t range[2], end;
+
+ range[0] = round_up_size(offset, context->sector_size);
+
+ if (offset > UINT64_MAX - size)
+ return -ERANGE;
+
+ end = offset + size;
+ if (end <= range[0])
+ return 0;
+
+ range[1] = round_down_size(end - range[0], context->sector_size);
+ if (range[1] <= 0)
+ return 0;
+
+ if (ioctl(fd, BLKDISCARD, range) < 0) {
+ if (ERRNO_IS_NOT_SUPPORTED(errno))
+ return -EOPNOTSUPP;
+
+ return -errno;
+ }
+
+ return 1;
+ }
+
+ return -EOPNOTSUPP;
+}
+
+static int context_discard_partition(Context *context, Partition *p) {
+ int r;
+
+ assert(context);
+ assert(p);
+
+ assert(p->offset != UINT64_MAX);
+ assert(p->new_size != UINT64_MAX);
+ assert(!PARTITION_EXISTS(p)); /* Safety check: never discard existing partitions */
+
+ if (!arg_discard)
+ return 0;
+
+ r = context_discard_range(context, p->offset, p->new_size);
+ if (r == -EOPNOTSUPP) {
+ log_info("Storage does not support discard, not discarding data in future partition %" PRIu64 ".", p->partno);
+ return 0;
+ }
+ if (r == -EBUSY) {
+ /* Let's handle this gracefully: https://bugzilla.kernel.org/show_bug.cgi?id=211167 */
+ log_info("Block device is busy, not discarding partition %" PRIu64 " because it probably is mounted.", p->partno);
+ return 0;
+ }
+ if (r == 0) {
+ log_info("Partition %" PRIu64 " too short for discard, skipping.", p->partno);
+ return 0;
+ }
+ if (r < 0)
+ return log_error_errno(r, "Failed to discard data for future partition %" PRIu64 ".", p->partno);
+
+ log_info("Successfully discarded data from future partition %" PRIu64 ".", p->partno);
+ return 1;
+}
+
+static int context_discard_gap_after(Context *context, Partition *p) {
+ uint64_t gap, next = UINT64_MAX;
+ int r;
+
+ assert(context);
+ assert(!p || (p->offset != UINT64_MAX && p->new_size != UINT64_MAX));
+
+ if (!arg_discard)
+ return 0;
+
+ if (p)
+ gap = p->offset + p->new_size;
+ else
+ gap = context->start;
+
+ LIST_FOREACH(partitions, q, context->partitions) {
+ if (q->dropped)
+ continue;
+
+ assert(q->offset != UINT64_MAX);
+ assert(q->new_size != UINT64_MAX);
+
+ if (q->offset < gap)
+ continue;
+
+ if (next == UINT64_MAX || q->offset < next)
+ next = q->offset;
+ }
+
+ if (next == UINT64_MAX) {
+ next = context->end;
+ if (gap > next)
+ return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end.");
+ }
+
+ assert(next >= gap);
+ r = context_discard_range(context, gap, next - gap);
+ if (r == -EOPNOTSUPP) {
+ if (p)
+ log_info("Storage does not support discard, not discarding gap after partition %" PRIu64 ".", p->partno);
+ else
+ log_info("Storage does not support discard, not discarding gap at beginning of disk.");
+ return 0;
+ }
+ if (r == 0) /* Too short */
+ return 0;
+ if (r < 0) {
+ if (p)
+ return log_error_errno(r, "Failed to discard gap after partition %" PRIu64 ".", p->partno);
+ else
+ return log_error_errno(r, "Failed to discard gap at beginning of disk.");
+ }
+
+ if (p)
+ log_info("Successfully discarded gap after partition %" PRIu64 ".", p->partno);
+ else
+ log_info("Successfully discarded gap at beginning of disk.");
+
+ return 0;
+}
+
+static int context_wipe_and_discard(Context *context, bool from_scratch) {
+ int r;
+
+ assert(context);
+
+ /* Wipe and discard the contents of all partitions we are about to create. We skip the discarding if
+ * we were supposed to start from scratch anyway, as in that case we just discard the whole block
+ * device in one go early on. */
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+
+ if (!p->allocated_to_area)
+ continue;
+
+ r = context_wipe_partition(context, p);
+ if (r < 0)
+ return r;
+
+ if (!from_scratch) {
+ r = context_discard_partition(context, p);
+ if (r < 0)
+ return r;
+
+ r = context_discard_gap_after(context, p);
+ if (r < 0)
+ return r;
+ }
+ }
+
+ if (!from_scratch) {
+ r = context_discard_gap_after(context, NULL);
+ if (r < 0)
+ return r;
+ }
+
+ return 0;
+}
+
+static int partition_encrypt(
+ Context *context,
+ Partition *p,
+ const char *node,
+ struct crypt_device **ret_cd,
+ char **ret_volume,
+ int *ret_fd) {
+#if HAVE_LIBCRYPTSETUP
+ _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
+ _cleanup_(erase_and_freep) void *volume_key = NULL;
+ _cleanup_free_ char *dm_name = NULL, *vol = NULL;
+ size_t volume_key_size = 256 / 8;
+ sd_id128_t uuid;
+ int r;
+
+ assert(context);
+ assert(p);
+ assert(p->encrypt != ENCRYPT_OFF);
+
+ log_debug("Encryption mode for partition %" PRIu64 ": %s", p->partno, encrypt_mode_to_string(p->encrypt));
+
+ r = dlopen_cryptsetup();
+ if (r < 0)
+ return log_error_errno(r, "libcryptsetup not found, cannot encrypt: %m");
+
+ if (asprintf(&dm_name, "luks-repart-%08" PRIx64, random_u64()) < 0)
+ return log_oom();
+
+ if (ret_volume) {
+ vol = path_join("/dev/mapper/", dm_name);
+ if (!vol)
+ return log_oom();
+ }
+
+ r = derive_uuid(p->new_uuid, "luks-uuid", &uuid);
+ if (r < 0)
+ return r;
+
+ log_info("Encrypting future partition %" PRIu64 "...", p->partno);
+
+ volume_key = malloc(volume_key_size);
+ if (!volume_key)
+ return log_oom();
+
+ r = crypto_random_bytes(volume_key, volume_key_size);
+ if (r < 0)
+ return log_error_errno(r, "Failed to generate volume key: %m");
+
+ r = sym_crypt_init(&cd, node);
+ if (r < 0)
+ return log_error_errno(r, "Failed to allocate libcryptsetup context: %m");
+
+ cryptsetup_enable_logging(cd);
+
+ r = sym_crypt_format(cd,
+ CRYPT_LUKS2,
+ "aes",
+ "xts-plain64",
+ SD_ID128_TO_UUID_STRING(uuid),
+ volume_key,
+ volume_key_size,
+ &(struct crypt_params_luks2) {
+ .label = strempty(p->new_label),
+ .sector_size = context->sector_size,
+ });
+ if (r < 0)
+ return log_error_errno(r, "Failed to LUKS2 format future partition: %m");
+
+ if (IN_SET(p->encrypt, ENCRYPT_KEY_FILE, ENCRYPT_KEY_FILE_TPM2)) {
+ r = sym_crypt_keyslot_add_by_volume_key(
+ cd,
+ CRYPT_ANY_SLOT,
+ volume_key,
+ volume_key_size,
+ strempty(arg_key),
+ arg_key_size);
+ if (r < 0)
+ return log_error_errno(r, "Failed to add LUKS2 key: %m");
+ }
+
+ if (IN_SET(p->encrypt, ENCRYPT_TPM2, ENCRYPT_KEY_FILE_TPM2)) {
+#if HAVE_TPM2
+ _cleanup_(erase_and_freep) char *base64_encoded = NULL;
+ _cleanup_(json_variant_unrefp) JsonVariant *v = NULL;
+ _cleanup_(erase_and_freep) void *secret = NULL;
+ _cleanup_free_ void *pubkey = NULL;
+ _cleanup_free_ void *blob = NULL, *hash = NULL;
+ size_t secret_size, blob_size, hash_size, pubkey_size = 0;
+ uint16_t pcr_bank, primary_alg;
+ int keyslot;
+
+ if (arg_tpm2_public_key_pcr_mask != 0) {
+ r = tpm2_load_pcr_public_key(arg_tpm2_public_key, &pubkey, &pubkey_size);
+ if (r < 0) {
+ if (arg_tpm2_public_key || r != -ENOENT)
+ return log_error_errno(r, "Failed read TPM PCR public key: %m");
+
+ log_debug_errno(r, "Failed to read TPM2 PCR public key, proceeding without: %m");
+ arg_tpm2_public_key_pcr_mask = 0;
+ }
+ }
+
+ r = tpm2_seal(arg_tpm2_device,
+ arg_tpm2_pcr_mask,
+ pubkey, pubkey_size,
+ arg_tpm2_public_key_pcr_mask,
+ /* pin= */ NULL,
+ &secret, &secret_size,
+ &blob, &blob_size,
+ &hash, &hash_size,
+ &pcr_bank,
+ &primary_alg);
+ if (r < 0)
+ return log_error_errno(r, "Failed to seal to TPM2: %m");
+
+ r = base64mem(secret, secret_size, &base64_encoded);
+ if (r < 0)
+ return log_error_errno(r, "Failed to base64 encode secret key: %m");
+
+ r = cryptsetup_set_minimal_pbkdf(cd);
+ if (r < 0)
+ return log_error_errno(r, "Failed to set minimal PBKDF: %m");
+
+ keyslot = sym_crypt_keyslot_add_by_volume_key(
+ cd,
+ CRYPT_ANY_SLOT,
+ volume_key,
+ volume_key_size,
+ base64_encoded,
+ strlen(base64_encoded));
+ if (keyslot < 0)
+ return log_error_errno(keyslot, "Failed to add new TPM2 key to %s: %m", node);
+
+ r = tpm2_make_luks2_json(
+ keyslot,
+ arg_tpm2_pcr_mask,
+ pcr_bank,
+ pubkey, pubkey_size,
+ arg_tpm2_public_key_pcr_mask,
+ primary_alg,
+ blob, blob_size,
+ hash, hash_size,
+ 0,
+ &v);
+ if (r < 0)
+ return log_error_errno(r, "Failed to prepare TPM2 JSON token object: %m");
+
+ r = cryptsetup_add_token_json(cd, v);
+ if (r < 0)
+ return log_error_errno(r, "Failed to add TPM2 JSON token to LUKS2 header: %m");
+#else
+ return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP),
+ "Support for TPM2 enrollment not enabled.");
+#endif
+ }
+
+ r = sym_crypt_activate_by_volume_key(
+ cd,
+ dm_name,
+ volume_key,
+ volume_key_size,
+ arg_discard ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0);
+ if (r < 0)
+ return log_error_errno(r, "Failed to activate LUKS superblock: %m");
+
+ log_info("Successfully encrypted future partition %" PRIu64 ".", p->partno);
+
+ if (ret_fd) {
+ _cleanup_close_ int dev_fd = -1;
+
+ dev_fd = open(vol, O_RDWR|O_CLOEXEC|O_NOCTTY);
+ if (dev_fd < 0)
+ return log_error_errno(errno, "Failed to open LUKS volume '%s': %m", vol);
+
+ *ret_fd = TAKE_FD(dev_fd);
+ }
+
+ if (ret_cd)
+ *ret_cd = TAKE_PTR(cd);
+ if (ret_volume)
+ *ret_volume = TAKE_PTR(vol);
+
+ return 0;
+#else
+ return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "libcryptsetup is not supported, cannot encrypt: %m");
+#endif
+}
+
+static int deactivate_luks(struct crypt_device *cd, const char *node) {
+#if HAVE_LIBCRYPTSETUP
+ int r;
+
+ if (!cd)
+ return 0;
+
+ assert(node);
+
+ /* udev or so might access out block device in the background while we are done. Let's hence force
+ * detach the volume. We sync'ed before, hence this should be safe. */
+
+ r = sym_crypt_deactivate_by_name(cd, basename(node), CRYPT_DEACTIVATE_FORCE);
+ if (r < 0)
+ return log_error_errno(r, "Failed to deactivate LUKS device: %m");
+
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+static int context_copy_blocks(Context *context) {
+ int whole_fd = -1, r;
+
+ assert(context);
+
+ /* Copy in file systems on the block level */
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
+ _cleanup_(loop_device_unrefp) LoopDevice *d = NULL;
+ _cleanup_free_ char *encrypted = NULL;
+ _cleanup_close_ int encrypted_dev_fd = -1;
+ int target_fd;
+
+ if (p->copy_blocks_fd < 0)
+ continue;
+
+ if (p->dropped)
+ continue;
+
+ if (PARTITION_EXISTS(p)) /* Never copy over existing partitions */
+ continue;
+
+ assert(p->new_size != UINT64_MAX);
+ assert(p->copy_blocks_size != UINT64_MAX);
+ assert(p->new_size >= p->copy_blocks_size);
+
+ if (whole_fd < 0)
+ assert_se((whole_fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
+
+ if (p->encrypt != ENCRYPT_OFF) {
+ r = loop_device_make(whole_fd, O_RDWR, p->offset, p->new_size, 0, 0, LOCK_EX, &d);
+ if (r < 0)
+ return log_error_errno(r, "Failed to make loopback device of future partition %" PRIu64 ": %m", p->partno);
+
+ r = partition_encrypt(context, p, d->node, &cd, &encrypted, &encrypted_dev_fd);
+ if (r < 0)
+ return log_error_errno(r, "Failed to encrypt device: %m");
+
+ if (flock(encrypted_dev_fd, LOCK_EX) < 0)
+ return log_error_errno(errno, "Failed to lock LUKS device: %m");
+
+ target_fd = encrypted_dev_fd;
+ } else {
+ if (lseek(whole_fd, p->offset, SEEK_SET) == (off_t) -1)
+ return log_error_errno(errno, "Failed to seek to partition offset: %m");
