summaryrefslogtreecommitdiffstats
path: root/examples/shellmath/shellmath.sh
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 15:38:56 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 15:38:56 +0000
commit6c20c8ed2cb9ab69a1a57ccb2b9b79969a808321 (patch)
treef63ce19d57fad3ac4a15bc26dbfbfa2b834111b5 /examples/shellmath/shellmath.sh
parentInitial commit. (diff)
downloadbash-6c20c8ed2cb9ab69a1a57ccb2b9b79969a808321.tar.xz
bash-6c20c8ed2cb9ab69a1a57ccb2b9b79969a808321.zip
Adding upstream version 5.2.15.upstream/5.2.15upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--examples/shellmath/shellmath.sh1068
1 files changed, 1068 insertions, 0 deletions
diff --git a/examples/shellmath/shellmath.sh b/examples/shellmath/shellmath.sh
new file mode 100644
index 0000000..5804ad2
--- /dev/null
+++ b/examples/shellmath/shellmath.sh
@@ -0,0 +1,1068 @@
+#!/bin/env bash
+################################################################################
+# shellmath.sh
+# Shell functions for floating-point arithmetic using only builtins
+#
+# Copyright (c) 2020 by Michael Wood. All rights reserved.
+#
+# Usage:
+#
+# source _thisPath_/_thisFileName_
+#
+# # Conventional method: call the APIs by subshelling
+# mySum=$( _shellmath_add 202.895 6.00311 )
+# echo $mySum
+#
+# # Optimized method: use hidden globals to simulate more flexible pass-and-return
+# _shellmath_isOptimized=1
+# _shellmath_add 44.2 -87
+# _shellmath_getReturnValue mySum
+# echo $mySum
+#
+################################################################################
+
+
+################################################################################
+# Program constants
+################################################################################
+declare -A -r __shellmath_numericTypes=(
+ [INTEGER]=0
+ [DECIMAL]=1
+)
+
+declare -A -r __shellmath_returnCodes=(
+ [SUCCESS]="0:Success"
+ [FAIL]="1:General failure"
+ [ILLEGAL_NUMBER]="2:Invalid argument; decimal number required: '%s'"
+ [DIVIDE_BY_ZERO]="3:Divide by zero error"
+)
+
+declare -r -i __shellmath_true=1
+declare -r -i __shellmath_false=0
+
+declare __shellmath_SUCCESS __shellmath_FAIL __shellmath_ILLEGAL_NUMBER
+
+################################################################################
+# Program state
+################################################################################
+declare __shellmath_isOptimized=${__shellmath_false}
+declare __shellmath_didPrecalc=${__shellmath_false}
+
+
+################################################################################
+# Error-handling utilities
+################################################################################
+function _shellmath_getReturnCode()
+{
+ local errorName=$1
+ return "${__shellmath_returnCodes[$errorName]%%:*}"
+}
+
+function _shellmath_warn()
+{
+ # Generate an error message and return control to the caller
+ _shellmath_handleError -r "$@"
+ return $?
+}
+
+function _shellmath_exit()
+{
+ # Generate an error message and EXIT THE SCRIPT / interpreter
+ _shellmath_handleError "$@"
+}
+
+function _shellmath_handleError()
+{
+ # Hidden option "-r" causes return instead of exit
+ local returnDontExit=$__shellmath_false
+ if [[ "$1" == "-r" ]]; then
+ returnDontExit=${__shellmath_true}
+ shift
+ fi
+
+ # Format of $1: returnCode:msgTemplate
+ [[ "$1" =~ ^([0-9]+):(.*) ]]
+ returnCode=${BASH_REMATCH[1]}
+ msgTemplate=${BASH_REMATCH[2]}
+ shift
+
+ # Display error msg, making parameter substitutions as needed
+ msgParameters="$*"
+ printf "$msgTemplate" "${msgParameters[@]}"
+
+ if ((returnDontExit)); then
+ return "$returnCode"
+ else
+ exit "$returnCode"
+ fi
+}
+
+
+################################################################################
+# precalc()
+#
+# Pre-calculates certain global data and by setting the global variable
+# "__shellmath_didPrecalc" records that this routine has been called. As an
+# optimization, the caller should check that global to prevent needless
+# invocations.
+################################################################################
+function _shellmath_precalc()
+{
+ # Set a few global constants
+ _shellmath_getReturnCode SUCCESS; __shellmath_SUCCESS=$?
+ _shellmath_getReturnCode FAIL; __shellmath_FAIL=$?
+ _shellmath_getReturnCode ILLEGAL_NUMBER; __shellmath_ILLEGAL_NUMBER=$?
+
+ # Determine the decimal precision to which we can accurately calculate.
+ # To do this we probe for the threshold at which integers overflow and
+ # take the integer floor of that number's base-10 logarithm.
+ # We check the 64-bit, 32-bit and 16-bit thresholds only.
