1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <efi.h>
#include <efilib.h>
#include "missing_efi.h"
#include "random-seed.h"
#include "secure-boot.h"
#include "sha256.h"
#include "util.h"
#define RANDOM_MAX_SIZE_MIN (32U)
#define RANDOM_MAX_SIZE_MAX (32U*1024U)
#define EFI_RNG_GUID &(const EFI_GUID) EFI_RNG_PROTOCOL_GUID
/* SHA256 gives us 256/8=32 bytes */
#define HASH_VALUE_SIZE 32
static EFI_STATUS acquire_rng(UINTN size, void **ret) {
_cleanup_free_ void *data = NULL;
EFI_RNG_PROTOCOL *rng;
EFI_STATUS err;
assert(ret);
/* Try to acquire the specified number of bytes from the UEFI RNG */
err = BS->LocateProtocol((EFI_GUID *) EFI_RNG_GUID, NULL, (void **) &rng);
if (err != EFI_SUCCESS)
return err;
if (!rng)
return EFI_UNSUPPORTED;
data = xmalloc(size);
err = rng->GetRNG(rng, NULL, size, data);
if (err != EFI_SUCCESS)
return log_error_status_stall(err, L"Failed to acquire RNG data: %r", err);
*ret = TAKE_PTR(data);
return EFI_SUCCESS;
}
static void hash_once(
const void *old_seed,
const void *rng,
UINTN size,
const void *system_token,
UINTN system_token_size,
uint64_t uefi_monotonic_counter,
UINTN counter,
uint8_t ret[static HASH_VALUE_SIZE]) {
/* This hashes together:
*
* 1. The contents of the old seed file
* 2. Some random data acquired from the UEFI RNG (optional)
* 3. Some 'system token' the installer installed as EFI variable (optional)
* 4. The UEFI "monotonic counter" that increases with each boot
* 5. A supplied counter value
*
* And writes the result to the specified buffer.
*/
struct sha256_ctx hash;
assert(old_seed);
assert(system_token_size == 0 || system_token);
sha256_init_ctx(&hash);
sha256_process_bytes(old_seed, size, &hash);
if (rng)
sha256_process_bytes(rng, size, &hash);
if (system_token_size > 0)
sha256_process_bytes(system_token, system_token_size, &hash);
sha256_process_bytes(&uefi_monotonic_counter, sizeof(uefi_monotonic_counter), &hash);
sha256_process_bytes(&counter, sizeof(counter), &hash);
sha256_finish_ctx(&hash, ret);
}
static EFI_STATUS hash_many(
const void *old_seed,
const void *rng,
UINTN size,
const void *system_token,
UINTN system_token_size,
uint64_t uefi_monotonic_counter,
UINTN counter_start,
UINTN n,
void **ret) {
_cleanup_free_ void *output = NULL;
assert(old_seed);
assert(system_token_size == 0 || system_token);
assert(ret);
/* Hashes the specified parameters in counter mode, generating n hash values, with the counter in the
* range counter_start…counter_start+n-1. */
output = xmalloc_multiply(HASH_VALUE_SIZE, n);
for (UINTN i = 0; i < n; i++)
hash_once(old_seed, rng, size,
system_token, system_token_size,
uefi_monotonic_counter,
counter_start + i,
(uint8_t*) output + (i * HASH_VALUE_SIZE));
*ret = TAKE_PTR(output);
return EFI_SUCCESS;
}
static EFI_STATUS mangle_random_seed(
const void *old_seed,
const void *rng,
UINTN size,
const void *system_token,
UINTN system_token_size,
uint64_t uefi_monotonic_counter,
void **ret_new_seed,
void **ret_for_kernel) {
_cleanup_free_ void *new_seed = NULL, *for_kernel = NULL;
EFI_STATUS err;
UINTN n;
assert(old_seed);
assert(system_token_size == 0 || system_token);
assert(ret_new_seed);
assert(ret_for_kernel);
/* This takes the old seed file contents, an (optional) random number acquired from the UEFI RNG, an
* (optional) system 'token' installed once by the OS installer in an EFI variable, and hashes them
* together in counter mode, generating a new seed (to replace the file on disk) and the seed for the
* kernel. To keep things simple, the new seed and kernel data have the same size as the old seed and
* RNG data. */
n = (size + HASH_VALUE_SIZE - 1) / HASH_VALUE_SIZE;
/* Begin hashing in counter mode at counter 0 for the new seed for the disk */
err = hash_many(old_seed, rng, size, system_token, system_token_size, uefi_monotonic_counter, 0, n, &new_seed);
if (err != EFI_SUCCESS)
return err;
/* Continue counting at 'n' for the seed for the kernel */
err = hash_many(old_seed, rng, size, system_token, system_token_size, uefi_monotonic_counter, n, n, &for_kernel);
if (err != EFI_SUCCESS)
return err;
*ret_new_seed = TAKE_PTR(new_seed);
*ret_for_kernel = TAKE_PTR(for_kernel);
return EFI_SUCCESS;
}
static EFI_STATUS acquire_system_token(void **ret, UINTN *ret_size) {
_cleanup_free_ char *data = NULL;
EFI_STATUS err;
UINTN size;
assert(ret);
assert(ret_size);
err = efivar_get_raw(LOADER_GUID, L"LoaderSystemToken", &data, &size);
if (err != EFI_SUCCESS) {
if (err != EFI_NOT_FOUND)
log_error_stall(L"Failed to read LoaderSystemToken EFI variable: %r", err);
return err;
}
if (size <= 0)
return log_error_status_stall(EFI_NOT_FOUND, L"System token too short, ignoring.");
*ret = TAKE_PTR(data);
*ret_size = size;
return EFI_SUCCESS;
}
static void validate_sha256(void) {
#ifdef EFI_DEBUG
/* Let's validate our SHA256 implementation. We stole it from glibc, and converted it to UEFI
* style. We better check whether it does the right stuff. We use the simpler test vectors from the