+
+ target_fd = whole_fd;
+ }
+
+ log_info("Copying in '%s' (%s) on block level into future partition %" PRIu64 ".",
+ p->copy_blocks_path, FORMAT_BYTES(p->copy_blocks_size), p->partno);
+
+ r = copy_bytes_full(p->copy_blocks_fd, target_fd, p->copy_blocks_size, 0, NULL, NULL, NULL, NULL);
+ if (r < 0)
+ return log_error_errno(r, "Failed to copy in data from '%s': %m", p->copy_blocks_path);
+
+ if (fsync(target_fd) < 0)
+ return log_error_errno(errno, "Failed to synchronize copied data blocks: %m");
+
+ if (p->encrypt != ENCRYPT_OFF) {
+ encrypted_dev_fd = safe_close(encrypted_dev_fd);
+
+ r = deactivate_luks(cd, encrypted);
+ if (r < 0)
+ return r;
+
+ sym_crypt_free(cd);
+ cd = NULL;
+
+ r = loop_device_sync(d);
+ if (r < 0)
+ return log_error_errno(r, "Failed to sync loopback device: %m");
+ }
+
+ log_info("Copying in of '%s' on block level completed.", p->copy_blocks_path);
+ }
+
+ return 0;
+}
+
+static int do_copy_files(Partition *p, const char *root) {
+ int r;
+
+ assert(p);
+ assert(root);
+
+ STRV_FOREACH_PAIR(source, target, p->copy_files) {
+ _cleanup_close_ int sfd = -1, pfd = -1, tfd = -1;
+
+ sfd = chase_symlinks_and_open(*source, arg_root, CHASE_PREFIX_ROOT, O_CLOEXEC|O_NOCTTY, NULL);
+ if (sfd < 0)
+ return log_error_errno(sfd, "Failed to open source file '%s%s': %m", strempty(arg_root), *source);
+
+ r = fd_verify_regular(sfd);
+ if (r < 0) {
+ if (r != -EISDIR)
+ return log_error_errno(r, "Failed to check type of source file '%s': %m", *source);
+
+ /* We are looking at a directory */
+ tfd = chase_symlinks_and_open(*target, root, CHASE_PREFIX_ROOT, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL);
+ if (tfd < 0) {
+ _cleanup_free_ char *dn = NULL, *fn = NULL;
+
+ if (tfd != -ENOENT)
+ return log_error_errno(tfd, "Failed to open target directory '%s': %m", *target);
+
+ r = path_extract_filename(*target, &fn);
+ if (r < 0)
+ return log_error_errno(r, "Failed to extract filename from '%s': %m", *target);
+
+ r = path_extract_directory(*target, &dn);
+ if (r < 0)
+ return log_error_errno(r, "Failed to extract directory from '%s': %m", *target);
+
+ r = mkdir_p_root(root, dn, UID_INVALID, GID_INVALID, 0755);
+ if (r < 0)
+ return log_error_errno(r, "Failed to create parent directory '%s': %m", dn);
+
+ pfd = chase_symlinks_and_open(dn, root, CHASE_PREFIX_ROOT, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL);
+ if (pfd < 0)
+ return log_error_errno(pfd, "Failed to open parent directory of target: %m");
+
+ r = copy_tree_at(
+ sfd, ".",
+ pfd, fn,
+ UID_INVALID, GID_INVALID,
+ COPY_REFLINK|COPY_MERGE|COPY_REPLACE|COPY_SIGINT|COPY_HARDLINKS|COPY_ALL_XATTRS);
+ } else
+ r = copy_tree_at(
+ sfd, ".",
+ tfd, ".",
+ UID_INVALID, GID_INVALID,
+ COPY_REFLINK|COPY_MERGE|COPY_REPLACE|COPY_SIGINT|COPY_HARDLINKS|COPY_ALL_XATTRS);
+ if (r < 0)
+ return log_error_errno(r, "Failed to copy '%s' to '%s%s': %m", *source, strempty(arg_root), *target);
+ } else {
+ _cleanup_free_ char *dn = NULL, *fn = NULL;
+
+ /* We are looking at a regular file */
+
+ r = path_extract_filename(*target, &fn);
+ if (r == -EADDRNOTAVAIL || r == O_DIRECTORY)
+ return log_error_errno(SYNTHETIC_ERRNO(EISDIR),
+ "Target path '%s' refers to a directory, but source path '%s' refers to regular file, can't copy.", *target, *source);
+ if (r < 0)
+ return log_error_errno(r, "Failed to extract filename from '%s': %m", *target);
+
+ r = path_extract_directory(*target, &dn);
+ if (r < 0)
+ return log_error_errno(r, "Failed to extract directory from '%s': %m", *target);
+
+ r = mkdir_p_root(root, dn, UID_INVALID, GID_INVALID, 0755);
+ if (r < 0)
+ return log_error_errno(r, "Failed to create parent directory: %m");
+
+ pfd = chase_symlinks_and_open(dn, root, CHASE_PREFIX_ROOT, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL);
+ if (pfd < 0)
+ return log_error_errno(pfd, "Failed to open parent directory of target: %m");
+
+ tfd = openat(pfd, fn, O_CREAT|O_EXCL|O_WRONLY|O_CLOEXEC, 0700);
+ if (tfd < 0)
+ return log_error_errno(errno, "Failed to create target file '%s': %m", *target);
+
+ r = copy_bytes(sfd, tfd, UINT64_MAX, COPY_REFLINK|COPY_SIGINT);
+ if (r < 0)
+ return log_error_errno(r, "Failed to copy '%s' to '%s%s': %m", *source, strempty(arg_root), *target);
+
+ (void) copy_xattr(sfd, tfd, COPY_ALL_XATTRS);
+ (void) copy_access(sfd, tfd);
+ (void) copy_times(sfd, tfd, 0);
+ }
+ }
+
+ return 0;
+}
+
+static int do_make_directories(Partition *p, const char *root) {
+ int r;
+
+ assert(p);
+ assert(root);
+
+ STRV_FOREACH(d, p->make_directories) {
+
+ r = mkdir_p_root(root, *d, UID_INVALID, GID_INVALID, 0755);
+ if (r < 0)
+ return log_error_errno(r, "Failed to create directory '%s' in file system: %m", *d);
+ }
+
+ return 0;
+}
+
+static int partition_populate_directory(Partition *p, char **ret_root, char **ret_tmp_root) {
+ _cleanup_(rm_rf_physical_and_freep) char *root = NULL;
+ int r;
+
+ assert(ret_root);
+ assert(ret_tmp_root);
+
+ /* When generating read-only filesystems, we need the source tree to be available when we generate
+ * the read-only filesystem. Because we might have multiple source trees, we build a temporary source
+ * tree beforehand where we merge all our inputs. We then use this merged source tree to create the
+ * read-only filesystem. */
+
+ if (!fstype_is_ro(p->format)) {
+ *ret_root = NULL;
+ *ret_tmp_root = NULL;
+ return 0;
+ }
+
+ /* If we only have a single directory that's meant to become the root directory of the filesystem,
+ * we can shortcut this function and just use that directory as the root directory instead. If we
+ * allocate a temporary directory, it's stored in "ret_tmp_root" to indicate it should be removed.
+ * Otherwise, we return the directory to use in "root" to indicate it should not be removed. */
+
+ if (strv_length(p->copy_files) == 2 && strv_length(p->make_directories) == 0 && streq(p->copy_files[1], "/")) {
+ _cleanup_free_ char *s = NULL;
+
+ r = chase_symlinks(p->copy_files[0], arg_root, CHASE_PREFIX_ROOT, &s, NULL);
+ if (r < 0)
+ return log_error_errno(r, "Failed to resolve source '%s%s': %m", strempty(arg_root), p->copy_files[0]);
+
+ *ret_root = TAKE_PTR(s);
+ *ret_tmp_root = NULL;
+ return 0;
+ }
+
+ r = mkdtemp_malloc("/var/tmp/repart-XXXXXX", &root);
+ if (r < 0)
+ return log_error_errno(r, "Failed to create temporary directory: %m");
+
+ r = do_copy_files(p, root);
+ if (r < 0)
+ return r;
+
+ r = do_make_directories(p, root);
+ if (r < 0)
+ return r;
+
+ *ret_root = NULL;
+ *ret_tmp_root = TAKE_PTR(root);
+ return 0;
+}
+
+static int partition_populate_filesystem(Partition *p, const char *node) {
+ int r;
+
+ assert(p);
+ assert(node);
+
+ if (fstype_is_ro(p->format))
+ return 0;
+
+ if (strv_isempty(p->copy_files) && strv_isempty(p->make_directories))
+ return 0;
+
+ log_info("Populating partition %" PRIu64 " with files.", p->partno);
+
+ /* We copy in a child process, since we have to mount the fs for that, and we don't want that fs to
+ * appear in the host namespace. Hence we fork a child that has its own file system namespace and
+ * detached mount propagation. */
+
+ r = safe_fork("(sd-copy)", FORK_DEATHSIG|FORK_LOG|FORK_WAIT|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, NULL);
+ if (r < 0)
+ return r;
+ if (r == 0) {
+ static const char fs[] = "/run/systemd/mount-root";
+ /* This is a child process with its own mount namespace and propagation to host turned off */
+
+ r = mkdir_p(fs, 0700);
+ if (r < 0) {
+ log_error_errno(r, "Failed to create mount point: %m");
+ _exit(EXIT_FAILURE);
+ }
+
+ if (mount_nofollow_verbose(LOG_ERR, node, fs, p->format, MS_NOATIME|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL) < 0)
+ _exit(EXIT_FAILURE);
+
+ if (do_copy_files(p, fs) < 0)
+ _exit(EXIT_FAILURE);
+
+ if (do_make_directories(p, fs) < 0)
+ _exit(EXIT_FAILURE);
+
+ r = syncfs_path(AT_FDCWD, fs);
+ if (r < 0) {
+ log_error_errno(r, "Failed to synchronize written files: %m");
+ _exit(EXIT_FAILURE);
+ }
+
+ _exit(EXIT_SUCCESS);
+ }
+
+ log_info("Successfully populated partition %" PRIu64 " with files.", p->partno);
+ return 0;
+}
+
+static int context_mkfs(Context *context) {
+ int fd = -1, r;
+
+ assert(context);
+
+ /* Make a file system */
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
+ _cleanup_(loop_device_unrefp) LoopDevice *d = NULL;
+ _cleanup_(rm_rf_physical_and_freep) char *tmp_root = NULL;
+ _cleanup_free_ char *encrypted = NULL, *root = NULL;
+ _cleanup_close_ int encrypted_dev_fd = -1;
+ const char *fsdev;
+ sd_id128_t fs_uuid;
+
+ if (p->dropped)
+ continue;
+
+ if (PARTITION_EXISTS(p)) /* Never format existing partitions */
+ continue;
+
+ if (!p->format)
+ continue;
+
+ assert(p->offset != UINT64_MAX);
+ assert(p->new_size != UINT64_MAX);
+
+ if (fd < 0)
+ assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
+
+ /* Loopback block devices are not only useful to turn regular files into block devices, but
+ * also to cut out sections of block devices into new block devices. */
+
+ r = loop_device_make(fd, O_RDWR, p->offset, p->new_size, 0, 0, LOCK_EX, &d);
+ if (r < 0)
+ return log_error_errno(r, "Failed to make loopback device of future partition %" PRIu64 ": %m", p->partno);
+
+ if (p->encrypt != ENCRYPT_OFF) {
+ r = partition_encrypt(context, p, d->node, &cd, &encrypted, &encrypted_dev_fd);
+ if (r < 0)
+ return log_error_errno(r, "Failed to encrypt device: %m");
+
+ if (flock(encrypted_dev_fd, LOCK_EX) < 0)
+ return log_error_errno(errno, "Failed to lock LUKS device: %m");
+
+ fsdev = encrypted;
+ } else
+ fsdev = d->node;
+
+ log_info("Formatting future partition %" PRIu64 ".", p->partno);
+
+ /* Calculate the UUID for the file system as HMAC-SHA256 of the string "file-system-uuid",
+ * keyed off the partition UUID. */
+ r = derive_uuid(p->new_uuid, "file-system-uuid", &fs_uuid);
+ if (r < 0)
+ return r;
+
+ /* Ideally, we populate filesystems using our own code after creating the filesystem to
+ * ensure consistent handling of chattrs, xattrs and other similar things. However, when
+ * using read-only filesystems such as squashfs, we can't populate after creating the
+ * filesystem because it's read-only, so instead we create a temporary root to use as the
+ * source tree when generating the read-only filesystem. */
+ r = partition_populate_directory(p, &root, &tmp_root);
+ if (r < 0)
+ return r;
+
+ r = make_filesystem(fsdev, p->format, strempty(p->new_label), root ?: tmp_root, fs_uuid, arg_discard);
+ if (r < 0) {
+ encrypted_dev_fd = safe_close(encrypted_dev_fd);
+ (void) deactivate_luks(cd, encrypted);
+ return r;
+ }
+
+ log_info("Successfully formatted future partition %" PRIu64 ".", p->partno);
+
+ /* The file system is now created, no need to delay udev further */
+ if (p->encrypt != ENCRYPT_OFF)
+ if (flock(encrypted_dev_fd, LOCK_UN) < 0)
+ return log_error_errno(errno, "Failed to unlock LUKS device: %m");
+
+ /* Now, we can populate all the other filesystems that aren't read-only. */
