From b750101eb236130cf056c675997decbac904cc49 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 17:35:18 +0200 Subject: Adding upstream version 252.22. Signed-off-by: Daniel Baumann --- src/libsystemd/sd-journal/fsprg.c | 381 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 381 insertions(+) create mode 100644 src/libsystemd/sd-journal/fsprg.c (limited to 'src/libsystemd/sd-journal/fsprg.c') diff --git a/src/libsystemd/sd-journal/fsprg.c b/src/libsystemd/sd-journal/fsprg.c new file mode 100644 index 0000000..ab4cef9 --- /dev/null +++ b/src/libsystemd/sd-journal/fsprg.c @@ -0,0 +1,381 @@ +/* SPDX-License-Identifier: LGPL-2.1-or-later + * + * fsprg v0.1 - (seekable) forward-secure pseudorandom generator + * Copyright © 2012 B. Poettering + * Contact: fsprg@point-at-infinity.org + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA + * 02110-1301 USA + */ + +/* + * See "Practical Secure Logging: Seekable Sequential Key Generators" + * by G. A. Marson, B. Poettering for details: + * + * http://eprint.iacr.org/2013/397 + */ + +#include + +#include "fsprg.h" +#include "gcrypt-util.h" +#include "memory-util.h" + +#define ISVALID_SECPAR(secpar) (((secpar) % 16 == 0) && ((secpar) >= 16) && ((secpar) <= 16384)) +#define VALIDATE_SECPAR(secpar) assert(ISVALID_SECPAR(secpar)); + +#define RND_HASH GCRY_MD_SHA256 +#define RND_GEN_P 0x01 +#define RND_GEN_Q 0x02 +#define RND_GEN_X 0x03 + +#pragma GCC diagnostic ignored "-Wpointer-arith" +/* TODO: remove void* arithmetic and this work-around */ + +/******************************************************************************/ + +static void mpi_export(void *buf, size_t buflen, const gcry_mpi_t x) { + unsigned len; + size_t nwritten; + + assert(gcry_mpi_cmp_ui(x, 0) >= 0); + len = (gcry_mpi_get_nbits(x) + 7) / 8; + assert(len <= buflen); + memzero(buf, buflen); + gcry_mpi_print(GCRYMPI_FMT_USG, buf + (buflen - len), len, &nwritten, x); + assert(nwritten == len); +} + +static gcry_mpi_t mpi_import(const void *buf, size_t buflen) { + gcry_mpi_t h; + _unused_ unsigned len; + + assert_se(gcry_mpi_scan(&h, GCRYMPI_FMT_USG, buf, buflen, NULL) == 0); + len = (gcry_mpi_get_nbits(h) + 7) / 8; + assert(len <= buflen); + assert(gcry_mpi_cmp_ui(h, 0) >= 0); + + return h; +} + +static void uint64_export(void *buf, size_t buflen, uint64_t x) { + assert(buflen == 8); + ((uint8_t*) buf)[0] = (x >> 56) & 0xff; + ((uint8_t*) buf)[1] = (x >> 48) & 0xff; + ((uint8_t*) buf)[2] = (x >> 40) & 0xff; + ((uint8_t*) buf)[3] = (x >> 32) & 0xff; + ((uint8_t*) buf)[4] = (x >> 24) & 0xff; + ((uint8_t*) buf)[5] = (x >> 16) & 0xff; + ((uint8_t*) buf)[6] = (x >> 8) & 0xff; + ((uint8_t*) buf)[7] = (x >> 0) & 0xff; +} + +_pure_ static uint64_t uint64_import(const void *buf, size_t buflen) { + assert(buflen == 8); + return + (uint64_t)(((uint8_t*) buf)[0]) << 56 | + (uint64_t)(((uint8_t*) buf)[1]) << 48 | + (uint64_t)(((uint8_t*) buf)[2]) << 40 | + (uint64_t)(((uint8_t*) buf)[3]) << 32 | + (uint64_t)(((uint8_t*) buf)[4]) << 24 | + (uint64_t)(((uint8_t*) buf)[5]) << 16 | + (uint64_t)(((uint8_t*) buf)[6]) << 8 | + (uint64_t)(((uint8_t*) buf)[7]) << 0; +} + +/* deterministically generate from seed/idx a string of buflen pseudorandom bytes */ +static void det_randomize(void *buf, size_t buflen, const void *seed, size_t seedlen, uint32_t idx) { + gcry_md_hd_t hd, hd2; + size_t olen, cpylen; + gcry_error_t err; + uint32_t ctr; + + olen = gcry_md_get_algo_dlen(RND_HASH); + err = gcry_md_open(&hd, RND_HASH, 0); + assert_se(gcry_err_code(err) == GPG_ERR_NO_ERROR); /* This shouldn't happen */ + gcry_md_write(hd, seed, seedlen); + gcry_md_putc(hd, (idx >> 24) & 0xff); + gcry_md_putc(hd, (idx >> 16) & 0xff); + gcry_md_putc(hd, (idx >> 8) & 0xff); + gcry_md_putc(hd, (idx >> 0) & 0xff); + + for (ctr = 0; buflen; ctr++) { + err = gcry_md_copy(&hd2, hd); + assert_se(gcry_err_code(err) == GPG_ERR_NO_ERROR); /* This shouldn't happen */ + gcry_md_putc(hd2, (ctr >> 24) & 0xff); + gcry_md_putc(hd2, (ctr >> 16) & 0xff); + gcry_md_putc(hd2, (ctr >> 8) & 0xff); + gcry_md_putc(hd2, (ctr >> 0) & 0xff); + gcry_md_final(hd2); + cpylen = (buflen < olen) ? buflen : olen; + memcpy(buf, gcry_md_read(hd2, RND_HASH), cpylen); + gcry_md_close(hd2); + buf += cpylen; + buflen -= cpylen; + } + gcry_md_close(hd); +} + +/* deterministically generate from seed/idx a prime of length `bits' that is 3 (mod 4) */ +static gcry_mpi_t genprime3mod4(int bits, const void *seed, size_t seedlen, uint32_t idx) { + size_t buflen = bits / 8; + uint8_t buf[buflen]; + gcry_mpi_t p; + + assert(bits % 8 == 0); + assert(buflen > 0); + + det_randomize(buf, buflen, seed, seedlen, idx); + buf[0] |= 0xc0; /* set upper two bits, so that n=pq has maximum size */ + buf[buflen - 1] |= 0x03; /* set lower two bits, to have result 3 (mod 4) */ + + p = mpi_import(buf, buflen); + while (gcry_prime_check(p, 0)) + gcry_mpi_add_ui(p, p, 4); + + return p; +} + +/* deterministically generate from seed/idx a quadratic residue (mod n) */ +static gcry_mpi_t gensquare(const gcry_mpi_t n, const void *seed, size_t seedlen, uint32_t idx, unsigned secpar) { + size_t buflen = secpar / 8; + uint8_t buf[buflen]; + gcry_mpi_t x; + + det_randomize(buf, buflen, seed, seedlen, idx); + buf[0] &= 0x7f; /* clear upper bit, so that we have x < n */ + x = mpi_import(buf, buflen); + assert(gcry_mpi_cmp(x, n) < 0); + gcry_mpi_mulm(x, x, x, n); + return x; +} + +/* compute 2^m (mod phi(p)), for a prime p */ +static gcry_mpi_t twopowmodphi(uint64_t m, const gcry_mpi_t p) { + gcry_mpi_t phi, r; + int n; + + phi = gcry_mpi_new(0); + gcry_mpi_sub_ui(phi, p, 1); + + /* count number of used bits in m */ + for (n = 0; (1ULL << n) <= m; n++) + ; + + r = gcry_mpi_new(0); + gcry_mpi_set_ui(r, 1); + while (n) { /* square and multiply algorithm for