+ if ((2**63 < 2**63-1)); then
+ __shellmath_precision=18
+ __shellmath_maxValue=$((2**63-1))
+ elif ((2**31 < 2**31-1)); then
+ __shellmath_precision=9
+ __shellmath_maxValue=$((2**31-1))
+ else ## ((2**15 < 2**15-1))
+ __shellmath_precision=4
+ __shellmath_maxValue=$((2**15-1))
+ fi
+
+ __shellmath_didPrecalc=$__shellmath_true
+}
+
+
+################################################################################
+# Simulate pass-and-return by reference using a secret global storage array
+################################################################################
+
+declare -a __shellmath_storage
+
+function _shellmath_setReturnValues()
+{
+ local -i _i
+
+ for ((_i=1; _i<=$#; _i++)); do
+ __shellmath_storage[_i]="${!_i}"
+ done
+
+ __shellmath_storage[0]=$#
+}
+
+function _shellmath_getReturnValues()
+{
+ local -i _i
+ local evalString
+
+ for ((_i=1; _i<=$#; _i++)); do
+ evalString+=${!_i}="${__shellmath_storage[_i]}"" "
+ done
+
+ eval "$evalString"
+}
+
+function _shellmath_setReturnValue() { __shellmath_storage=(1 "$1"); }
+function _shellmath_getReturnValue() { eval "$1"=\"${__shellmath_storage[1]}\"; }
+function _shellmath_getReturnValueCount() { eval "$1"=\"${__shellmath_storage[0]}\"; }
+
+################################################################################
+# validateAndParse(numericString)
+# Return Code: SUCCESS or ILLEGAL_NUMBER
+# Return Signature: integerPart fractionalPart isNegative numericType isScientific
+#
+# Validate and parse arguments to the main arithmetic routines
+################################################################################
+
+function _shellmath_validateAndParse()
+{
+ local n="$1"
+ local isNegative=${__shellmath_false}
+ local isScientific=${__shellmath_false}
+ local numericType returnCode
+
+ ((returnCode = __shellmath_SUCCESS))
+
+ # Accept decimals: leading digits (optional), decimal point, trailing digits
+ if [[ "$n" =~ ^[-]?([0-9]*)\.([0-9]+)$ ]]; then
+ local integerPart=${BASH_REMATCH[1]:-0}
+ local fractionalPart=${BASH_REMATCH[2]}
+
+ # Strip superfluous trailing zeros
+ if [[ "$fractionalPart" =~ ^(.*[^0])0*$ ]]; then
+ fractionalPart=${BASH_REMATCH[1]}
+ fi
+
+ numericType=${__shellmath_numericTypes[DECIMAL]}
+
+ # Factor out the negative sign if it is present
+ if [[ "$n" =~ ^- ]]; then
+ isNegative=${__shellmath_true}
+ n=${n:1}
+ fi
+
+ _shellmath_setReturnValues "$integerPart" "$fractionalPart" \
+ $isNegative "$numericType" $isScientific
+ return "$returnCode"
+
+ # Accept integers
+ elif [[ "$n" =~ ^[-]?[0-9]+$ ]]; then
+ numericType=${__shellmath_numericTypes[INTEGER]}
+
+ # Factor out the negative sign if it is present
+ if [[ "$n" =~ ^- ]]; then
+ isNegative=${__shellmath_true}
+ n=${n:1}
+ fi
+
+ _shellmath_setReturnValues "$n" 0 $isNegative "$numericType" $isScientific
+ return "$returnCode"
+
+ # Accept scientific notation: 1e5, 2.44E+10, etc.
+ elif [[ "$n" =~ (.*)[Ee](.*) ]]; then
+ local significand=${BASH_REMATCH[1]}
+ local exponent=${BASH_REMATCH[2]}
+
+ # Validate the significand: optional sign, integer part,
+ # optional decimal point and fractional part
+ if [[ "$significand" =~ ^[-]?([0-9]+)(\.([0-9]+))?$ ]]; then
+
+ isScientific=${__shellmath_true}
+
+ # Separate the integer and fractional parts
+ local sigInteger=${BASH_REMATCH[1]}
+ local sigIntLength=${#sigInteger}
+ local sigFraction=${BASH_REMATCH[3]}
+
+ # Strip superfluous trailing zeros
+ if [[ "$sigFraction" =~ ^(.*[^0])0*$ ]]; then
+ sigFraction=${BASH_REMATCH[1]}
+ fi
+
+ local sigFracLength=${#sigFraction}
+
+ if [[ "$n" =~ ^- ]]; then
+ isNegative=${__shellmath_true}
+ n=${n:1}
+ fi
+
+ # Rewrite the scientifically-notated number in ordinary decimal notation.