+ r = partition_populate_filesystem(p, fsdev);
+ if (r < 0) {
+ encrypted_dev_fd = safe_close(encrypted_dev_fd);
+ (void) deactivate_luks(cd, encrypted);
+ return r;
+ }
+
+ /* Note that we always sync explicitly here, since mkfs.fat doesn't do that on its own, and
+ * if we don't sync before detaching a block device the in-flight sectors possibly won't hit
+ * the disk. */
+
+ if (p->encrypt != ENCRYPT_OFF) {
+ if (fsync(encrypted_dev_fd) < 0)
+ return log_error_errno(errno, "Failed to synchronize LUKS volume: %m");
+ encrypted_dev_fd = safe_close(encrypted_dev_fd);
+
+ r = deactivate_luks(cd, encrypted);
+ if (r < 0)
+ return r;
+
+ sym_crypt_free(cd);
+ cd = NULL;
+ }
+
+ r = loop_device_sync(d);
+ if (r < 0)
+ return log_error_errno(r, "Failed to sync loopback device: %m");
+ }
+
+ return 0;
+}
+
+static int do_verity_format(
+ LoopDevice *data_device,
+ LoopDevice *hash_device,
+ uint64_t sector_size,
+ uint8_t **ret_roothash,
+ size_t *ret_roothash_size) {
+
+#if HAVE_LIBCRYPTSETUP
+ _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
+ _cleanup_free_ uint8_t *rh = NULL;
+ size_t rhs;
+ int r;
+
+ assert(data_device);
+ assert(hash_device);
+ assert(sector_size > 0);
+ assert(ret_roothash);
+ assert(ret_roothash_size);
+
+ r = dlopen_cryptsetup();
+ if (r < 0)
+ return log_error_errno(r, "libcryptsetup not found, cannot setup verity: %m");
+
+ r = sym_crypt_init(&cd, hash_device->node);
+ if (r < 0)
+ return log_error_errno(r, "Failed to allocate libcryptsetup context: %m");
+
+ r = sym_crypt_format(
+ cd, CRYPT_VERITY, NULL, NULL, NULL, NULL, 0,
+ &(struct crypt_params_verity){
+ .data_device = data_device->node,
+ .flags = CRYPT_VERITY_CREATE_HASH,
+ .hash_name = "sha256",
+ .hash_type = 1,
+ .data_block_size = sector_size,
+ .hash_block_size = sector_size,
+ .salt_size = 32,
+ });
+ if (r < 0)
+ return log_error_errno(r, "Failed to setup verity hash data: %m");
+
+ r = sym_crypt_get_volume_key_size(cd);
+ if (r < 0)
+ return log_error_errno(r, "Failed to determine verity root hash size: %m");
+ rhs = (size_t) r;
+
+ rh = malloc(rhs);
+ if (!rh)
+ return log_oom();
+
+ r = sym_crypt_volume_key_get(cd, CRYPT_ANY_SLOT, (char *) rh, &rhs, NULL, 0);
+ if (r < 0)
+ return log_error_errno(r, "Failed to get verity root hash: %m");
+
+ *ret_roothash = TAKE_PTR(rh);
+ *ret_roothash_size = rhs;
+
+ return 0;
+#else
+ return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "libcryptsetup is not supported, cannot setup verity hashes: %m");
+#endif
+}
+
+static int context_verity_hash(Context *context) {
+ int fd = -1, r;
+
+ assert(context);
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ Partition *dp;
+ _cleanup_(loop_device_unrefp) LoopDevice *hash_device = NULL, *data_device = NULL;
+ _cleanup_free_ uint8_t *rh = NULL;
+ size_t rhs = 0; /* Initialize to work around for GCC false positive. */
+
+ if (p->dropped)
+ continue;
+
+ if (PARTITION_EXISTS(p)) /* Never format existing partitions */
+ continue;
+
+ if (p->verity != VERITY_HASH)
+ continue;
+
+ assert_se(dp = p->siblings[VERITY_DATA]);
+ assert(!dp->dropped);
+
+ if (fd < 0)
+ assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
+
+ r = loop_device_make(fd, O_RDONLY, dp->offset, dp->new_size, 0, 0, LOCK_EX, &data_device);
+ if (r < 0)
+ return log_error_errno(r,
+ "Failed to make loopback device of verity data partition %" PRIu64 ": %m",
+ p->partno);
+
+ r = loop_device_make(fd, O_RDWR, p->offset, p->new_size, 0, 0, LOCK_EX, &hash_device);
+ if (r < 0)
+ return log_error_errno(r,
+ "Failed to make loopback device of verity hash partition %" PRIu64 ": %m",
+ p->partno);
+
+ r = do_verity_format(data_device, hash_device, context->sector_size, &rh, &rhs);
+ if (r < 0)
+ return r;
+
+ assert(rhs >= sizeof(sd_id128_t) * 2);
+
+ if (!dp->new_uuid_is_set) {
+ memcpy_safe(dp->new_uuid.bytes, rh, sizeof(sd_id128_t));
+ dp->new_uuid_is_set = true;
+ }
+
+ if (!p->new_uuid_is_set) {
+ memcpy_safe(p->new_uuid.bytes, rh + rhs - sizeof(sd_id128_t), sizeof(sd_id128_t));
+ p->new_uuid_is_set = true;
+ }
+
+ p->roothash = TAKE_PTR(rh);
+ p->roothash_size = rhs;
+ }
+
+ return 0;
+}
+
+static int parse_x509_certificate(const char *certificate, size_t certificate_size, X509 **ret) {
+#if HAVE_OPENSSL
+ _cleanup_(X509_freep) X509 *cert = NULL;
+ _cleanup_(BIO_freep) BIO *cb = NULL;
+
+ assert(certificate);
+ assert(certificate_size > 0);
+ assert(ret);
+
+ cb = BIO_new_mem_buf(certificate, certificate_size);
+ if (!cb)
+ return log_oom();
+
+ cert = PEM_read_bio_X509(cb, NULL, NULL, NULL);
+ if (!cert)
+ return log_error_errno(SYNTHETIC_ERRNO(EBADMSG), "Failed to parse X.509 certificate: %s",
+ ERR_error_string(ERR_get_error(), NULL));
+
+ if (ret)
+ *ret = TAKE_PTR(cert);
+
+ return 0;
+#else
+ return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "openssl is not supported, cannot parse X509 certificate.");
+#endif
+}
+
+static int parse_private_key(const char *key, size_t key_size, EVP_PKEY **ret) {
+#if HAVE_OPENSSL
+ _cleanup_(BIO_freep) BIO *kb = NULL;
+ _cleanup_(EVP_PKEY_freep) EVP_PKEY *pk = NULL;
+
+ assert(key);
+ assert(key_size > 0);
+ assert(ret);
+
+ kb = BIO_new_mem_buf(key, key_size);
+ if (!kb)
+ return log_oom();
+
+ pk = PEM_read_bio_PrivateKey(kb, NULL, NULL, NULL);
+ if (!pk)
+ return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to parse PEM private key: %s",
+ ERR_error_string(ERR_get_error(), NULL));
+
+ if (ret)
+ *ret = TAKE_PTR(pk);
+
+ return 0;
+#else
+ return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "openssl is not supported, cannot parse private key.");
+#endif
+}
+
+static int sign_verity_roothash(
+ const uint8_t *roothash,
+ size_t roothash_size,
+ uint8_t **ret_signature,
+ size_t *ret_signature_size) {
+
+#if HAVE_OPENSSL
+ _cleanup_(BIO_freep) BIO *rb = NULL;
+ _cleanup_(PKCS7_freep) PKCS7 *p7 = NULL;
+ _cleanup_free_ char *hex = NULL;
+ _cleanup_free_ uint8_t *sig = NULL;
+ int sigsz;
+
+ assert(roothash);
+ assert(roothash_size > 0);
+ assert(ret_signature);
+ assert(ret_signature_size);
+
+ hex = hexmem(roothash, roothash_size);
+ if (!hex)
+ return log_oom();
+
+ rb = BIO_new_mem_buf(hex, -1);
+ if (!rb)
+ return log_oom();
+
+ p7 = PKCS7_sign(arg_certificate, arg_private_key, NULL, rb, PKCS7_DETACHED|PKCS7_NOATTR|PKCS7_BINARY);
+ if (!p7)
+ return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to calculate PKCS7 signature: %s",
+ ERR_error_string(ERR_get_error(), NULL));
+
+ sigsz = i2d_PKCS7(p7, &sig);
+ if (sigsz < 0)
+ return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to convert PKCS7 signature to DER: %s",
+ ERR_error_string(ERR_get_error(), NULL));
+
+ *ret_signature = TAKE_PTR(sig);
+ *ret_signature_size = sigsz;
+
+ return 0;
+#else
+ return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "openssl is not supported, cannot setup verity signature: %m");
+#endif
+}
+
+static int context_verity_sig(Context *context) {
+ int fd = -1, r;
+
+ assert(context);
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ _cleanup_(json_variant_unrefp) JsonVariant *v = NULL;
+ _cleanup_free_ uint8_t *sig = NULL;
+ _cleanup_free_ char *text = NULL;
+ Partition *hp;
+ uint8_t fp[X509_FINGERPRINT_SIZE];
+ size_t sigsz = 0, padsz; /* avoid false maybe-uninitialized warning */
+
+ if (p->dropped)
+ continue;
+
+ if (PARTITION_EXISTS(p))
+ continue;
+
+ if (p->verity != VERITY_SIG)
+ continue;
+
+ assert_se(hp = p->siblings[VERITY_HASH]);
+ assert(!hp->dropped);
+
+ assert(arg_certificate);
+
+ if (fd < 0)
+ assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
+
+ r = sign_verity_roothash(hp->roothash, hp->roothash_size, &sig, &sigsz);
+ if (r < 0)
+ return r;
+
+ r = x509_fingerprint(arg_certificate, fp);
+ if (r < 0)
+ return log_error_errno(r, "Unable to calculate X509 certificate fingerprint: %m");
+
+ r = json_build(&v,
+ JSON_BUILD_OBJECT(
+ JSON_BUILD_PAIR("rootHash", JSON_BUILD_HEX(hp->roothash, hp->roothash_size)),
+ JSON_BUILD_PAIR(
+ "certificateFingerprint",
+ JSON_BUILD_HEX(fp, sizeof(fp))
+ ),
+ JSON_BUILD_PAIR("signature", JSON_BUILD_BASE64(sig, sigsz))
+ )
+ );
+ if (r < 0)
+ return log_error_errno(r, "Failed to build JSON object: %m");
+
+ r = json_variant_format(v, 0, &text);
+ if (r < 0)
+ return log_error_errno(r, "Failed to format JSON object: %m");
+
+ padsz = round_up_size(strlen(text), 4096);
+ assert_se(padsz <= p->new_size);
+
+ r = strgrowpad0(&text, padsz);
+ if (r < 0)
+ return log_error_errno(r, "Failed to pad string to %s", FORMAT_BYTES(padsz));
+
+ if (lseek(fd, p->offset, SEEK_SET) == (off_t) -1)
+ return log_error_errno(errno, "Failed to seek to partition offset: %m");
+
+ r = loop_write(fd, text, padsz, /*do_poll=*/ false);
+ if (r < 0)
+ return log_error_errno(r, "Failed to write verity signature to partition: %m");
+
+ if (fsync(fd) < 0)
+ return log_error_errno(errno, "Failed to synchronize verity signature JSON: %m");
+ }
+
+ return 0;
+}
+
+static int partition_acquire_uuid(Context *context, Partition *p, sd_id128_t *ret) {
+ struct {
+ sd_id128_t type_uuid;
+ uint64_t counter;
+ } _packed_ plaintext = {};
+ union {
+ uint8_t md[SHA256_DIGEST_SIZE];
+ sd_id128_t id;
+ } result;
+
+ uint64_t k = 0;
+ int r;
+
+ assert(context);
+ assert(p);
+ assert(ret);
+
+ /* Calculate a good UUID for the indicated partition. We want a certain degree of reproducibility,
+ * hence we won't generate the UUIDs randomly. Instead we use a cryptographic hash (precisely:
+ * HMAC-SHA256) to derive them from a single seed. The seed is generally the machine ID of the
+ * installation we are processing, but if random behaviour is desired can be random, too. We use the
+ * seed value as key for the HMAC (since the machine ID is something we generally don't want to leak)
+ * and the partition type as plaintext. The partition type is suffixed with a counter (only for the
+ * second and later partition of the same type) if we have more than one partition of the same
+ * time. Or in other words:
+ *
+ * With:
+ * SEED := /etc/machine-id
+ *
+ * If first partition instance of type TYPE_UUID:
+ * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID)
+ *
+ * For all later partition instances of type TYPE_UUID with INSTANCE being the LE64 encoded instance number:
+ * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID || INSTANCE)
+ */
+
+ LIST_FOREACH(partitions, q, context->partitions) {
+ if (p == q)
+ break;
+
+ if (!sd_id128_equal(p->type_uuid, q->type_uuid))
+ continue;
+
+ k++;
+ }
+
+ plaintext.type_uuid = p->type_uuid;
+ plaintext.counter = htole64(k);
+
+ hmac_sha256(context->seed.bytes, sizeof(context->seed.bytes),
+ &plaintext,
+ k == 0 ? sizeof(sd_id128_t) : sizeof(plaintext),
+ result.md);
+
+ /* Take the first half, mark it as v4 UUID */
+ assert_cc(sizeof(result.md) == sizeof(result.id) * 2);
+ result.id = id128_make_v4_uuid(result.id);
+
+ /* Ensure this partition UUID is actually unique, and there's no remaining partition from an earlier run? */