fast exponentiation */ + n--; + gcry_mpi_mulm(r, r, r, phi); + if (m & ((uint64_t)1 << n)) { + gcry_mpi_add(r, r, r); + if (gcry_mpi_cmp(r, phi) >= 0) + gcry_mpi_sub(r, r, phi); + } + } + + gcry_mpi_release(phi); + return r; +} + +/* Decompose $x \in Z_n$ into $(xp,xq) \in Z_p \times Z_q$ using Chinese Remainder Theorem */ +static void CRT_decompose(gcry_mpi_t *xp, gcry_mpi_t *xq, const gcry_mpi_t x, const gcry_mpi_t p, const gcry_mpi_t q) { + *xp = gcry_mpi_new(0); + *xq = gcry_mpi_new(0); + gcry_mpi_mod(*xp, x, p); + gcry_mpi_mod(*xq, x, q); +} + +/* Compose $(xp,xq) \in Z_p \times Z_q$ into $x \in Z_n$ using Chinese Remainder Theorem */ +static void CRT_compose(gcry_mpi_t *x, const gcry_mpi_t xp, const gcry_mpi_t xq, const gcry_mpi_t p, const gcry_mpi_t q) { + gcry_mpi_t a, u; + + a = gcry_mpi_new(0); + u = gcry_mpi_new(0); + *x = gcry_mpi_new(0); + gcry_mpi_subm(a, xq, xp, q); + gcry_mpi_invm(u, p, q); + gcry_mpi_mulm(a, a, u, q); /* a = (xq - xp) / p (mod q) */ + gcry_mpi_mul(*x, p, a); + gcry_mpi_add(*x, *x, xp); /* x = p * ((xq - xp) / p mod q) + xp */ + gcry_mpi_release(a); + gcry_mpi_release(u); +} + +/******************************************************************************/ + +size_t FSPRG_mskinbytes(unsigned _secpar) { + VALIDATE_SECPAR(_secpar); + return 2 + 2 * (_secpar / 2) / 8; /* to store header,p,q */ +} + +size_t FSPRG_mpkinbytes(unsigned _secpar) { + VALIDATE_SECPAR(_secpar); + return 2 + _secpar / 8; /* to store header,n */ +} + +size_t FSPRG_stateinbytes(unsigned _secpar) { + VALIDATE_SECPAR(_secpar); + return 2 + 2 * _secpar / 8 + 8; /* to store header,n,x,epoch */ +} + +static void store_secpar(void *buf, uint16_t secpar) { + secpar = secpar / 16 - 1; + ((uint8_t*) buf)[0] = (secpar >> 8) & 0xff; + ((uint8_t*) buf)[1] = (secpar >> 0) & 0xff; +} + +static uint16_t read_secpar(const void *buf) { + uint16_t secpar; + secpar = + (uint16_t)(((uint8_t*) buf)[0]) << 8 | + (uint16_t)(((uint8_t*) buf)[1]) << 0; + return 16 * (secpar + 1); +} + +void FSPRG_GenMK(void *msk, void *mpk, const void *seed, size_t seedlen, unsigned _secpar) { + uint8_t iseed[FSPRG_RECOMMENDED_SEEDLEN]; + gcry_mpi_t n, p, q; + uint16_t secpar; + + VALIDATE_SECPAR(_secpar); + secpar = _secpar; + + initialize_libgcrypt(false); + + if (!seed) { + gcry_randomize(iseed, FSPRG_RECOMMENDED_SEEDLEN, GCRY_STRONG_RANDOM); + seed = iseed; + seedlen = FSPRG_RECOMMENDED_SEEDLEN; + } + + p = genprime3mod4(secpar / 2, seed, seedlen, RND_GEN_P); + q = genprime3mod4(secpar / 2, seed, seedlen, RND_GEN_Q); + + if (msk) { + store_secpar(msk + 0, secpar); + mpi_export(msk + 2 + 0 * (secpar / 2) / 8, (secpar / 2) / 8, p); + mpi_export(msk + 2 + 1 * (secpar / 2) / 8, (secpar / 2) / 8, q); + } + + if (mpk) { + n = gcry_mpi_new(0); + gcry_mpi_mul(n, p, q); + assert(gcry_mpi_get_nbits(n) == secpar); + + store_secpar(mpk + 0, secpar); + mpi_export(mpk + 