+ # IOW, realign the integer and fractional parts. Separate with a space
+ # so they can be returned as two separate values
+ if ((exponent > 0)); then
+ local zeroCount integer fraction
+ ((zeroCount = exponent - sigFracLength))
+ if ((zeroCount > 0)); then
+ printf -v zeros "%0*d" "$zeroCount" 0
+ n=${sigInteger}${sigFraction}${zeros}" 0"
+ numericType=${__shellmath_numericTypes[INTEGER]}
+ elif ((zeroCount < 0)); then
+ n=${sigInteger}${sigFraction:0:exponent}" "${sigFraction:exponent}
+ numericType=${__shellmath_numericTypes[DECIMAL]}
+ else
+ n=${sigInteger}${sigFraction}" 0"
+ numericType=${__shellmath_numericTypes[INTEGER]}
+ fi
+ integer=${n% *}; fraction=${n#* }
+ _shellmath_setReturnValues "$integer" "$fraction" $isNegative "$numericType" $isScientific
+ return "$returnCode"
+
+ elif ((exponent < 0)); then
+ local zeroCount integer fraction
+ ((zeroCount = -exponent - sigIntLength))
+ if ((zeroCount > 0)); then
+ printf -v zeros "%0*d" "$zeroCount" 0
+ n="0 "${zeros}${sigInteger}${sigFraction}
+ numericType=${__shellmath_numericTypes[DECIMAL]}
+ elif ((zeroCount < 0)); then
+ n=${sigInteger:0:-zeroCount}" "${sigInteger:(-zeroCount)}${sigFraction}
+ numericType=${__shellmath_numericTypes[DECIMAL]}
+ else
+ n="0 "${sigInteger}${sigFraction}
+ numericType=${__shellmath_numericTypes[DECIMAL]}
+ fi
+ integer=${n% *}; fraction=${n#* }
+ _shellmath_setReturnValues "$integer" "$fraction" $isNegative "$numericType" $isScientific
+ return "$returnCode"
+
+ else
+ # exponent == 0 means the number is already aligned as desired
+ numericType=${__shellmath_numericTypes[DECIMAL]}
+ _shellmath_setReturnValues "$sigInteger" "$sigFraction" $isNegative "$numericType" $isScientific
+ return "$returnCode"
+ fi
+
+ # Reject strings like xxx[Ee]yyy where xxx, yyy are not valid numbers
+ else
+ ((returnCode = __shellmath_ILLEGAL_NUMBER))
+ _shellmath_setReturnValues ""
+ return "$returnCode"
+ fi
+
+ # Reject everything else
+ else
+ ((returnCode = __shellmath_ILLEGAL_NUMBER))
+ _shellmath_setReturnValues ""
+ return "$returnCode"
+ fi
+}
+
+
+################################################################################
+# numToScientific (integerPart, fractionalPart)
+#
+# Format conversion utility function
+################################################################################
+function _shellmath_numToScientific()
+{
+ local integerPart=$1 fractionalPart=$2
+ local exponent head tail scientific
+
+ if ((integerPart > 0)); then
+ ((exponent = ${#integerPart}-1))
+ head=${integerPart:0:1}
+ tail=${integerPart:1}${fractionalPart}
+ elif ((integerPart < 0)); then
+ ((exponent = ${#integerPart}-2)) # skip "-" and first digit
+ head=${integerPart:0:2}
+ tail=${integerPart:2}${fractionalPart}
+ else
+ [[ "$fractionalPart" =~ ^[-]?(0*)([^0])(.*)$ ]]
+ exponent=$((-(${#BASH_REMATCH[1]} + 1)))
+ head=${BASH_REMATCH[2]}
+ tail=${BASH_REMATCH[3]}
+ fi
+
+ # Remove trailing zeros
+ [[ $tail =~ ^.*[^0] ]]; tail=${BASH_REMATCH[0]:-0}
+
+ printf -v scientific "%d.%de%d" "$head" "$tail" "$exponent"
+
+ _shellmath_setReturnValue "$scientific"
+}
+
+
+################################################################################
+# _shellmath_add (addend_1, addend_2)
+################################################################################
+function _shellmath_add()
+{
+ local n1="$1"
+ local n2="$2"
+
+ if ((! __shellmath_didPrecalc)); then
+ _shellmath_precalc; __shellmath_didPrecalc=$__shellmath_true
+ fi
+
+ local isVerbose=$(( __shellmath_isOptimized == __shellmath_false ))
+
+ # Is the caller itself an arithmetic function?
+ local isSubcall=${__shellmath_false}
+ local isMultiplication=${__shellmath_false}
+ if [[ "${FUNCNAME[1]}" =~ shellmath_(add|subtract|multiply|divide)$ ]]; then
+ isSubcall=${__shellmath_true}
+ if [[ "${BASH_REMATCH[1]}" == multiply ]]; then
+ isMultiplication=${__shellmath_true}
+ fi
+ fi
+
+ # Handle corner cases where argument count is not 2
+ local argCount=$#
+ if ((argCount == 0)); then
+ echo "Usage: ${FUNCNAME[0]} addend_1 addend_2"
+ return "$__shellmath_SUCCESS"
+ elif ((argCount == 1)); then
+ # Note the result as-is, print if running "normally", and return
+ _shellmath_setReturnValue "$n1"
+ (( isVerbose && ! isSubcall )) && echo "$n1"
+ return "$__shellmath_SUCCESS"
+ elif ((argCount > 2 && !isSubcall)); then
+ local recursiveReturn
+
+ # Use a binary recursion tree to add everything up
+ # 1) left branch
+ _shellmath_add "${@:1:$((argCount/2))}"; recursiveReturn=$?
+ _shellmath_getReturnValue n1
+ if (( recursiveReturn != __shellmath_SUCCESS )); then
+ _shellmath_setReturnValue "$n1"
+ return "$recursiveReturn"
+ fi
+ # 2) right branch
+ _shellmath_add "${@:$((argCount/2+1))}"; recursiveReturn=$?
+ _shellmath_getReturnValue n2
+ if (( recursiveReturn != __shellmath_SUCCESS )); then
+ _shellmath_setReturnValue "$n2"
+ return "$recursiveReturn"
+ fi
+ # 3) head node
+ local sum
+ _shellmath_add "$n1" "$n2"; recursiveReturn=$?
+ _shellmath_getReturnValue sum
+ _shellmath_setReturnValue "$sum"
+ if (( isVerbose && ! isSubcall )); then
+ echo "$sum"
+ fi
+ return "$recursiveReturn"
+ fi
+
+ local integerPart1 fractionalPart1 integerPart2 fractionalPart2
+ local isNegative1 type1 isScientific1 isNegative2 type2 isScientific2
+ local flags
+
+ if ((isMultiplication)); then
+ integerPart1="$1"
+ fractionalPart1="$2"
+ integerPart2="$3"
+ fractionalPart2="$4"
+
+ type1=${__shellmath_numericTypes[DECIMAL]}
+ type2=${__shellmath_numericTypes[DECIMAL]}
+ isNegative1=$__shellmath_false
+ isNegative2=$__shellmath_false
+ isScientific1=$__shellmath_false
+ isScientific2=$__shellmath_false
+ else
+ # Check and parse the arguments
+ _shellmath_validateAndParse "$n1"; flags=$?