+ LIST_FOREACH(partitions, q, context->partitions) {
+ if (p == q)
+ continue;
+
+ if (sd_id128_in_set(result.id, q->current_uuid, q->new_uuid)) {
+ log_warning("Partition UUID calculated from seed for partition %" PRIu64 " already used, reverting to randomized UUID.", p->partno);
+
+ r = sd_id128_randomize(&result.id);
+ if (r < 0)
+ return log_error_errno(r, "Failed to generate randomized UUID: %m");
+
+ break;
+ }
+ }
+
+ *ret = result.id;
+ return 0;
+}
+
+static int partition_acquire_label(Context *context, Partition *p, char **ret) {
+ _cleanup_free_ char *label = NULL;
+ const char *prefix;
+ unsigned k = 1;
+
+ assert(context);
+ assert(p);
+ assert(ret);
+
+ prefix = gpt_partition_type_uuid_to_string(p->type_uuid);
+ if (!prefix)
+ prefix = "linux";
+
+ for (;;) {
+ const char *ll = label ?: prefix;
+ bool retry = false;
+
+ LIST_FOREACH(partitions, q, context->partitions) {
+ if (p == q)
+ break;
+
+ if (streq_ptr(ll, q->current_label) ||
+ streq_ptr(ll, q->new_label)) {
+ retry = true;
+ break;
+ }
+ }
+
+ if (!retry)
+ break;
+
+ label = mfree(label);
+ if (asprintf(&label, "%s-%u", prefix, ++k) < 0)
+ return log_oom();
+ }
+
+ if (!label) {
+ label = strdup(prefix);
+ if (!label)
+ return log_oom();
+ }
+
+ *ret = TAKE_PTR(label);
+ return 0;
+}
+
+static int context_acquire_partition_uuids_and_labels(Context *context) {
+ int r;
+
+ assert(context);
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ /* Never touch foreign partitions */
+ if (PARTITION_IS_FOREIGN(p)) {
+ p->new_uuid = p->current_uuid;
+
+ if (p->current_label) {
+ r = free_and_strdup_warn(&p->new_label, strempty(p->current_label));
+ if (r < 0)
+ return r;
+ }
+
+ continue;
+ }
+
+ if (!sd_id128_is_null(p->current_uuid))
+ p->new_uuid = p->current_uuid; /* Never change initialized UUIDs */
+ else if (!p->new_uuid_is_set && !IN_SET(p->verity, VERITY_DATA, VERITY_HASH)) {
+ /* Not explicitly set by user! */
+ r = partition_acquire_uuid(context, p, &p->new_uuid);
+ if (r < 0)
+ return r;
+
+ p->new_uuid_is_set = true;
+ }
+
+ if (!isempty(p->current_label)) {
+ /* never change initialized labels */
+ r = free_and_strdup_warn(&p->new_label, p->current_label);
+ if (r < 0)
+ return r;
+ } else if (!p->new_label) {
+ /* Not explicitly set by user! */
+
+ r = partition_acquire_label(context, p, &p->new_label);
+ if (r < 0)
+ return r;
+ }
+ }
+
+ return 0;
+}
+
+static int set_gpt_flags(struct fdisk_partition *q, uint64_t flags) {
+ _cleanup_free_ char *a = NULL;
+
+ for (unsigned i = 0; i < sizeof(flags) * 8; i++) {
+ uint64_t bit = UINT64_C(1) << i;
+ char buf[DECIMAL_STR_MAX(unsigned)+1];
+
+ if (!FLAGS_SET(flags, bit))
+ continue;
+
+ xsprintf(buf, "%u", i);
+ if (!strextend_with_separator(&a, ",", buf))
+ return -ENOMEM;
+ }
+
+ return fdisk_partition_set_attrs(q, a);
+}
+
+static uint64_t partition_merge_flags(Partition *p) {
+ uint64_t f;
+
+ assert(p);
+
+ f = p->gpt_flags;
+
+ if (p->no_auto >= 0) {
+ if (gpt_partition_type_knows_no_auto(p->type_uuid))
+ SET_FLAG(f, SD_GPT_FLAG_NO_AUTO, p->no_auto);
+ else {
+ char buffer[SD_ID128_UUID_STRING_MAX];
+ log_warning("Configured NoAuto=%s for partition type '%s' that doesn't support it, ignoring.",
+ yes_no(p->no_auto),
+ gpt_partition_type_uuid_to_string_harder(p->type_uuid, buffer));
+ }
+ }
+
+ if (p->read_only >= 0) {
+ if (gpt_partition_type_knows_read_only(p->type_uuid))
+ SET_FLAG(f, SD_GPT_FLAG_READ_ONLY, p->read_only);
+ else {
+ char buffer[SD_ID128_UUID_STRING_MAX];
+ log_warning("Configured ReadOnly=%s for partition type '%s' that doesn't support it, ignoring.",
+ yes_no(p->read_only),
+ gpt_partition_type_uuid_to_string_harder(p->type_uuid, buffer));
+ }
+ }
+
+ if (p->growfs >= 0) {
+ if (gpt_partition_type_knows_growfs(p->type_uuid))
+ SET_FLAG(f, SD_GPT_FLAG_GROWFS, p->growfs);
+ else {
+ char buffer[SD_ID128_UUID_STRING_MAX];
+ log_warning("Configured GrowFileSystem=%s for partition type '%s' that doesn't support it, ignoring.",
+ yes_no(p->growfs),
+ gpt_partition_type_uuid_to_string_harder(p->type_uuid, buffer));
+ }
+ }
+
+ return f;
+}
+
+static int context_mangle_partitions(Context *context) {
+ int r;
+
+ assert(context);
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ if (p->dropped)
+ continue;
+
+ assert(p->new_size != UINT64_MAX);
+ assert(p->offset != UINT64_MAX);
+ assert(p->partno != UINT64_MAX);
+
+ if (PARTITION_EXISTS(p)) {
+ bool changed = false;
+
+ assert(p->current_partition);
+
+ if (p->new_size != p->current_size) {
+ assert(p->new_size >= p->current_size);
+ assert(p->new_size % context->sector_size == 0);
+
+ r = fdisk_partition_size_explicit(p->current_partition, true);
+ if (r < 0)
+ return log_error_errno(r, "Failed to enable explicit sizing: %m");
+
+ r = fdisk_partition_set_size(p->current_partition, p->new_size / context->sector_size);
+ if (r < 0)
+ return log_error_errno(r, "Failed to grow partition: %m");
+
+ log_info("Growing existing partition %" PRIu64 ".", p->partno);
+ changed = true;
+ }
+
+ if (!sd_id128_equal(p->new_uuid, p->current_uuid)) {
+ r = fdisk_partition_set_uuid(p->current_partition, SD_ID128_TO_UUID_STRING(p->new_uuid));
+ if (r < 0)
+ return log_error_errno(r, "Failed to set partition UUID: %m");
+
+ log_info("Initializing UUID of existing partition %" PRIu64 ".", p->partno);
+ changed = true;
+ }
+
+ if (!streq_ptr(p->new_label, p->current_label)) {
+ r = fdisk_partition_set_name(p->current_partition, strempty(p->new_label));
+ if (r < 0)
+ return log_error_errno(r, "Failed to set partition label: %m");
+
+ log_info("Setting partition label of existing partition %" PRIu64 ".", p->partno);
+ changed = true;
+ }
+
+ if (changed) {
+ assert(!PARTITION_IS_FOREIGN(p)); /* never touch foreign partitions */
+
+ r = fdisk_set_partition(context->fdisk_context, p->partno, p->current_partition);
+ if (r < 0)
+ return log_error_errno(r, "Failed to update partition: %m");
+ }
+ } else {
+ _cleanup_(fdisk_unref_partitionp) struct fdisk_partition *q = NULL;
+ _cleanup_(fdisk_unref_parttypep) struct fdisk_parttype *t = NULL;
+
+ assert(!p->new_partition);
+ assert(p->offset % context->sector_size == 0);
+ assert(p->new_size % context->sector_size == 0);
+ assert(p->new_label);
+
+ t = fdisk_new_parttype();
+ if (!t)
+ return log_oom();
+
+ r = fdisk_parttype_set_typestr(t, SD_ID128_TO_UUID_STRING(p->type_uuid));
+ if (r < 0)
+ return log_error_errno(r, "Failed to initialize partition type: %m");
+
+ q = fdisk_new_partition();
+ if (!q)
+ return log_oom();
+
+ r = fdisk_partition_set_type(q, t);
+ if (r < 0)
+ return log_error_errno(r, "Failed to set partition type: %m");
+
+ r = fdisk_partition_size_explicit(q, true);
+ if (r < 0)
+ return log_error_errno(r, "Failed to enable explicit sizing: %m");
+
+ r = fdisk_partition_set_start(q, p->offset / context->sector_size);
+ if (r < 0)
+ return log_error_errno(r, "Failed to position partition: %m");
+
+ r = fdisk_partition_set_size(q, p->new_size / context->sector_size);
+ if (r < 0)
+ return log_error_errno(r, "Failed to grow partition: %m");
+
+ r = fdisk_partition_set_partno(q, p->partno);
+ if (r < 0)
+ return log_error_errno(r, "Failed to set partition number: %m");
+
+ r = fdisk_partition_set_uuid(q, SD_ID128_TO_UUID_STRING(p->new_uuid));
+ if (r < 0)
+ return log_error_errno(r, "Failed to set partition UUID: %m");
+
+ r = fdisk_partition_set_name(q, strempty(p->new_label));
+ if (r < 0)
+ return log_error_errno(r, "Failed to set partition label: %m");
+
+ /* Merge the no auto + read only + growfs setting with the literal flags, and set them for the partition */
+ r = set_gpt_flags(q, partition_merge_flags(p));
+ if (r < 0)
+ return log_error_errno(r, "Failed to set GPT partition flags: %m");
+
+ log_info("Adding new partition %" PRIu64 " to partition table.", p->partno);
+
+ r = fdisk_add_partition(context->fdisk_context, q, NULL);
+ if (r < 0)
+ return log_error_errno(r, "Failed to add partition: %m");
+
+ assert(!p->new_partition);
+ p->new_partition = TAKE_PTR(q);
+ }
+ }
+
+ return 0;
+}
+
+static int split_name_printf(Partition *p) {
+ assert(p);
+
+ const Specifier table[] = {
+ { 't', specifier_string, GPT_PARTITION_TYPE_UUID_TO_STRING_HARDER(p->type_uuid) },
+ { 'T', specifier_id128, &p->type_uuid },
+ { 'U', specifier_id128, &p->new_uuid },
+ { 'n', specifier_uint64, &p->partno },
+
+ COMMON_SYSTEM_SPECIFIERS,
+ {}
+ };
+
+ return specifier_printf(p->split_name_format, NAME_MAX, table, arg_root, p, &p->split_name_resolved);
+}
+
+static int split_name_resolve(Context *context) {
+ int r;
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ if (p->dropped)
+ continue;
+
+ if (!p->split_name_format)
+ continue;
+
+ r = split_name_printf(p);
+ if (r < 0)
+ return log_error_errno(r, "Failed to resolve specifiers in %s: %m", p->split_name_format);
+ }
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ if (!p->split_name_resolved)
+ continue;
+
+ LIST_FOREACH(partitions, q, context->partitions) {
+ if (p == q)
+ continue;
+
+ if (!q->split_name_resolved)
+ continue;
+
+ if (!streq(p->split_name_resolved, q->split_name_resolved))
+ continue;
+
+ return log_error_errno(SYNTHETIC_ERRNO(ENOTUNIQ),
+ "%s and %s have the same resolved split name \"%s\", refusing",
+ p->definition_path, q->definition_path, p->split_name_resolved);
+ }
+ }
+
+ return 0;
+}
+
+static int split_node(const char *node, char **ret_base, char **ret_ext) {
+ _cleanup_free_ char *base = NULL, *ext = NULL;
+ char *e;
+ int r;
+
+ assert(node);
+ assert(ret_base);
+ assert(ret_ext);
+
+ r = path_extract_filename(node, &base);
+ if (r == O_DIRECTORY || r == -EADDRNOTAVAIL)
+ return log_error_errno(r, "Device node %s cannot be a directory", arg_node);
+ if (r < 0)
+ return log_error_errno(r, "Failed to extract filename from %s: %m", arg_node);
+
+ e = endswith(base, ".raw");
+ if (e) {
+ ext = strdup(e);
+ if (!ext)
+ return log_oom();
+
+ *e = 0;
+ }
+
+ *ret_base = TAKE_PTR(base);
+ *ret_ext = TAKE_PTR(ext);
+
+ return 0;
+}
+
+static int context_split(Context *context) {
+ _cleanup_free_ char *base = NULL, *ext = NULL;
+ _cleanup_close_ int dir_fd = -1;
+ int fd = -1, r;
+
+ if (!arg_split)
+ return 0;
+
+ assert(context);
+ assert(arg_node);
+
+ /* We can't do resolution earlier because the partition UUIDs for verity partitions are only filled
+ * in after they've been generated. */
+
+ r = split_name_resolve(context);
+ if (r < 0)
+ return r;
+
+ r = split_node(arg_node, &base, &ext);
+ if (r < 0)
+ return r;
+
+ dir_fd = r = open_parent(arg_node, O_PATH|O_CLOEXEC, 0);
+ if (r == -EDESTADDRREQ)
+ dir_fd = AT_FDCWD;
+ else if (r < 0)
+ return log_error_errno(r, "Failed to open parent directory of %s: %m", arg_node);
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ _cleanup_free_ char *fname = NULL;
+ _cleanup_close_ int fdt = -1;
+
+ if (p->dropped)
+ continue;
+
+ if (!p->split_name_resolved)
+ continue;
+
+ fname = strjoin(base, ".", p->split_name_resolved, ext);