2, secpar / 8, n); + + gcry_mpi_release(n); + } + + gcry_mpi_release(p); + gcry_mpi_release(q); +} + +void FSPRG_GenState0(void *state, const void *mpk, const void *seed, size_t seedlen) { + gcry_mpi_t n, x; + uint16_t secpar; + + initialize_libgcrypt(false); + + secpar = read_secpar(mpk + 0); + n = mpi_import(mpk + 2, secpar / 8); + x = gensquare(n, seed, seedlen, RND_GEN_X, secpar); + + memcpy(state, mpk, 2 + secpar / 8); + mpi_export(state + 2 + 1 * secpar / 8, secpar / 8, x); + memzero(state + 2 + 2 * secpar / 8, 8); + + gcry_mpi_release(n); + gcry_mpi_release(x); +} + +void FSPRG_Evolve(void *state) { + gcry_mpi_t n, x; + uint16_t secpar; + uint64_t epoch; + + initialize_libgcrypt(false); + + secpar = read_secpar(state + 0); + n = mpi_import(state + 2 + 0 * secpar / 8, secpar / 8); + x = mpi_import(state + 2 + 1 * secpar / 8, secpar / 8); + epoch = uint64_import(state + 2 + 2 * secpar / 8, 8); + + gcry_mpi_mulm(x, x, x, n); + epoch++; + + mpi_export(state + 2 + 1 * secpar / 8, secpar / 8, x); + uint64_export(state + 2 + 2 * secpar / 8, 8, epoch); + + gcry_mpi_release(n); + gcry_mpi_release(x); +} + +uint64_t FSPRG_GetEpoch(const void *state) { + uint16_t secpar; + secpar = read_secpar(state + 0); + return uint64_import(state + 2 + 2 * secpar / 8, 8); +} + +void FSPRG_Seek(void *state, uint64_t epoch, const void *msk, const void *seed, size_t seedlen) { + gcry_mpi_t p, q, n, x, xp, xq, kp, kq, xm; + uint16_t secpar; + + initialize_libgcrypt(false); + + secpar = read_secpar(msk + 0); + p = mpi_import(msk + 2 + 0 * (secpar / 2) / 8, (secpar / 2) / 8); + q = mpi_import(msk + 2 + 1 * (secpar / 2) / 8, (secpar / 2) / 8); + + n = gcry_mpi_new(0); + gcry_mpi_mul(n, p, q); + + x = gensquare(n, seed, seedlen, RND_GEN_X, secpar); + CRT_decompose(&xp, &xq, x, p, q); /* split (mod n) into (mod p) and (mod q) using CRT */ + + kp = twopowmodphi(epoch, p); /* compute 2^epoch (mod phi(p)) */ + kq = twopowmodphi(epoch, q); /* compute 2^epoch (mod phi(q)) */ + + gcry_mpi_powm(xp, xp, kp, p); /* compute x^(2^epoch) (mod p) */ + gcry_mpi_powm(xq, xq, kq, q); /* compute x^(2^epoch) (mod q) */ + + CRT_compose(&xm, xp, xq, p, q); /* combine (mod p) and (mod q) to (mod n) using CRT */ + + store_secpar(state + 0, secpar); + mpi_export(state + 2 + 0 * secpar / 8, secpar / 8, n); + mpi_export(state + 2 + 1 * secpar / 8, secpar / 8, xm); + uint64_export(state + 2 + 2 * secpar / 8, 8, epoch); + + gcry_mpi_release(p); + gcry_mpi_release(q); + gcry_mpi_release(n); + gcry_mpi_release(x); + gcry_mpi_release(xp); + gcry_mpi_release(xq); + gcry_mpi_release(kp); + gcry_mpi_release(kq); + gcry_mpi_release(xm); +} + +void FSPRG_GetKey(const void *state, void *key, size_t keylen, uint32_t idx) { + uint16_t secpar; + + initialize_libgcrypt(false); + + secpar = read_secpar(state + 0); + det_randomize(key, keylen, state + 2, 2 * secpar / 8 + 8, idx); +} -- cgit v1.2.3