+ _shellmath_getReturnValues integerPart1 fractionalPart1 isNegative1 type1 isScientific1
+ if ((flags == __shellmath_ILLEGAL_NUMBER)); then
+ _shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n1"
+ return $?
+ fi
+ _shellmath_validateAndParse "$n2"; flags=$?
+ _shellmath_getReturnValues integerPart2 fractionalPart2 isNegative2 type2 isScientific2
+ if ((flags == __shellmath_ILLEGAL_NUMBER)); then
+ _shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n2"
+ return $?
+ fi
+ fi
+
+ # Quick add & return for integer adds
+ if ((type1==type2 && type1==__shellmath_numericTypes[INTEGER])); then
+ ((isNegative1)) && ((integerPart1*=-1))
+ ((isNegative2)) && ((integerPart2*=-1))
+ local sum=$((integerPart1 + integerPart2))
+ if (( (!isSubcall) && (isScientific1 || isScientific2) )); then
+ _shellmath_numToScientific $sum ""
+ _shellmath_getReturnValue sum
+ fi
+ _shellmath_setReturnValue $sum
+ if (( isVerbose && ! isSubcall )); then
+ echo "$sum"
+ fi
+ return "$__shellmath_SUCCESS"
+ fi
+
+ # Right-pad both fractional parts with zeros to the same length
+ local fractionalLen1=${#fractionalPart1}
+ local fractionalLen2=${#fractionalPart2}
+ if ((fractionalLen1 > fractionalLen2)); then
+ # Use printf to zero-pad. This avoids mathematical side effects.
+ printf -v fractionalPart2 %-*s "$fractionalLen1" "$fractionalPart2"
+ fractionalPart2=${fractionalPart2// /0}
+ elif ((fractionalLen2 > fractionalLen1)); then
+ printf -v fractionalPart1 %-*s "$fractionalLen2" "$fractionalPart1"
+ fractionalPart1=${fractionalPart1// /0}
+ fi
+ local unsignedFracLength=${#fractionalPart1}
+
+ # Implement a sign convention that will enable us to detect carries by
+ # comparing string lengths of addends and sums: propagate the sign across
+ # both numeric parts (whether unsigned or zero).
+ if ((isNegative1)); then
+ fractionalPart1="-"$fractionalPart1
+ integerPart1="-"$integerPart1
+ fi
+ if ((isNegative2)); then
+ fractionalPart2="-"$fractionalPart2
+ integerPart2="-"$integerPart2
+ fi
+
+ local integerSum=0
+ local fractionalSum=0
+
+ ((integerSum = integerPart1+integerPart2))
+
+ # Summing the fractional parts is tricky: We need to override the shell's
+ # default interpretation of leading zeros, but the operator for doing this
+ # (the "10#" operator) cannot work directly with negative numbers. So we
+ # break it all down.
+ if ((isNegative1)); then
+ ((fractionalSum += (-1) * 10#${fractionalPart1:1}))
+ else
+ ((fractionalSum += 10#$fractionalPart1))
+ fi
+ if ((isNegative2)); then
+ ((fractionalSum += (-1) * 10#${fractionalPart2:1}))
+ else
+ ((fractionalSum += 10#$fractionalPart2))
+ fi
+
+ unsignedFracSumLength=${#fractionalSum}
+ if [[ "$fractionalSum" =~ ^[-] ]]; then
+ ((unsignedFracSumLength--))
+ fi
+
+ # Restore any leading zeroes that were lost when adding
+ if ((unsignedFracSumLength < unsignedFracLength)); then
+ local lengthDiff=$((unsignedFracLength - unsignedFracSumLength))
+ local zeroPrefix
+ printf -v zeroPrefix "%0*d" "$lengthDiff" 0
+ if ((fractionalSum < 0)); then
+ fractionalSum="-"${zeroPrefix}${fractionalSum:1}
+ else
+ fractionalSum=${zeroPrefix}${fractionalSum}
+ fi
+ fi
+
+ # Carry a digit from fraction to integer if required
+ if ((10#$fractionalSum!=0 && unsignedFracSumLength > unsignedFracLength)); then
+ local carryAmount
+ ((carryAmount = isNegative1?-1:1))
+ ((integerSum += carryAmount))
+ # Remove the leading 1-digit whether the fraction is + or -
+ fractionalSum=${fractionalSum/1/}
+ fi
+
+ # Transform the partial sums from additive to concatenative. Example: the
+ # pair (-2,3) is not -2.3 but rather (-2)+(0.3), i.e. -1.7 so we want to
+ # transform (-2,3) to (-1,7). This transformation is meaningful when
+ # the two parts have opposite signs, so that's what we look for.
+ if ((integerSum < 0 && 10#$fractionalSum > 0)); then
+ ((integerSum += 1))
+ ((fractionalSum = 10#$fractionalSum - 10**unsignedFracSumLength))
+ elif ((integerSum > 0 && 10#$fractionalSum < 0)); then
+ ((integerSum -= 1))
+ ((fractionalSum = 10**unsignedFracSumLength + 10#$fractionalSum))
+ fi
+ # This last case needs to function either as an "else" for the above,
+ # or as a coda to the "if" clause when integerSum is -1 initially.