+ if (!fname)
+ return log_oom();
+
+ fdt = openat(dir_fd, fname, O_WRONLY|O_NOCTTY|O_CLOEXEC|O_NOFOLLOW|O_CREAT|O_EXCL, 0666);
+ if (fdt < 0)
+ return log_error_errno(errno, "Failed to open %s: %m", fname);
+
+ if (fd < 0)
+ assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
+
+ if (lseek(fd, p->offset, SEEK_SET) < 0)
+ return log_error_errno(errno, "Failed to seek to partition offset: %m");
+
+ r = copy_bytes_full(fd, fdt, p->new_size, COPY_REFLINK|COPY_HOLES, NULL, NULL, NULL, NULL);
+ if (r < 0)
+ return log_error_errno(r, "Failed to copy to split partition %s: %m", fname);
+ }
+
+ return 0;
+}
+
+static int context_write_partition_table(
+ Context *context,
+ const char *node,
+ bool from_scratch) {
+
+ _cleanup_(fdisk_unref_tablep) struct fdisk_table *original_table = NULL;
+ int capable, r;
+
+ assert(context);
+
+ if (!from_scratch && !context_changed(context)) {
+ log_info("No changes.");
+ return 0;
+ }
+
+ if (arg_dry_run) {
+ log_notice("Refusing to repartition, please re-run with --dry-run=no.");
+ return 0;
+ }
+
+ log_info("Applying changes.");
+
+ if (from_scratch) {
+ r = context_wipe_range(context, 0, context->total);
+ if (r < 0)
+ return r;
+
+ log_info("Wiped block device.");
+
+ if (arg_discard) {
+ r = context_discard_range(context, 0, context->total);
+ if (r == -EOPNOTSUPP)
+ log_info("Storage does not support discard, not discarding entire block device data.");
+ else if (r < 0)
+ return log_error_errno(r, "Failed to discard entire block device: %m");
+ else if (r > 0)
+ log_info("Discarded entire block device.");
+ }
+ }
+
+ r = fdisk_get_partitions(context->fdisk_context, &original_table);
+ if (r < 0)
+ return log_error_errno(r, "Failed to acquire partition table: %m");
+
+ /* Wipe fs signatures and discard sectors where the new partitions are going to be placed and in the
+ * gaps between partitions, just to be sure. */
+ r = context_wipe_and_discard(context, from_scratch);
+ if (r < 0)
+ return r;
+
+ r = context_copy_blocks(context);
+ if (r < 0)
+ return r;
+
+ r = context_mkfs(context);
+ if (r < 0)
+ return r;
+
+ r = context_verity_hash(context);
+ if (r < 0)
+ return r;
+
+ r = context_verity_sig(context);
+ if (r < 0)
+ return r;
+
+ r = context_mangle_partitions(context);
+ if (r < 0)
+ return r;
+
+ log_info("Writing new partition table.");
+
+ r = fdisk_write_disklabel(context->fdisk_context);
+ if (r < 0)
+ return log_error_errno(r, "Failed to write partition table: %m");
+
+ capable = blockdev_partscan_enabled(fdisk_get_devfd(context->fdisk_context));
+ if (capable == -ENOTBLK)
+ log_debug("Not telling kernel to reread partition table, since we are not operating on a block device.");
+ else if (capable < 0)
+ return log_error_errno(capable, "Failed to check if block device supports partition scanning: %m");
+ else if (capable > 0) {
+ log_info("Telling kernel to reread partition table.");
+
+ if (from_scratch)
+ r = fdisk_reread_partition_table(context->fdisk_context);
+ else
+ r = fdisk_reread_changes(context->fdisk_context, original_table);
+ if (r < 0)
+ return log_error_errno(r, "Failed to reread partition table: %m");
+ } else
+ log_notice("Not telling kernel to reread partition table, because selected image does not support kernel partition block devices.");
+
+ log_info("All done.");
+
+ return 0;
+}
+
+static int context_read_seed(Context *context, const char *root) {
+ int r;
+
+ assert(context);
+
+ if (!sd_id128_is_null(context->seed))
+ return 0;
+
+ if (!arg_randomize) {
+ _cleanup_close_ int fd = -1;
+
+ fd = chase_symlinks_and_open("/etc/machine-id", root, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC, NULL);
+ if (fd == -ENOENT)
+ log_info("No machine ID set, using randomized partition UUIDs.");
+ else if (fd < 0)
+ return log_error_errno(fd, "Failed to determine machine ID of image: %m");
+ else {
+ r = id128_read_fd(fd, ID128_FORMAT_PLAIN, &context->seed);
+ if (IN_SET(r, -ENOMEDIUM, -ENOPKG))
+ log_info("No machine ID set, using randomized partition UUIDs.");
+ else if (r < 0)
+ return log_error_errno(r, "Failed to parse machine ID of image: %m");
+
+ return 0;
+ }
+ }
+
+ r = sd_id128_randomize(&context->seed);
+ if (r < 0)
+ return log_error_errno(r, "Failed to generate randomized seed: %m");
+
+ return 0;
+}
+
+static int context_factory_reset(Context *context, bool from_scratch) {
+ size_t n = 0;
+ int r;
+
+ assert(context);
+
+ if (arg_factory_reset <= 0)
+ return 0;
+
+ if (from_scratch) /* Nothing to reset if we start from scratch */
+ return 0;
+
+ if (arg_dry_run) {
+ log_notice("Refusing to factory reset, please re-run with --dry-run=no.");
+ return 0;
+ }
+
+ log_info("Applying factory reset.");
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+
+ if (!p->factory_reset || !PARTITION_EXISTS(p))
+ continue;
+
+ assert(p->partno != UINT64_MAX);
+
+ log_info("Removing partition %" PRIu64 " for factory reset.", p->partno);
+
+ r = fdisk_delete_partition(context->fdisk_context, p->partno);
+ if (r < 0)
+ return log_error_errno(r, "Failed to remove partition %" PRIu64 ": %m", p->partno);
+
+ n++;
+ }
+
+ if (n == 0) {
+ log_info("Factory reset requested, but no partitions to delete found.");
+ return 0;
+ }
+
+ r = fdisk_write_disklabel(context->fdisk_context);
+ if (r < 0)
+ return log_error_errno(r, "Failed to write disk label: %m");
+
+ log_info("Successfully deleted %zu partitions.", n);
+ return 1;
+}
+
+static int context_can_factory_reset(Context *context) {
+ assert(context);
+
+ LIST_FOREACH(partitions, p, context->partitions)
+ if (p->factory_reset && PARTITION_EXISTS(p))
+ return true;
+
+ return false;
+}
+
+static int resolve_copy_blocks_auto_candidate(
+ dev_t partition_devno,
+ sd_id128_t partition_type_uuid,
+ dev_t restrict_devno,
+ sd_id128_t *ret_uuid) {
+
+ _cleanup_(blkid_free_probep) blkid_probe b = NULL;
+ _cleanup_close_ int fd = -1;
+ _cleanup_free_ char *p = NULL;
+ const char *pttype, *t;
+ sd_id128_t pt_parsed, u;
+ blkid_partition pp;
+ dev_t whole_devno;
+ blkid_partlist pl;
+ int r;
+
+ /* Checks if the specified partition has the specified GPT type UUID, and is located on the specified
+ * 'restrict_devno' device. The type check is particularly relevant if we have Verity volume which is
+ * backed by two separate partitions: the data and the hash partitions, and we need to find the right
+ * one of the two. */
+
+ r = block_get_whole_disk(partition_devno, &whole_devno);
+ if (r < 0)
+ return log_error_errno(
+ r,
+ "Unable to determine containing block device of partition %u:%u: %m",
+ major(partition_devno), minor(partition_devno));
+
+ if (restrict_devno != (dev_t) -1 &&
+ restrict_devno != whole_devno)
+ return log_error_errno(
+ SYNTHETIC_ERRNO(EPERM),
+ "Partition %u:%u is located outside of block device %u:%u, refusing.",
+ major(partition_devno), minor(partition_devno),
+ major(restrict_devno), minor(restrict_devno));
+
+ fd = r = device_open_from_devnum(S_IFBLK, whole_devno, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &p);
+ if (r < 0)
+ return log_error_errno(r, "Failed to open block device " DEVNUM_FORMAT_STR ": %m",
+ DEVNUM_FORMAT_VAL(whole_devno));
+
+ b = blkid_new_probe();
+ if (!b)
+ return log_oom();
+
+ errno = 0;
+ r = blkid_probe_set_device(b, fd, 0, 0);
+ if (r != 0)
+ return log_error_errno(errno_or_else(ENOMEM), "Failed to open block device '%s': %m", p);
+
+ (void) blkid_probe_enable_partitions(b, 1);
+ (void) blkid_probe_set_partitions_flags(b, BLKID_PARTS_ENTRY_DETAILS);
+
+ errno = 0;
+ r = blkid_do_safeprobe(b);
+ if (IN_SET(r, -2, 1)) { /* nothing found or ambiguous result */
+ log_debug("Didn't find partition table on block device '%s'.", p);
+ return false;
+ }
+ if (r != 0)
+ return log_error_errno(errno_or_else(EIO), "Unable to probe for partition table of '%s': %m", p);
+
+ (void) blkid_probe_lookup_value(b, "PTTYPE", &pttype, NULL);
+ if (!streq_ptr(pttype, "gpt")) {
+ log_debug("Didn't find a GPT partition table on '%s'.", p);
+ return false;
+ }
+
+ errno = 0;
+ pl = blkid_probe_get_partitions(b);
+ if (!pl)
+ return log_error_errno(errno_or_else(EIO), "Unable read partition table of '%s': %m", p);
+ errno = 0;
+
+ pp = blkid_partlist_devno_to_partition(pl, partition_devno);
+ if (!pp) {
+ log_debug("Partition %u:%u has no matching partition table entry on '%s'.",
+ major(partition_devno), minor(partition_devno), p);
+ return false;
+ }
+
+ t = blkid_partition_get_type_string(pp);
+ if (isempty(t)) {
+ log_debug("Partition %u:%u has no type on '%s'.",
+ major(partition_devno), minor(partition_devno), p);
+ return false;
+ }
+
+ r = sd_id128_from_string(t, &pt_parsed);
+ if (r < 0) {
+ log_debug_errno(r, "Failed to parse partition type \"%s\": %m", t);
+ return false;
+ }
+
+ if (!sd_id128_equal(pt_parsed, partition_type_uuid)) {
+ log_debug("Partition %u:%u has non-matching partition type " SD_ID128_FORMAT_STR " (needed: " SD_ID128_FORMAT_STR "), ignoring.",
+ major(partition_devno), minor(partition_devno),
+ SD_ID128_FORMAT_VAL(pt_parsed), SD_ID128_FORMAT_VAL(partition_type_uuid));
+ return false;
+ }
+
+ t = blkid_partition_get_uuid(pp);
+ if (isempty(t)) {
+ log_debug("Partition %u:%u has no UUID.",
+ major(partition_devno), minor(partition_devno));
+ return false;
+ }
+
+ r = sd_id128_from_string(t, &u);
+ if (r < 0) {
+ log_debug_errno(r, "Failed to parse partition UUID \"%s\": %m", t);
+ return false;
+ }
+
+ log_debug("Automatically found partition %u:%u of right type " SD_ID128_FORMAT_STR ".",
+ major(partition_devno), minor(partition_devno),
+ SD_ID128_FORMAT_VAL(pt_parsed));
+
+ if (ret_uuid)
+ *ret_uuid = u;
+
+ return true;
+}
+
+static int find_backing_devno(
+ const char *path,
+ const char *root,
+ dev_t *ret) {
+
+ _cleanup_free_ char *resolved = NULL;
+ int r;
+
+ assert(path);
+
+ r = chase_symlinks(path, root, CHASE_PREFIX_ROOT, &resolved, NULL);
+ if (r < 0)
+ return r;
+
+ r = path_is_mount_point(resolved, NULL, 0);
+ if (r < 0)
+ return r;
+ if (r == 0) /* Not a mount point, then it's not a partition of its own, let's not automatically use it. */
+ return -ENOENT;
+
+ r = get_block_device(resolved, ret);
+ if (r < 0)
+ return r;
+ if (r == 0) /* Not backed by physical file system, we can't use this */
+ return -ENOENT;
+
+ return 0;
+}
+
+static int resolve_copy_blocks_auto(
+ sd_id128_t type_uuid,
+ const char *root,
+ dev_t restrict_devno,
+ dev_t *ret_devno,
+ sd_id128_t *ret_uuid) {
+
+ const char *try1 = NULL, *try2 = NULL;
+ char p[SYS_BLOCK_PATH_MAX("/slaves")];
+ _cleanup_(closedirp) DIR *d = NULL;
+ sd_id128_t found_uuid = SD_ID128_NULL;
+ dev_t devno, found = 0;
+ int r;
+
+ /* Enforce some security restrictions: CopyBlocks=auto should not be an avenue to get outside of the
+ * --root=/--image= confinement. Specifically, refuse CopyBlocks= in combination with --root= at all,
+ * and restrict block device references in the --image= case to loopback block device we set up.