* SHA spec. Note that we strip this out in optimization builds. */
static const struct {
const char *string;
uint8_t hash[HASH_VALUE_SIZE];
} array[] = {
{ "abc",
{ 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad }},
{ "",
{ 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55 }},
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
{ 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8,
0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39,
0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67,
0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 }},
{ "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu",
{ 0xcf, 0x5b, 0x16, 0xa7, 0x78, 0xaf, 0x83, 0x80,
0x03, 0x6c, 0xe5, 0x9e, 0x7b, 0x04, 0x92, 0x37,
0x0b, 0x24, 0x9b, 0x11, 0xe8, 0xf0, 0x7a, 0x51,
0xaf, 0xac, 0x45, 0x03, 0x7a, 0xfe, 0xe9, 0xd1 }},
};
for (UINTN i = 0; i < ELEMENTSOF(array); i++)
assert(memcmp(SHA256_DIRECT(array[i].string, strlen8(array[i].string)), array[i].hash, HASH_VALUE_SIZE) == 0);
#endif
}
EFI_STATUS process_random_seed(EFI_FILE *root_dir, RandomSeedMode mode) {
_cleanup_free_ void *seed = NULL, *new_seed = NULL, *rng = NULL, *for_kernel = NULL, *system_token = NULL;
_cleanup_(file_closep) EFI_FILE *handle = NULL;
UINTN size, rsize, wsize, system_token_size = 0;
_cleanup_free_ EFI_FILE_INFO *info = NULL;
uint64_t uefi_monotonic_counter = 0;
EFI_STATUS err;
assert(root_dir);
validate_sha256();
if (mode == RANDOM_SEED_OFF)
return EFI_NOT_FOUND;
/* Let's better be safe than sorry, and for now disable this logic in SecureBoot mode, so that we
* don't credit a random seed that is not authenticated. */
if (secure_boot_enabled())
return EFI_NOT_FOUND;
/* Get some system specific seed that the installer might have placed in an EFI variable. We include
* it in our hash. This is protection against golden master image sloppiness, and it remains on the
* system, even when disk images are duplicated or swapped out. */
err = acquire_system_token(&system_token, &system_token_size);
if (mode != RANDOM_SEED_ALWAYS && err != EFI_SUCCESS)
return err;
err = root_dir->Open(
root_dir,
&handle,
(char16_t *) L"\\loader\\random-seed",
EFI_FILE_MODE_READ | EFI_FILE_MODE_WRITE,
0);
if (err != EFI_SUCCESS) {
if (err != EFI_NOT_FOUND && err != EFI_WRITE_PROTECTED)
log_error_stall(L"Failed to open random seed file: %r", err);
return err;
}
err = get_file_info_harder(handle, &info, NULL);
if (err != EFI_SUCCESS)
return log_error_status_stall(err, L"Failed to get file info for random seed: %r");
size = info->FileSize;
if (size < RANDOM_MAX_SIZE_MIN)
return log_error_status_stall(EFI_INVALID_PARAMETER, L"Random seed file is too short.");
if (size > RANDOM_MAX_SIZE_MAX)
return log_error_status_stall(EFI_INVALID_PARAMETER, L"Random seed file is too large.");
seed = xmalloc(size);
rsize = size;
err = handle->Read(handle, &rsize, seed);
if (err != EFI_SUCCESS)
return log_error_status_stall(err, L"Failed to read random seed file: %r", err);
if (rsize != size)
return log_error_status_stall(EFI_PROTOCOL_ERROR, L"Short read on random seed file.");
err = handle->SetPosition(handle, 0);
if (err != EFI_SUCCESS)
return log_error_status_stall(err, L"Failed to seek to beginning of random seed file: %r", err);
/* Request some random data from the UEFI RNG. We don't need this to work safely, but it's a good
* idea to use it because it helps us for cases where users mistakenly include a random seed in
* golden master images that are replicated many times. */
(void) acquire_rng(size, &rng); /* It's fine if this fails */
/* Let's also include the UEFI monotonic counter (which is supposedly increasing on every single
* boot) in the hash, so that even if the changes to the ESP for some reason should not be
* persistent, the random seed we generate will still be different on every single boot. */
err = BS->GetNextMonotonicCount(&uefi_monotonic_counter);
if (err != EFI_SUCCESS)
return log_error_status_stall(err, L"Failed to acquire UEFI monotonic counter: %r", err);
/* Calculate new random seed for the disk and what to pass to the kernel */
err = mangle_random_seed(seed, rng, size, system_token, system_token_size, uefi_monotonic_counter, &new_seed, &for_kernel);
if (err != EFI_SUCCESS)
return err;
/* Update the random seed on disk before we use it */
wsize = size;
err = handle->Write(handle, &wsize, new_seed);
if (err != EFI_SUCCESS)
return log_error_status_stall(err, L"Failed to write random seed file: %r", err);
if (wsize != size)
return log_error_status_stall(EFI_PROTOCOL_ERROR, L"Short write on random seed file.");
err = handle->Flush(handle);
if (err != EFI_SUCCESS)
return log_error_status_stall(err, L"Failed to flush random seed file: %r", err);
/* We are good to go */
err = efivar_set_raw(LOADER_GUID, L"LoaderRandomSeed", for_kernel, size, 0);
if (err != EFI_SUCCESS)
return log_error_status_stall(err, L"Failed to write random seed to EFI variable: %r", err);
return EFI_SUCCESS;
}
|