+ if ((integerSum == 0 && 10#$fractionalSum < 0)); then
+ integerSum="-"$integerSum
+ ((fractionalSum *= -1))
+ fi
+
+ # Touch up the numbers for display
+ local sum
+ ((10#$fractionalSum < 0)) && fractionalSum=${fractionalSum:1}
+ if (( (!isSubcall) && (isScientific1 || isScientific2) )); then
+ _shellmath_numToScientific "$integerSum" "$fractionalSum"
+ _shellmath_getReturnValue sum
+ elif ((10#$fractionalSum)); then
+ printf -v sum "%s.%s" "$integerSum" "$fractionalSum"
+ else
+ sum=$integerSum
+ fi
+
+ # Note the result, print if running "normally", and return
+ _shellmath_setReturnValue $sum
+ if (( isVerbose && ! isSubcall )); then
+ echo "$sum"
+ fi
+
+ return "$__shellmath_SUCCESS"
+}
+
+
+################################################################################
+# subtract (subtrahend, minuend)
+################################################################################
+function _shellmath_subtract()
+{
+ local n1="$1"
+ local n2="$2"
+ local isVerbose=$(( __shellmath_isOptimized == __shellmath_false ))
+
+ if ((! __shellmath_didPrecalc)); then
+ _shellmath_precalc; __shellmath_didPrecalc=$__shellmath_true
+ fi
+
+ if (( $# == 0 || $# > 2 )); then
+ echo "Usage: ${FUNCNAME[0]} subtrahend minuend"
+ return "$__shellmath_SUCCESS"
+ elif (( $# == 1 )); then
+ # Note the value as-is and return
+ _shellmath_setReturnValue "$n1"
+ ((isVerbose)) && echo "$n1"
+ return "$__shellmath_SUCCESS"
+ fi
+
+ # Symbolically negate the second argument
+ if [[ "$n2" =~ ^- ]]; then
+ n2=${n2:1}
+ else
+ n2="-"$n2
+ fi
+
+ # Calculate, note the result, print if running "normally", and return
+ local difference
+ _shellmath_add "$n1" "$n2"
+ _shellmath_getReturnValue difference
+ if ((isVerbose)); then
+ echo "$difference"
+ fi
+
+ return $?
+}
+
+
+################################################################################
+# reduceOuterPairs (two integer parts [, two fractional parts])
+#
+# Examines the magnitudes of two numbers in advance of a multiplication
+# and either chops off their lowest-order digits or pushes them to the
+# corresponding lower-order parts in order to prevent overflow in the product.
+# The choice depends on whether 2 or 4 arguments are supplied.
+################################################################################
+function _shellmath_reduceOuterPairs()
+{
+ local value1="$1" value2="$2" subvalue1="$3" subvalue2="$4"
+
+ local digitExcess value1Len=${#value1} value2Len=${#value2}
+ ((digitExcess = value1Len + value2Len - __shellmath_precision))
+
+ # Be very precise about detecting overflow. The "digit excess" underestimates
+ # this: floor(log_10(longLongMax)). We don't want to needlessly lose precision
+ # when a product barely squeezes under the exact threshold.
+ if ((digitExcess>1 || (digitExcess==1 && value1 > __shellmath_maxValue/value2) )); then
+
+ # Identify the digit-tails to be pruned off and either discarded or
+ # pushed past the decimal point. In pruning the two values we want to
+ # retain as much "significance" as possible, so we try to equalize the
+ # lengths of the remaining digit sequences.
+ local tail1 tail2
+ local lengthDiff leftOver
+
+ # Which digit string is longer, and by how much?
+ ((lengthDiff = value1Len - value2Len))
+ if ((lengthDiff > 0)); then
+ if ((digitExcess <= lengthDiff)); then
+ # Chop digits from the longer string only
+ tail1=${value1:(-digitExcess)}
+ tail2="" # do not chop anything
+ else
+ # Chop more digits from the longer string so the two strings
+ # end up as nearly-equal in length as possible
+ ((leftOver = digitExcess - lengthDiff))
+ tail1=${value1:(-(lengthDiff + leftOver/2))}
+ tail2=${value2:(-((leftOver+1)/2))}
+ fi
+ else
+ ((lengthDiff *= -1))
+ # Mirror the above code block but swap 1 and 2
+ if ((digitExcess <= lengthDiff)); then
+ tail1=""
+ tail2=${value2:(-digitExcess)}
+ else
+ ((leftOver = digitExcess - lengthDiff))
+ tail1=${value1:(-((leftOver+1)/2))}
+ tail2=${value2:(-(lengthDiff + leftOver/2))}
+ fi
+ fi
+
+ # Discard the least-significant digits or move them past the decimal point
+ value1=${value1%${tail1}}
+ [[ -n "$subvalue1" ]] && subvalue1=${tail1}${subvalue1%0} # remove placeholder zero
+ value2=${value2%${tail2}}
+ [[ -n "$subvalue2" ]] && subvalue2=${tail2}${subvalue2%0}
+ else
+ # Signal the caller that no rescaling was actually done
+ ((digitExcess = 0))
+ fi
+
+ _shellmath_setReturnValues "$value1" "$value2" \
+ "$subvalue1" "$subvalue2" "$digitExcess"
+}
+
+################################################################################
+# rescaleValue(value, rescaleFactor)
+#
+# Upscales a decimal value by "factor" orders of magnitude: 3.14159 --> 3141.59