+ *
+ * restrict_devno contain the dev_t of the loop back device we operate on in case of --image=, and
+ * thus declares which device (and its partition subdevices) we shall limit access to. If
+ * restrict_devno is zero no device probing access shall be allowed at all (used for --root=) and if
+ * it is (dev_t) -1 then free access shall be allowed (if neither switch is used). */
+
+ if (restrict_devno == 0)
+ return log_error_errno(SYNTHETIC_ERRNO(EPERM),
+ "Automatic discovery of backing block devices not permitted in --root= mode, refusing.");
+
+ /* Handles CopyBlocks=auto, and finds the right source partition to copy from. We look for matching
+ * partitions in the host, using the appropriate directory as key and ensuring that the partition
+ * type matches. */
+
+ if (gpt_partition_type_is_root(type_uuid))
+ try1 = "/";
+ else if (gpt_partition_type_is_usr(type_uuid))
+ try1 = "/usr/";
+ else if (gpt_partition_type_is_root_verity(type_uuid))
+ try1 = "/";
+ else if (gpt_partition_type_is_usr_verity(type_uuid))
+ try1 = "/usr/";
+ else if (sd_id128_equal(type_uuid, SD_GPT_ESP)) {
+ try1 = "/efi/";
+ try2 = "/boot/";
+ } else if (sd_id128_equal(type_uuid, SD_GPT_XBOOTLDR))
+ try1 = "/boot/";
+ else
+ return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP),
+ "Partition type " SD_ID128_FORMAT_STR " not supported from automatic source block device discovery.",
+ SD_ID128_FORMAT_VAL(type_uuid));
+
+ r = find_backing_devno(try1, root, &devno);
+ if (r == -ENOENT && try2)
+ r = find_backing_devno(try2, root, &devno);
+ if (r < 0)
+ return log_error_errno(r, "Failed to resolve automatic CopyBlocks= path for partition type " SD_ID128_FORMAT_STR ", sorry: %m",
+ SD_ID128_FORMAT_VAL(type_uuid));
+
+ xsprintf_sys_block_path(p, "/slaves", devno);
+ d = opendir(p);
+ if (d) {
+ struct dirent *de;
+
+ for (;;) {
+ _cleanup_free_ char *q = NULL, *t = NULL;
+ sd_id128_t u;
+ dev_t sl;
+
+ errno = 0;
+ de = readdir_no_dot(d);
+ if (!de) {
+ if (errno != 0)
+ return log_error_errno(errno, "Failed to read directory '%s': %m", p);
+
+ break;
+ }
+
+ if (!IN_SET(de->d_type, DT_LNK, DT_UNKNOWN))
+ continue;
+
+ q = path_join(p, de->d_name, "/dev");
+ if (!q)
+ return log_oom();
+
+ r = read_one_line_file(q, &t);
+ if (r < 0)
+ return log_error_errno(r, "Failed to read %s: %m", q);
+
+ r = parse_devnum(t, &sl);
+ if (r < 0) {
+ log_debug_errno(r, "Failed to parse %s, ignoring: %m", q);
+ continue;
+ }
+ if (major(sl) == 0) {
+ log_debug("Device backing %s is special, ignoring.", q);
+ continue;
+ }
+
+ r = resolve_copy_blocks_auto_candidate(sl, type_uuid, restrict_devno, &u);
+ if (r < 0)
+ return r;
+ if (r > 0) {
+ /* We found a matching one! */
+ if (found != 0)
+ return log_error_errno(SYNTHETIC_ERRNO(ENOTUNIQ),
+ "Multiple matching partitions found, refusing.");
+
+ found = sl;
+ found_uuid = u;
+ }
+ }
+ } else if (errno != ENOENT)
+ return log_error_errno(errno, "Failed open %s: %m", p);
+ else {
+ r = resolve_copy_blocks_auto_candidate(devno, type_uuid, restrict_devno, &found_uuid);
+ if (r < 0)
+ return r;
+ if (r > 0)
+ found = devno;
+ }
+
+ if (found == 0)
+ return log_error_errno(SYNTHETIC_ERRNO(ENXIO),
+ "Unable to automatically discover suitable partition to copy blocks from.");
+
+ if (ret_devno)
+ *ret_devno = found;
+
+ if (ret_uuid)
+ *ret_uuid = found_uuid;
+
+ return 0;
+}
+
+static int context_open_copy_block_paths(
+ Context *context,
+ const char *root,
+ dev_t restrict_devno) {
+
+ int r;
+
+ assert(context);
+
+ LIST_FOREACH(partitions, p, context->partitions) {
+ _cleanup_close_ int source_fd = -1;
+ _cleanup_free_ char *opened = NULL;
+ sd_id128_t uuid = SD_ID128_NULL;
+ uint64_t size;
+ struct stat st;
+
+ assert(p->copy_blocks_fd < 0);
+ assert(p->copy_blocks_size == UINT64_MAX);
+
+ if (PARTITION_EXISTS(p)) /* Never copy over partitions that already exist! */
+ continue;
+
+ if (p->copy_blocks_path) {
+
+ source_fd = chase_symlinks_and_open(p->copy_blocks_path, root, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &opened);
+ if (source_fd < 0)
+ return log_error_errno(source_fd, "Failed to open '%s': %m", p->copy_blocks_path);
+
+ if (fstat(source_fd, &st) < 0)
+ return log_error_errno(errno, "Failed to stat block copy file '%s': %m", opened);
+
+ if (!S_ISREG(st.st_mode) && restrict_devno != (dev_t) -1)
+ return log_error_errno(SYNTHETIC_ERRNO(EPERM),
+ "Copying from block device node is not permitted in --image=/--root= mode, refusing.");
+
+ } else if (p->copy_blocks_auto) {
+ dev_t devno = 0; /* Fake initialization to appease gcc. */
+
+ r = resolve_copy_blocks_auto(p->type_uuid, root, restrict_devno, &devno, &uuid);
+ if (r < 0)
+ return r;
+ assert(devno != 0);
+
+ source_fd = r = device_open_from_devnum(S_IFBLK, devno, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &opened);
+ if (r < 0)
+ return log_error_errno(r, "Failed to open automatically determined source block copy device " DEVNUM_FORMAT_STR ": %m",
+ DEVNUM_FORMAT_VAL(devno));
+
+ if (fstat(source_fd, &st) < 0)
+ return log_error_errno(errno, "Failed to stat block copy file '%s': %m", opened);
+ } else
+ continue;
+
+ if (S_ISDIR(st.st_mode)) {
+ _cleanup_free_ char *bdev = NULL;
+ dev_t devt;
+
+ /* If the file is a directory, automatically find the backing block device */
+
+ if (major(st.st_dev) != 0)
+ devt = st.st_dev;
+ else {
+ /* Special support for btrfs */
+ r = btrfs_get_block_device_fd(source_fd, &devt);
+ if (r == -EUCLEAN)
+ return btrfs_log_dev_root(LOG_ERR, r, opened);
+ if (r < 0)
+ return log_error_errno(r, "Unable to determine backing block device of '%s': %m", opened);
+ }
+
+ safe_close(source_fd);
+
+ source_fd = r = device_open_from_devnum(S_IFBLK, devt, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &bdev);
+ if (r < 0)
+ return log_error_errno(r, "Failed to open block device backing '%s': %m", opened);
+
+ if (fstat(source_fd, &st) < 0)
+ return log_error_errno(errno, "Failed to stat block device '%s': %m", bdev);
+ }
+
+ if (S_ISREG(st.st_mode))
+ size = st.st_size;
+ else if (S_ISBLK(st.st_mode)) {
+ if (ioctl(source_fd, BLKGETSIZE64, &size) != 0)
+ return log_error_errno(errno, "Failed to determine size of block device to copy from: %m");
+ } else
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Specified path to copy blocks from '%s' is not a regular file, block device or directory, refusing: %m", opened);
+
+ if (size <= 0)
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has zero size, refusing.", opened);
+ if (size % 512 != 0)
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has size that is not multiple of 512, refusing.", opened);
+
+ p->copy_blocks_fd = TAKE_FD(source_fd);
+ p->copy_blocks_size = size;
+
+ free_and_replace(p->copy_blocks_path, opened);
+
+ /* When copying from an existing partition copy that partitions UUID if none is configured explicitly */
+ if (!p->new_uuid_is_set && !sd_id128_is_null(uuid)) {
+ p->new_uuid = uuid;
+ p->new_uuid_is_set = true;
+ }
+ }
+
+ return 0;
+}
+
+static int help(void) {
+ _cleanup_free_ char *link = NULL;
+ int r;
+
+ r = terminal_urlify_man("systemd-repart", "8", &link);
+ if (r < 0)
+ return log_oom();
+
+ printf("%s [OPTIONS...] [DEVICE]\n"
+ "\n%sGrow and add partitions to partition table.%s\n\n"
+ " -h --help Show this help\n"
+ " --version Show package version\n"
+ " --no-pager Do not pipe output into a pager\n"
+ " --no-legend Do not show the headers and footers\n"
+ " --dry-run=BOOL Whether to run dry-run operation\n"
+ " --empty=MODE One of refuse, allow, require, force, create; controls\n"
+ " how to handle empty disks lacking partition tables\n"
+ " --discard=BOOL Whether to discard backing blocks for new partitions\n"
+ " --pretty=BOOL Whether to show pretty summary before doing changes\n"
+ " --factory-reset=BOOL Whether to remove data partitions before recreating\n"
+ " them\n"
+ " --can-factory-reset Test whether factory reset is defined\n"
+ " --root=PATH Operate relative to root path\n"
+ " --image=PATH Operate relative to image file\n"
+ " --definitions=DIR Find partition definitions in specified directory\n"
+ " --key-file=PATH Key to use when encrypting partitions\n"
+ " --private-key=PATH Private key to use when generating verity roothash\n"
+ " signatures\n"
+ " --certificate=PATH PEM certificate to use when generating verity\n"
+ " roothash signatures\n"
+ " --tpm2-device=PATH Path to TPM2 device node to use\n"
+ " --tpm2-pcrs=PCR1+PCR2+PCR3+…\n"
+ " TPM2 PCR indexes to use for TPM2 enrollment\n"
+ " --tpm2-public-key=PATH\n"
+ " Enroll signed TPM2 PCR policy against PEM public key\n"
+ " --tpm2-public-key-pcrs=PCR1+PCR2+PCR3+…\n"
+ " Enroll signed TPM2 PCR policy for specified TPM2 PCRs\n"
+ " --seed=UUID 128bit seed UUID to derive all UUIDs from\n"
+ " --size=BYTES Grow loopback file to specified size\n"
+ " --json=pretty|short|off\n"
+ " Generate JSON output\n"
+ " --split=BOOL Whether to generate split artifacts\n"
+ "\nSee the %s for details.\n",
+ program_invocation_short_name,
+ ansi_highlight(),
+ ansi_normal(),
+ link);
+
+ return 0;
+}
+
+static int parse_argv(int argc, char *argv[]) {
+
+ enum {
+ ARG_VERSION = 0x100,
+ ARG_NO_PAGER,
+ ARG_NO_LEGEND,
+ ARG_DRY_RUN,
+ ARG_EMPTY,
+ ARG_DISCARD,
+ ARG_FACTORY_RESET,
+ ARG_CAN_FACTORY_RESET,
+ ARG_ROOT,
+ ARG_IMAGE,
+ ARG_SEED,
+ ARG_PRETTY,
+ ARG_DEFINITIONS,
+ ARG_SIZE,
+ ARG_JSON,
+ ARG_KEY_FILE,
+ ARG_PRIVATE_KEY,
+ ARG_CERTIFICATE,
+ ARG_TPM2_DEVICE,
+ ARG_TPM2_PCRS,
+ ARG_TPM2_PUBLIC_KEY,
+ ARG_TPM2_PUBLIC_KEY_PCRS,
+ ARG_SPLIT,
+ };
+
+ static const struct option options[] = {
+ { "help", no_argument, NULL, 'h' },
+ { "version", no_argument, NULL, ARG_VERSION },
+ { "no-pager", no_argument, NULL, ARG_NO_PAGER },
+ { "no-legend", no_argument, NULL, ARG_NO_LEGEND },
+ { "dry-run", required_argument, NULL, ARG_DRY_RUN },
+ { "empty", required_argument, NULL, ARG_EMPTY },
+ { "discard", required_argument, NULL, ARG_DISCARD },
+ { "factory-reset", required_argument, NULL, ARG_FACTORY_RESET },
+ { "can-factory-reset", no_argument, NULL, ARG_CAN_FACTORY_RESET },
+ { "root", required_argument, NULL, ARG_ROOT },
+ { "image", required_argument, NULL, ARG_IMAGE },
+ { "seed", required_argument, NULL, ARG_SEED },
+ { "pretty", required_argument, NULL, ARG_PRETTY },
+ { "definitions", required_argument, NULL, ARG_DEFINITIONS },
+ { "size", required_argument, NULL, ARG_SIZE },
+ { "json", required_argument, NULL, ARG_JSON },
+ { "key-file", required_argument, NULL, ARG_KEY_FILE },
+ { "private-key", required_argument, NULL, ARG_PRIVATE_KEY },
+ { "certificate", required_argument, NULL, ARG_CERTIFICATE },
+ { "tpm2-device", required_argument, NULL, ARG_TPM2_DEVICE },
+ { "tpm2-pcrs", required_argument, NULL, ARG_TPM2_PCRS },
+ { "tpm2-public-key", required_argument, NULL, ARG_TPM2_PUBLIC_KEY },
+ { "tpm2-public-key-pcrs", required_argument, NULL, ARG_TPM2_PUBLIC_KEY_PCRS },
+ { "split", required_argument, NULL, ARG_SPLIT },
+ {}
+ };
+
+ int c, r, dry_run = -1;
+
+ assert(argc >= 0);
+ assert(argv);
+
+ while ((c = getopt_long(argc, argv, "h", options, NULL)) >= 0)
+
+ switch (c) {
+
+ case 'h':
+ return help();
+
+ case ARG_VERSION:
+ return version();
+
+ case ARG_NO_PAGER:
+ arg_pager_flags |= PAGER_DISABLE;
+ break;
+
+ case ARG_NO_LEGEND:
+ arg_legend = false;
+ break;
+
+ case ARG_DRY_RUN:
+ r = parse_boolean_argument("--dry-run=", optarg, &arg_dry_run);
+ if (r < 0)
+ return r;
+ break;
+
+ case ARG_EMPTY:
+ if (isempty(optarg) || streq(optarg, "refuse"))
+ arg_empty = EMPTY_REFUSE;
+ else if (streq(optarg, "allow"))
+ arg_empty = EMPTY_ALLOW;
+ else if (streq(optarg, "require"))
+ arg_empty = EMPTY_REQUIRE;
+ else if (streq(optarg, "force"))
+ arg_empty = EMPTY_FORCE;
+ else if (streq(optarg, "create")) {
+ arg_empty = EMPTY_CREATE;
+
+ if (dry_run < 0)
+ dry_run = false; /* Imply --dry-run=no if we create the loopback file
+ * anew. After all we cannot really break anyone's
+ * partition tables that way. */
+ } else
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
+ "Failed to parse --empty= parameter: %s", optarg);
+ break;
+
+ case ARG_DISCARD:
+ r = parse_boolean_argument("--discard=", optarg, &arg_discard);
+ if (r < 0)
+ return r;
+ break;
+
+ case ARG_FACTORY_RESET:
+ r = parse_boolean_argument("--factory-reset=", optarg, NULL);
+ if (r < 0)
+ return r;
+ arg_factory_reset = r;
+ break;
+
+ case ARG_CAN_FACTORY_RESET:
+ arg_can_factory_reset = true;
+ break;
+
+ case ARG_ROOT:
+ r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_root);
+ if (r < 0)
+ return r;
+ break;
+
+ case ARG_IMAGE:
+ r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_image);
+ if (r < 0)
+ return r;
+ break;
+
+ case ARG_SEED:
+ if (isempty(optarg)) {
+ arg_seed = SD_ID128_NULL;
+ arg_randomize = false;
+ } else if (streq(optarg, "random"))
+ arg_randomize = true;
+ else {
+ r = sd_id128_from_string(optarg, &arg_seed);
+ if (r < 0)
+ return log_error_errno(r, "Failed to parse seed: %s", optarg);
+
+ arg_randomize = false;
+ }
+
+ break;
+
+ case ARG_PRETTY:
+ r = parse_boolean_argument("--pretty=", optarg, NULL);
+ if (r < 0)
+ return r;
+ arg_pretty = r;
+ break;
+
+ case ARG_DEFINITIONS: {
+ _cleanup_free_ char *path = NULL;
+ r = parse_path_argument(optarg, false, &path);
+ if (r < 0)
+ return r;
+ if (strv_consume(&arg_definitions, TAKE_PTR(path)) < 0)
+ return log_oom();
+ break;
+ }
+
+ case ARG_SIZE: {
+ uint64_t parsed, rounded;
+
+ if (streq(optarg, "auto")) {
+ arg_size = UINT64_MAX;
+ arg_size_auto = true;
+ break;
+ }
+
+ r = parse_size(optarg, 1024, &parsed);
+ if (r < 0)
+ return log_error_errno(r, "Failed to parse --size= parameter: %s", optarg);
+
+ rounded = round_up_size(parsed, 4096);
+ if (rounded == 0)
+ return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too small, refusing.");
+ if (rounded == UINT64_MAX)
+ return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too large, refusing.");
+
+ if (rounded != parsed)
+ log_warning("Specified size is not a multiple of 4096, rounding up automatically. (%" PRIu64 " %s %" PRIu64 ")",
+ parsed, special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), rounded);
+
+ arg_size = rounded;
+ arg_size_auto = false;
+ break;
+ }
+
+ case ARG_JSON:
+ r = parse_json_argument(optarg, &arg_json_format_flags);
+ if (r <= 0)
+ return r;
+
+ break;
+
+ case ARG_KEY_FILE: {
+ _cleanup_(erase_and_freep) char *k = NULL;
+ size_t n = 0;
+
+ r = read_full_file_full(
+ AT_FDCWD, optarg, UINT64_MAX, SIZE_MAX,
+ READ_FULL_FILE_SECURE|READ_FULL_FILE_WARN_WORLD_READABLE|READ_FULL_FILE_CONNECT_SOCKET,
+ NULL,
+ &k, &n);
+ if (r < 0)
+ return log_error_errno(r, "Failed to read key file '%s': %m", optarg);
+
+ erase_and_free(arg_key);
+ arg_key = TAKE_PTR(k);
+ arg_key_size = n;
+ break;
+ }
+
+ case ARG_PRIVATE_KEY: {
+ _cleanup_(erase_and_freep) char *k = NULL;
+ size_t n = 0;
+
+ r = read_full_file_full(
+ AT_FDCWD, optarg, UINT64_MAX, SIZE_MAX,
+ READ_FULL_FILE_SECURE|READ_FULL_FILE_WARN_WORLD_READABLE|READ_FULL_FILE_CONNECT_SOCKET,
+ NULL,
+ &k, &n);
+ if (r < 0)
+ return log_error_errno(r, "Failed to read key file '%s': %m", optarg);
+
+ EVP_PKEY_free(arg_private_key);
+ arg_private_key = NULL;
+ r = parse_private_key(k, n, &arg_private_key);
+ if (r < 0)
+ return r;
+ break;
+ }
+
+ case ARG_CERTIFICATE: {
+ _cleanup_free_ char *cert = NULL;
+ size_t n = 0;
+
+ r = read_full_file_full(
+ AT_FDCWD, optarg, UINT64_MAX, SIZE_MAX,
+ READ_FULL_FILE_CONNECT_SOCKET,
+ NULL,
+ &cert, &n);
+ if (r < 0)
+ return log_error_errno(r, "Failed to read certificate file '%s': %m", optarg);
+
+ X509_free(arg_certificate);
+ arg_certificate = NULL;
+ r = parse_x509_certificate(cert, n, &arg_certificate);
+ if (r < 0)
+ return r;
+ break;
+ }
+
+ case ARG_TPM2_DEVICE: {
+ _cleanup_free_ char *device = NULL;
+
+ if (streq(optarg, "list"))
+ return tpm2_list_devices();
+
+ if (!streq(optarg, "auto")) {
+ device = strdup(optarg);
+ if (!device)
+ return log_oom();
+ }
+
+ free(arg_tpm2_device);
+ arg_tpm2_device = TAKE_PTR(device);
+ break;
+ }
+
+ case ARG_TPM2_PCRS:
+ r = tpm2_parse_pcr_argument(optarg, &arg_tpm2_pcr_mask);
+ if (r < 0)
+ return r;
+
+ break;
+
+ case ARG_TPM2_PUBLIC_KEY:
+ r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_tpm2_public_key);
+ if (r < 0)
+ return r;
+
+ break;
+
+ case ARG_TPM2_PUBLIC_KEY_PCRS:
+ r = tpm2_parse_pcr_argument(optarg, &arg_tpm2_public_key_pcr_mask);
+ if (r < 0)
+ return r;
+
+ break;
+
+ case ARG_SPLIT:
+ r = parse_boolean_argument("--split=", optarg, NULL);
+ if (r < 0)
+ return r;
+
+ arg_split = r;
+ break;
+
+ case '?':
+ return -EINVAL;
+
+ default:
+ assert_not_reached();
+ }
+
+ if (argc - optind > 1)
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
+ "Expected at most one argument, the path to the block device.");
+
+ if (arg_factory_reset > 0 && IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE))
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
+ "Combination of --factory-reset=yes and --empty=force/--empty=require/--empty=create is invalid.");
+
+ if (arg_can_factory_reset)
+ arg_dry_run = true; /* When --can-factory-reset is specified we don't make changes, hence
+ * non-dry-run mode makes no sense. Thus, imply dry run mode so that we
+ * open things strictly read-only. */
+ else if (dry_run >= 0)
+ arg_dry_run = dry_run;
+
+ if (arg_empty == EMPTY_CREATE && (arg_size == UINT64_MAX && !arg_size_auto))
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
+ "If --empty=create is specified, --size= must be specified, too.");
+
+ if (arg_image && arg_root)
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Please specify either --root= or --image=, the combination of both is not supported.");
+ else if (!arg_image && !arg_root && in_initrd()) {
+
+ /* By default operate on /sysusr/ or /sysroot/ when invoked in the initrd. We prefer the
+ * former, if it is mounted, so that we have deterministic behaviour on systems where /usr/
+ * is vendor-supplied but the root fs formatted on first boot. */
+ r = path_is_mount_point("/sysusr/usr", NULL, 0);
+ if (r <= 0) {
+ if (r < 0 && r != -ENOENT)
+ log_debug_errno(r, "Unable to determine whether /sysusr/usr is a mount point, assuming it is not: %m");
+
+ arg_root = strdup("/sysroot");
+ } else
+ arg_root = strdup("/sysusr");
+ if (!arg_root)
+ return log_oom();
+ }
+
+ arg_node = argc > optind ? argv[optind] : NULL;
+
+ if (IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE) && !arg_node && !arg_image)
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
+ "A path to a device node or loopback file must be specified when --empty=force, --empty=require or --empty=create are used.");
+
+ if (arg_split && !arg_node)
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
+ "A path to a loopback file must be specified when --split is used.");
+
+ if (arg_tpm2_pcr_mask == UINT32_MAX)
+ arg_tpm2_pcr_mask = TPM2_PCR_MASK_DEFAULT;
+ if (arg_tpm2_public_key_pcr_mask == UINT32_MAX)
+ arg_tpm2_public_key_pcr_mask = UINT32_C(1) << TPM_PCR_INDEX_KERNEL_IMAGE;
+
+ if (arg_pretty < 0 && isatty(STDOUT_FILENO))
+ arg_pretty = true;
+
+ return 1;
+}
+
+static int parse_proc_cmdline_factory_reset(void) {
+ bool b;
+ int r;
+
+ if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */
+ return 0;
+
+ if (!in_initrd()) /* Never honour kernel command line factory reset request outside of the initrd */
+ return 0;
+
+ r = proc_cmdline_get_bool("systemd.factory_reset", &b);
+ if (r < 0)
+ return log_error_errno(r, "Failed to parse systemd.factory_reset kernel command line argument: %m");
+ if (r > 0) {
+ arg_factory_reset = b;
+
+ if (b)
+ log_notice("Honouring factory reset requested via kernel command line.");
+ }
+
+ return 0;
+}
+
+static int parse_efi_variable_factory_reset(void) {
+ _cleanup_free_ char *value = NULL;
+ int r;
+
+ if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */
+ return 0;
+
+ if (!in_initrd()) /* Never honour EFI variable factory reset request outside of the initrd */
+ return 0;
+
+ r = efi_get_variable_string(EFI_SYSTEMD_VARIABLE(FactoryReset), &value);
+ if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r))
+ return 0;
+ if (r < 0)
+ return log_error_errno(r, "Failed to read EFI variable FactoryReset: %m");
+
+ r = parse_boolean(value);
+ if (r < 0)
+ return log_error_errno(r, "Failed to parse EFI variable FactoryReset: %m");
+
+ arg_factory_reset = r;
+ if (r)
+ log_notice("Factory reset requested via EFI variable FactoryReset.");
+
+ return 0;
+}
+
+static int remove_efi_variable_factory_reset(void) {
+ int r;
+
+ r = efi_set_variable(EFI_SYSTEMD_VARIABLE(FactoryReset), NULL, 0);
+ if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r))
+ return 0;
+ if (r < 0)
+ return log_error_errno(r, "Failed to remove EFI variable FactoryReset: %m");
+
+ log_info("Successfully unset EFI variable FactoryReset.");
+ return 0;
+}
+
+static int acquire_root_devno(
+ const char *p,
+ const char *root,
+ int mode,
+ char **ret,
+ int *ret_fd) {
+
+ _cleanup_free_ char *found_path = NULL, *node = NULL;
+ dev_t devno, fd_devno = MODE_INVALID;
+ _cleanup_close_ int fd = -1;
+ struct stat st;
+ int r;
+
+ assert(p);
+ assert(ret);
+ assert(ret_fd);
+
+ fd = chase_symlinks_and_open(p, root, CHASE_PREFIX_ROOT, mode, &found_path);
+ if (fd < 0)
+ return fd;
+
+ if (fstat(fd, &st) < 0)
+ return -errno;
+
+ if (S_ISREG(st.st_mode)) {
+ *ret = TAKE_PTR(found_path);
+ *ret_fd = TAKE_FD(fd);
+ return 0;
+ }
+
+ if (S_ISBLK(st.st_mode)) {
+ /* Refuse referencing explicit block devices if a root dir is specified, after all we should
+ * not be able to leave the image the root path constrains us to. */
+ if (root)
+ return -EPERM;
+
+ fd_devno = devno = st.st_rdev;
+ } else if (S_ISDIR(st.st_mode)) {
+
+ devno = st.st_dev;
+ if (major(devno) == 0) {
+ r = btrfs_get_block_device_fd(fd, &devno);
+ if (r == -ENOTTY) /* not btrfs */
+ return -ENODEV;
+ if (r < 0)
+ return r;
+ }
+ } else
+ return -ENOTBLK;
+
+ /* From dm-crypt to backing partition */
+ r = block_get_originating(devno, &devno);
+ if (r == -ENOENT)
+ log_debug_errno(r, "Device '%s' has no dm-crypt/dm-verity device, no need to look for underlying block device.", p);
+ else if (r < 0)
+ log_debug_errno(r, "Failed to find underlying block device for '%s', ignoring: %m", p);
+
+ /* From partition to whole disk containing it */
+ r = block_get_whole_disk(devno, &devno);
+ if (r < 0)
+ log_debug_errno(r, "Failed to find whole disk block device for '%s', ignoring: %m", p);
+
+ r = devname_from_devnum(S_IFBLK, devno, &node);
+ if (r < 0)
+ return log_debug_errno(r, "Failed to determine canonical path for '%s': %m", p);
+
+ /* Only if we still look at the same block device we can reuse the fd. Otherwise return an
+ * invalidated fd. */
+ if (fd_devno != MODE_INVALID && fd_devno == devno) {
+ /* Tell udev not to interfere while we are processing the device */
+ if (flock(fd, arg_dry_run ? LOCK_SH : LOCK_EX) < 0)
+ return log_error_errno(errno, "Failed to lock device '%s': %m", node);
+
+ *ret_fd = TAKE_FD(fd);
+ } else
+ *ret_fd = -EBADF;
+
+ *ret = TAKE_PTR(node);
+ return 0;
+}
+
+static int find_root(char **ret, int *ret_fd) {
+ _cleanup_free_ char *device = NULL;
+ int r;
+
+ assert(ret);
+ assert(ret_fd);
+
+ if (arg_node) {
+ if (arg_empty == EMPTY_CREATE) {
+ _cleanup_close_ int fd = -1;
+ _cleanup_free_ char *s = NULL;
+
+ s = strdup(arg_node);
+ if (!s)
+ return log_oom();
+
+ fd = open(arg_node, O_RDONLY|O_CREAT|O_EXCL|O_CLOEXEC|O_NOFOLLOW, 0666);
+ if (fd < 0)
+ return log_error_errno(errno, "Failed to create '%s': %m", arg_node);
+
+ *ret = TAKE_PTR(s);
+ *ret_fd = TAKE_FD(fd);
+ return 0;
+ }
+
+ /* Note that we don't specify a root argument here: if the user explicitly configured a node
+ * we'll take it relative to the host, not the image */
+ r = acquire_root_devno(arg_node, NULL, O_RDONLY|O_CLOEXEC, ret, ret_fd);
+ if (r == -EUCLEAN)
+ return btrfs_log_dev_root(LOG_ERR, r, arg_node);
+ if (r < 0)
+ return log_error_errno(r, "Failed to open file or determine backing device of %s: %m", arg_node);
+
+ return 0;
+ }
+
+ assert(IN_SET(arg_empty, EMPTY_REFUSE, EMPTY_ALLOW));
+
+ /* If the root mount has been replaced by some form of volatile file system (overlayfs), the
+ * original root block device node is symlinked in /run/systemd/volatile-root. Let's read that
+ * here. */
+ r = readlink_malloc("/run/systemd/volatile-root", &device);
+ if (r == -ENOENT) { /* volatile-root not found */
+ /* Let's search for the root device. We look for two cases here: first in /, and then in /usr. The
+ * latter we check for cases where / is a tmpfs and only /usr is an actual persistent block device
+ * (think: volatile setups) */
+
+ FOREACH_STRING(p, "/", "/usr") {
+
+ r = acquire_root_devno(p, arg_root, O_RDONLY|O_DIRECTORY|O_CLOEXEC, ret, ret_fd);
+ if (r < 0) {
+ if (r == -EUCLEAN)
+ return btrfs_log_dev_root(LOG_ERR, r, p);
+ if (r != -ENODEV)