+################################################################################
+function _shellmath_rescaleValue()
+{
+ local value="$1" rescalingFactor="$2"
+ local head tail zeroCount zeroTail
+
+ [[ "$value" =~ ^(.*)\.(.*)$ ]]
+ head=${BASH_REMATCH[1]}
+ tail=${BASH_REMATCH[2]}
+ ((zeroCount = rescalingFactor - ${#tail}))
+ if ((zeroCount > 0)); then
+ printf -v zeroTail "%0*d" "$zeroCount" 0
+ value=${head}${tail}${zeroTail}
+ elif ((zeroCount < 0)); then
+ value=${head}${tail:0:rescalingFactor}"."${tail:rescalingFactor}
+ else
+ value=${head}${tail}
+ fi
+
+ _shellmath_setReturnValue "$value"
+}
+
+################################################################################
+# reduceCrossPairs (two integer parts, two fractional parts)
+#
+# Examines the precision of the inner products (of "multiplication by parts")
+# and if necessary truncates the fractional part(s) to prevent overflow
+################################################################################
+function _shellmath_reduceCrossPairs()
+{
+ local value1="$1" value2="$2" subvalue1="$3" subvalue2="$4"
+
+ local digitExcess value1Len=${#value1} value2Len=${#value2}
+ local subvalue1Len=${#subvalue1} subvalue2Len=${#subvalue2}
+
+ # Check BOTH cross-products
+ ((digitExcess = value1Len + subvalue2Len - __shellmath_precision))
+ if ((digitExcess > 1 || (digitExcess==1 && value1 > __shellmath_maxValue/subvalue2) )); then
+ subvalue2=${subvalue2:0:(-digitExcess)}
+ fi
+ ((digitExcess = value2Len + subvalue1Len - __shellmath_precision))
+ if ((digitExcess > 1 || (digitExcess==1 && value2 > __shellmath_maxValue/subvalue1) )); then
+ subvalue1=${subvalue1:0:(-digitExcess)}
+ fi
+
+ _shellmath_setReturnValues "$subvalue1" "$subvalue2"
+}
+
+
+function _shellmath_round()
+{
+ local number="$1" digitCount="$2"
+ local nextDigit=${number:digitCount:1}
+
+ number=${number:0:digitCount}
+ if ((nextDigit >= 5)); then
+ printf -v number "%0*d" "$digitCount" $((10#$number + 1))
+ fi
+
+ _shellmath_setReturnValue "$number"
+}
+
+################################################################################
+# multiply (multiplicand, multiplier)
+################################################################################
+function _shellmath_multiply()
+{
+ local n1="$1"
+ local n2="$2"
+
+ if ((! __shellmath_didPrecalc)); then
+ _shellmath_precalc; __shellmath_didPrecalc=$__shellmath_true
+ fi
+
+ local isVerbose=$(( __shellmath_isOptimized == __shellmath_false ))
+
+ # Is the caller itself an arithmetic function?
+ local isSubcall=${__shellmath_false}
+ if [[ "${FUNCNAME[1]}" =~ shellmath_(add|subtract|multiply|divide)$ ]]; then
+ isSubcall=${__shellmath_true}
+ fi
+
+ # Handle corner cases where argument count is not 2
+ local argCount=$#
+ if ((argCount == 0)); then
+ echo "Usage: ${FUNCNAME[0]} factor_1 factor_2"
+ return "$__shellmath_SUCCESS"
+ elif ((argCount == 1)); then
+ # Note the value as-is and return
+ _shellmath_setReturnValue "$n1"
+ (( isVerbose && ! isSubcall )) && echo "$n1"
+ return "$__shellmath_SUCCESS"
+ elif ((argCount > 2)); then
+ local recursiveReturn
+
+ # Use a binary recursion tree to multiply everything out
+ # 1) left branch
+ _shellmath_multiply "${@:1:$((argCount/2))}"; recursiveReturn=$?
+ _shellmath_getReturnValue n1
+ if (( recursiveReturn != __shellmath_SUCCESS )); then
+ _shellmath_setReturnValue "$n1"
+ return "$recursiveReturn"
+ fi
+ # 2) right branch
+ _shellmath_multiply "${@:$((argCount/2+1))}"; recursiveReturn=$?
+ _shellmath_getReturnValue n2
+ if (( recursiveReturn != __shellmath_SUCCESS )); then
+ _shellmath_setReturnValue "$n2"
+ return "$recursiveReturn"
+ fi
+ # 3) head node
+ local product
+ _shellmath_multiply "$n1" "$n2"; recursiveReturn=$?
+ _shellmath_getReturnValue product
+ _shellmath_setReturnValue "$product"
+ if (( isVerbose && ! isSubcall )); then
+ echo "$product"
+ fi
+ return "$recursiveReturn"
+ fi
+
+ local integerPart1 fractionalPart1 integerPart2 fractionalPart2
+ local isNegative1 type1 isScientific1 isNegative2 type2 isScientific2
+ local flags
+
+ # Check and parse the arguments
+ _shellmath_validateAndParse "$n1"; flags=$?
+ _shellmath_getReturnValues integerPart1 fractionalPart1 isNegative1 type1 isScientific1
+ if ((flags == __shellmath_ILLEGAL_NUMBER)); then
+ _shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n1"
+ return $?
+ fi
+ _shellmath_validateAndParse "$n2"; flags=$?
+ _shellmath_getReturnValues integerPart2 fractionalPart2 isNegative2 type2 isScientific2
+ if ((flags == __shellmath_ILLEGAL_NUMBER)); then
+ _shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n2"
+ return $?