+ return log_error_errno(r, "Failed to determine backing device of %s: %m", p);
+ } else
+ return 0;
+ }
+ } else if (r < 0)
+ return log_error_errno(r, "Failed to read symlink /run/systemd/volatile-root: %m");
+ else {
+ r = acquire_root_devno(device, NULL, O_RDONLY|O_CLOEXEC, ret, ret_fd);
+ if (r == -EUCLEAN)
+ return btrfs_log_dev_root(LOG_ERR, r, device);
+ if (r < 0)
+ return log_error_errno(r, "Failed to open file or determine backing device of %s: %m", device);
+
+ return 0;
+ }
+
+ return log_error_errno(SYNTHETIC_ERRNO(ENODEV), "Failed to discover root block device.");
+}
+
+static int resize_pt(int fd) {
+ _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL;
+ int r;
+
+ /* After resizing the backing file we need to resize the partition table itself too, so that it takes
+ * possession of the enlarged backing file. For this it suffices to open the device with libfdisk and
+ * immediately write it again, with no changes. */
+
+ c = fdisk_new_context();
+ if (!c)
+ return log_oom();
+
+ r = fdisk_assign_device(c, FORMAT_PROC_FD_PATH(fd), 0);
+ if (r < 0)
+ return log_error_errno(r, "Failed to open device '%s': %m", FORMAT_PROC_FD_PATH(fd));
+
+ r = fdisk_has_label(c);
+ if (r < 0)
+ return log_error_errno(r, "Failed to determine whether disk '%s' has a disk label: %m", FORMAT_PROC_FD_PATH(fd));
+ if (r == 0) {
+ log_debug("Not resizing partition table, as there currently is none.");
+ return 0;
+ }
+
+ r = fdisk_write_disklabel(c);
+ if (r < 0)
+ return log_error_errno(r, "Failed to write resized partition table: %m");
+
+ log_info("Resized partition table.");
+ return 1;
+}
+
+static int resize_backing_fd(
+ const char *node, /* The primary way we access the disk image to operate on */
+ int *fd, /* An O_RDONLY fd referring to that inode */
+ const char *backing_file, /* If the above refers to a loopback device, the backing regular file for that, which we can grow */
+ LoopDevice *loop_device) {
+
+ _cleanup_close_ int writable_fd = -1;
+ uint64_t current_size;
+ struct stat st;
+ int r;
+
+ assert(node);
+ assert(fd);
+
+ if (arg_size == UINT64_MAX) /* Nothing to do */
+ return 0;
+
+ if (*fd < 0) {
+ /* Open the file if we haven't opened it yet. Note that we open it read-only here, just to
+ * keep a reference to the file we can pass around. */
+ *fd = open(node, O_RDONLY|O_CLOEXEC);
+ if (*fd < 0)
+ return log_error_errno(errno, "Failed to open '%s' in order to adjust size: %m", node);
+ }
+
+ if (fstat(*fd, &st) < 0)
+ return log_error_errno(errno, "Failed to stat '%s': %m", node);
+
+ if (S_ISBLK(st.st_mode)) {
+ if (!backing_file)
+ return log_error_errno(SYNTHETIC_ERRNO(EBADF), "Cannot resize block device '%s'.", node);
+
+ assert(loop_device);
+
+ if (ioctl(*fd, BLKGETSIZE64, &current_size) < 0)
+ return log_error_errno(errno, "Failed to determine size of block device %s: %m", node);
+ } else {
+ r = stat_verify_regular(&st);
+ if (r < 0)
+ return log_error_errno(r, "Specified path '%s' is not a regular file or loopback block device, cannot resize: %m", node);
+
+ assert(!backing_file);
+ assert(!loop_device);
+ current_size = st.st_size;
+ }
+
+ if (current_size >= arg_size) {
+ log_info("File '%s' already is of requested size or larger, not growing. (%s >= %s)",
+ node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size));
+ return 0;
+ }
+
+ if (S_ISBLK(st.st_mode)) {
+ assert(backing_file);
+
+ /* This is a loopback device. We can't really grow those directly, but we can grow the
+ * backing file, hence let's do that. */
+
+ writable_fd = open(backing_file, O_WRONLY|O_CLOEXEC|O_NONBLOCK);
+ if (writable_fd < 0)
+ return log_error_errno(errno, "Failed to open backing file '%s': %m", backing_file);
+
+ if (fstat(writable_fd, &st) < 0)
+ return log_error_errno(errno, "Failed to stat() backing file '%s': %m", backing_file);
+
+ r = stat_verify_regular(&st);
+ if (r < 0)
+ return log_error_errno(r, "Backing file '%s' of block device is not a regular file: %m", backing_file);
+
+ if ((uint64_t) st.st_size != current_size)
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
+ "Size of backing file '%s' of loopback block device '%s' don't match, refusing.",
+ node, backing_file);
+ } else {
+ assert(S_ISREG(st.st_mode));
+ assert(!backing_file);
+
+ /* The file descriptor is read-only. In order to grow the file we need to have a writable fd. We
+ * reopen the file for that temporarily. We keep the writable fd only open for this operation though,
+ * as fdisk can't accept it anyway. */
+
+ writable_fd = fd_reopen(*fd, O_WRONLY|O_CLOEXEC);
+ if (writable_fd < 0)
+ return log_error_errno(writable_fd, "Failed to reopen backing file '%s' writable: %m", node);
+ }
+
+ if (!arg_discard) {
+ if (fallocate(writable_fd, 0, 0, arg_size) < 0) {
+ if (!ERRNO_IS_NOT_SUPPORTED(errno))
+ return log_error_errno(errno, "Failed to grow '%s' from %s to %s by allocation: %m",
+ node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size));
+
+ /* Fallback to truncation, if fallocate() is not supported. */
+ log_debug("Backing file system does not support fallocate(), falling back to ftruncate().");
+ } else {
+ if (current_size == 0) /* Likely regular file just created by us */
+ log_info("Allocated %s for '%s'.", FORMAT_BYTES(arg_size), node);
+ else
+ log_info("File '%s' grown from %s to %s by allocation.",
+ node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size));
+
+ goto done;
+ }
+ }
+
+ if (ftruncate(writable_fd, arg_size) < 0)
+ return log_error_errno(errno, "Failed to grow '%s' from %s to %s by truncation: %m",
+ node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size));
+
+ if (current_size == 0) /* Likely regular file just created by us */
+ log_info("Sized '%s' to %s.", node, FORMAT_BYTES(arg_size));
+ else
+ log_info("File '%s' grown from %s to %s by truncation.",
+ node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size));
+
+done:
+ r = resize_pt(writable_fd);
+ if (r < 0)
+ return r;
+
+ if (loop_device) {
+ r = loop_device_refresh_size(loop_device, UINT64_MAX, arg_size);
+ if (r < 0)
+ return log_error_errno(r, "Failed to update loop device size: %m");
+ }
+
+ return 1;
+}
+
+static int determine_auto_size(Context *c) {
+ uint64_t sum;
+
+ assert(c);
+
+ sum = round_up_size(GPT_METADATA_SIZE, 4096);
+
+ LIST_FOREACH(partitions, p, c->partitions) {
+ uint64_t m;
+
+ if (p->dropped)
+ continue;
+
+ m = partition_min_size_with_padding(c, p);
+ if (m > UINT64_MAX - sum)
+ return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Image would grow too large, refusing.");
+
+ sum += m;
+ }
+
+ if (c->total != UINT64_MAX)
+ /* Image already allocated? Then show its size. */
+ log_info("Automatically determined minimal disk image size as %s, current image size is %s.",
+ FORMAT_BYTES(sum), FORMAT_BYTES(c->total));
+ else
+ /* If the image is being created right now, then it has no previous size, suppress any comment about it hence. */
+ log_info("Automatically determined minimal disk image size as %s.",
+ FORMAT_BYTES(sum));
+
+ arg_size = sum;
+ return 0;
+}
+
+static int run(int argc, char *argv[]) {
+ _cleanup_(loop_device_unrefp) LoopDevice *loop_device = NULL;
+ _cleanup_(umount_and_rmdir_and_freep) char *mounted_dir = NULL;
+ _cleanup_(context_freep) Context* context = NULL;
+ _cleanup_free_ char *node = NULL;
+ _cleanup_close_ int backing_fd = -1;
+ bool from_scratch, node_is_our_loop = false;
+ int r;
+
+ log_show_color(true);
+ log_parse_environment();
+ log_open();
+
+ r = parse_argv(argc, argv);
+ if (r <= 0)
+ return r;
+
+ r = parse_proc_cmdline_factory_reset();
+ if (r < 0)
+ return r;
+
+ r = parse_efi_variable_factory_reset();
+ if (r < 0)
+ return r;
+
+#if HAVE_LIBCRYPTSETUP
+ cryptsetup_enable_logging(NULL);
+#endif
+
+ if (arg_image) {
+ assert(!arg_root);
+
+ /* Mount this strictly read-only: we shall modify the partition table, not the file
+ * systems */
+ r = mount_image_privately_interactively(
+ arg_image,
+ DISSECT_IMAGE_MOUNT_READ_ONLY |
+ (arg_node ? DISSECT_IMAGE_DEVICE_READ_ONLY : 0) | /* If a different node to make changes to is specified let's open the device in read-only mode) */
+ DISSECT_IMAGE_GPT_ONLY |
+ DISSECT_IMAGE_RELAX_VAR_CHECK |
+ DISSECT_IMAGE_USR_NO_ROOT |
+ DISSECT_IMAGE_REQUIRE_ROOT,
+ &mounted_dir,
+ &loop_device);
+ if (r < 0)
+ return r;
+
+ arg_root = strdup(mounted_dir);
+ if (!arg_root)
+ return log_oom();
+
+ if (!arg_node) {
+ arg_node = strdup(loop_device->node);
+ if (!arg_node)
+ return log_oom();
+
+ /* Remember that the device we are about to manipulate is actually the one we
+ * allocated here, and thus to increase its backing file we know what to do */
+ node_is_our_loop = true;
+ }
+ }
+
+ context = context_new(arg_seed);
+ if (!context)
+ return log_oom();
+
+ strv_uniq(arg_definitions);
+
+ r = context_read_definitions(context, arg_definitions, arg_root);
+ if (r < 0)
+ return r;
+
+ if (context->n_partitions <= 0 && arg_empty == EMPTY_REFUSE) {
+ log_info("Didn't find any partition definition files, nothing to do.");
+ return 0;
+ }
+
+ r = find_root(&node, &backing_fd);
+ if (r < 0)
+ return r;
+
+ if (arg_size != UINT64_MAX) {
+ r = resize_backing_fd(
+ node,
+ &backing_fd,
+ node_is_our_loop ? arg_image : NULL,
+ node_is_our_loop ? loop_device : NULL);
+ if (r < 0)
+ return r;
+ }
+
+ r = context_load_partition_table(context, node, &backing_fd);
+ if (r == -EHWPOISON)
+ return 77; /* Special return value which means "Not GPT, so not doing anything". This isn't
+ * really an error when called at boot. */
+ if (r < 0)
+ return r;
+ from_scratch = r > 0; /* Starting from scratch */
+
+ if (arg_can_factory_reset) {
+ r = context_can_factory_reset(context);
+ if (r < 0)
+ return r;
+ if (r == 0)
+ return EXIT_FAILURE;
+
+ return 0;
+ }
+
+ r = context_factory_reset(context, from_scratch);
+ if (r < 0)
+ return r;
+ if (r > 0) {
+ /* We actually did a factory reset! */
+ r = remove_efi_variable_factory_reset();
+ if (r < 0)
+ return r;
+
+ /* Reload the reduced partition table */
+ context_unload_partition_table(context);
+ r = context_load_partition_table(context, node, &backing_fd);
+ if (r < 0)
+ return r;
+ }
+
+#if 0
+ (void) context_dump_partitions(context, node);
+ putchar('\n');
+#endif
+
+ r = context_read_seed(context, arg_root);
+ if (r < 0)
+ return r;
+
+ /* Open all files to copy blocks from now, since we want to take their size into consideration */
+ r = context_open_copy_block_paths(
+ context,
+ arg_root,
+ loop_device ? loop_device->devno : /* if --image= is specified, only allow partitions on the loopback device */
+ arg_root && !arg_image ? 0 : /* if --root= is specified, don't accept any block device */
+ (dev_t) -1); /* if neither is specified, make no restrictions */
+ if (r < 0)
+ return r;
+
+ if (arg_size_auto) {
+ r = determine_auto_size(context);
+ if (r < 0)
+ return r;
+
+ /* Flush out everything again, and let's grow the file first, then start fresh */
+ context_unload_partition_table(context);
+
+ assert(arg_size != UINT64_MAX);
+ r = resize_backing_fd(
+ node,
+ &backing_fd,
+ node_is_our_loop ? arg_image : NULL,
+ node_is_our_loop ? loop_device : NULL);
+ if (r < 0)
+ return r;
+
+ r = context_load_partition_table(context, node, &backing_fd);
+ if (r < 0)
+ return r;
+ }
+
+ /* First try to fit new partitions in, dropping by priority until it fits */
+ for (;;) {
+ uint64_t largest_free_area;
+
+ if (context_allocate_partitions(context, &largest_free_area))
+ break; /* Success! */
+
+ if (!context_drop_or_foreignize_one_priority(context)) {
+ r = log_error_errno(SYNTHETIC_ERRNO(ENOSPC),
+ "Can't fit requested partitions into available free space (%s), refusing.",
+ FORMAT_BYTES(largest_free_area));
+ determine_auto_size(context);
+ return r;
+ }
+ }
+
+ /* Now assign free space according to the weight logic */
+ r = context_grow_partitions(context);
+ if (r < 0)
+ return r;
+
+ /* Now calculate where each new partition gets placed */
+ context_place_partitions(context);
+
+ /* Make sure each partition has a unique UUID and unique label */
+ r = context_acquire_partition_uuids_and_labels(context);
+ if (r < 0)
+ return r;
+
+ (void) context_dump(context, node, /*late=*/ false);
+
+ r = context_write_partition_table(context, node, from_scratch);
+ if (r < 0)
+ return r;
+
+ r = context_split(context);
+ if (r < 0)
+ return r;
+
+ (void) context_dump(context, node, /*late=*/ true);
+
+ return 0;
+}
+
+DEFINE_MAIN_FUNCTION_WITH_POSITIVE_FAILURE(run);