+ fi
+
+ # Overflow / underflow detection and accommodation
+ local rescalingFactor=0
+ if ((${#integerPart1} + ${#integerPart2} + ${#fractionalPart1} + ${#fractionalPart2} >= ${__shellmath_precision})); then
+ _shellmath_reduceOuterPairs "$integerPart1" "$integerPart2" "$fractionalPart1" "$fractionalPart2"
+ _shellmath_getReturnValues integerPart1 integerPart2 fractionalPart1 fractionalPart2 rescalingFactor
+ if ((10#$fractionalPart1)); then type1=${__shellmath_numericTypes[DECIMAL]}; fi
+ if ((10#$fractionalPart2)); then type2=${__shellmath_numericTypes[DECIMAL]}; fi
+
+ _shellmath_reduceCrossPairs "$integerPart1" "$integerPart2" "$fractionalPart1" "$fractionalPart2"
+ _shellmath_getReturnValues fractionalPart1 fractionalPart2
+
+ _shellmath_reduceOuterPairs "$fractionalPart1" "$fractionalPart2"
+ _shellmath_getReturnValues fractionalPart1 fractionalPart2
+ fi
+
+ # Quick multiply & return for integer multiplies
+ if ((type1==type2 && type1==__shellmath_numericTypes[INTEGER])); then
+ ((isNegative1)) && ((integerPart1*=-1))
+ ((isNegative2)) && ((integerPart2*=-1))
+ local product=$((integerPart1 * integerPart2))
+ if ((rescalingFactor > 0)); then
+ _shellmath_rescaleValue "$product" "$rescalingFactor"
+ _shellmath_getReturnValue product
+ fi
+ if (( (!isSubcall) && (isScientific1 || isScientific2) )); then
+ _shellmath_numToScientific $product ""
+ _shellmath_getReturnValue product
+ fi
+ _shellmath_setReturnValue $product
+ if (( isVerbose && ! isSubcall )); then
+ echo "$product"
+ fi
+ return "$__shellmath_SUCCESS"
+ fi
+
+ # The product has four components per the distributive law
+ local intProduct floatProduct innerProduct1 innerProduct2
+ # Widths of the decimal parts
+ local floatWidth fractionalWidth1 fractionalWidth2
+
+ # Compute the integer and floating-point components
+ ((intProduct = integerPart1 * integerPart2))
+
+ fractionalWidth1=${#fractionalPart1}
+ fractionalWidth2=${#fractionalPart2}
+ ((floatWidth = fractionalWidth1 + fractionalWidth2))
+ ((floatProduct = 10#$fractionalPart1 * 10#$fractionalPart2))
+ if ((${#floatProduct} < floatWidth)); then
+ printf -v floatProduct "%0*d" "$floatWidth" "$floatProduct"
+ fi
+
+ # Compute the inner products: First integer-multiply, then rescale
+ ((innerProduct1 = integerPart1 * 10#$fractionalPart2))
+ ((innerProduct2 = integerPart2 * 10#$fractionalPart1))
+
+ # Rescale the inner products back to decimals so we can shellmath_add() them
+ if ((fractionalWidth2 <= ${#innerProduct1})); then
+ local innerInt1=${innerProduct1:0:(-$fractionalWidth2)}
+ local innerFloat1=${innerProduct1:(-$fractionalWidth2)}
+ integerPart1=${innerInt1}
+ fractionalPart1=${innerFloat1}
+ else
+ integerPart1=0
+ printf -v fractionalPart1 "%0*d" "$fractionalWidth2" "$innerProduct1"
+ fi
+ if ((fractionalWidth1 <= ${#innerProduct2})); then
+ local innerInt2=${innerProduct2:0:(-$fractionalWidth1)}
+ local innerFloat2=${innerProduct2:(-$fractionalWidth1)}
+ integerPart2=${innerInt2}
+ fractionalPart2=${innerFloat2}
+ else
+ integerPart2=0
+ printf -v fractionalPart2 "%0*d" "$fractionalWidth1" "$innerProduct2"
+ fi
+
+ # Combine the distributed parts
+ local innerSum product
+ # Add the inner products to get the inner sum
+ _shellmath_add "$integerPart1" "$fractionalPart1" "$integerPart2" "$fractionalPart2"
+ _shellmath_getReturnValue innerSum
+ [[ "$innerSum" =~ (.*)\.(.*) ]]
+ integerPart1=${BASH_REMATCH[1]}
+ fractionalPart1=${BASH_REMATCH[2]}
+ # Add inner sum + outer sum
+ _shellmath_add "$integerPart1" "$fractionalPart1" "$intProduct" "$floatProduct"
+ _shellmath_getReturnValue product
+
+ # Determine the sign of the product
+ if ((isNegative1 != isNegative2)); then
+ product="-"$product
+ fi
+
+ # When we pre-detect overflow in the integer part of the computation,
+ # we compensate by shrinking the inputs by some order of magnitude.
+ # Having now finished the computation, we revert to the original magnitude.
+ if ((rescalingFactor > 0)); then
+ _shellmath_rescaleValue "$product" "$rescalingFactor"
+ _shellmath_getReturnValue product
+ fi
+
+ # Convert to scientific notation if appropriate
+ if (( (!isSubcall) && (isScientific1 || isScientific2) )); then
+ _shellmath_numToScientific "${product%.*}" "${product#*.}"
+ _shellmath_getReturnValue product
+ fi
+
+ # Note the result, print if running "normally", and return
+ _shellmath_setReturnValue $product
+ if (( isVerbose && ! isSubcall )); then
+ echo "$product"
+ fi
+
+ return "$__shellmath_SUCCESS"
+}
+
+
+################################################################################
+# divide (dividend, divisor)
+################################################################################
+function _shellmath_divide()
+{
+ local n1="$1"
+ local n2="$2"
+ local integerPart1 fractionalPart1 integerPart2 fractionalPart2
+ local isNegative1 type1 isScientific1 isNegative2 type2 isScientific2
+
+ if ((! __shellmath_didPrecalc)); then
+ _shellmath_precalc; __shellmath_didPrecalc=$__shellmath_true
+ fi
+
+ local isVerbose=$(( __shellmath_isOptimized == __shellmath_false ))
+
+ local isTesting=${__shellmath_false}
+ if [[ "${FUNCNAME[1]}" == "_shellmath_assert_functionReturn" ]]; then
+ isTesting=${__shellmath_true}
+ fi
+
+ if [[ $# -eq 0 || $# -gt 2 ]]; then
+ echo "Usage: ${FUNCNAME[0]} dividend divisor"
+ return "$__shellmath_SUCCESS"
+ elif [[ $# -eq 1 ]]; then
+ # Note the value as-is and return
+ _shellmath_setReturnValue "$n1"
+ ((isVerbose)) && echo "$n1"
+ return "$__shellmath_SUCCESS"
+ fi
+
+ # Check and parse the arguments
+ local flags
+ _shellmath_validateAndParse "$n1"; flags=$?
+ _shellmath_getReturnValues integerPart1 fractionalPart1 isNegative1 type1 isScientific1
+ if ((flags == __shellmath_ILLEGAL_NUMBER)); then
+ _shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n1"
+ return $?
+ fi
+ _shellmath_validateAndParse "$n2"; flags=$?
+ _shellmath_getReturnValues integerPart2 fractionalPart2 isNegative2 type2 isScientific2
+ if ((flags == __shellmath_ILLEGAL_NUMBER)); then
+ _shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n2"
+ return $?
+ fi
+
+ # Throw error on divide by zero
+ if ((integerPart2 == 0 && 10#$fractionalPart2 == 0)); then
+ _shellmath_warn "${__shellmath_returnCodes[DIVIDE_BY_ZERO]}" "$n2"
+ return $?
+ fi
+
+ # Convert the division problem to an *integer* division problem by rescaling
+ # both inputs so as to lose their decimal points. To obtain maximal precision,
+ # we scale up the numerator further, padding with as many zeros as it can hold
+ local numerator denominator quotient
+ local rescaleFactor zeroCount zeroTail
+
+ if ((integerPart1 == 0)); then
+ integerPart1=""
+ fi
+ ((zeroCount = __shellmath_precision - ${#integerPart1} - ${#fractionalPart1}))
+ ((rescaleFactor = __shellmath_precision - ${#integerPart1} - ${#fractionalPart2}))
+ if ((zeroCount > 0)); then
+ printf -v zeroTail "%0*d" "$zeroCount" 0
+ fi
+
+ # Rescale and rewrite the fraction to be computed, and compute it
+ numerator=${integerPart1}${fractionalPart1}${zeroTail}
+ denominator=${integerPart2}${fractionalPart2}
+ ((quotient = 10#$numerator / 10#$denominator))
+
+ # For greater precision, re-divide by the remainder to get the next digits of the quotient
+ local remainder quotient_2
+ ((remainder = 10#$numerator % 10#$denominator)) # cannot exceed numerator or thus, maxValue
+ ((zeroCount = __shellmath_precision - ${#remainder}))
+ if ((zeroCount > 0)); then
+ printf -v zeroTail "%0*d" "$zeroCount" 0
+ else
+ zeroTail=""
+ fi
+ # Derive the new numerator from the remainder. Do not change the denominator.
+ numerator=${remainder}${zeroTail}
+ ((quotient_2 = 10#$numerator / 10#$denominator))
+ quotient=${quotient}${quotient_2}
+ ((rescaleFactor += ${#quotient_2}))
+
+ # Rescale back. For aesthetic reasons we also round off at the "precision"th decimal place
+ ((zeroCount = rescaleFactor - ${#quotient}))
+ if ((zeroCount >= 0)); then
+ local zeroPrefix="" fractionalPart
+ if ((zeroCount > 0)); then
+ printf -v zeroPrefix "%0*d" "$((rescaleFactor - ${#quotient}))" 0
+ fi
+ fractionalPart=${zeroPrefix}${quotient}
+ _shellmath_round "$fractionalPart" $__shellmath_precision
+ _shellmath_getReturnValue fractionalPart
+ quotient="0."${fractionalPart}
+ else
+ fractionalPart=${quotient:(-$rescaleFactor)}
+ _shellmath_round "$fractionalPart" $__shellmath_precision
+ _shellmath_getReturnValue fractionalPart
+ quotient=${quotient:0:(-$rescaleFactor)}"."${fractionalPart}
+ fi
+
+ # Determine the sign of the quotient
+ if ((isNegative1 != isNegative2)); then
+ quotient="-"$quotient
+ fi
+
+ if ((isTesting)); then
+ # Trim zeros. (Requires decimal point and zero tail.)
+ if [[ "$quotient" =~ [\.].*0$ ]]; then
+ # If the decimal point IMMEDIATELY precedes the 0s, remove that too
+ [[ $quotient =~ [\.]?0+$ ]]
+ quotient=${quotient%${BASH_REMATCH[0]}}
+ fi
+ fi
+
+ # Convert to scientific notation if appropriate
+ if ((isScientific1 || isScientific2)); then
+ _shellmath_numToScientific "${quotient%.*}" "${quotient#*.}"
+ _shellmath_getReturnValue quotient
+ fi
+
+ # Note the result, print if running "normally", and return
+ _shellmath_setReturnValue "$quotient"
+ if ((isVerbose)); then
+ echo "$quotient"
+ fi
+
+ return "$__shellmath_SUCCESS"
+}
+