diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 15:38:56 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 15:38:56 +0000 |
commit | 6c20c8ed2cb9ab69a1a57ccb2b9b79969a808321 (patch) | |
tree | f63ce19d57fad3ac4a15bc26dbfbfa2b834111b5 /examples/shellmath/shellmath.sh | |
parent | Initial commit. (diff) | |
download | bash-6c20c8ed2cb9ab69a1a57ccb2b9b79969a808321.tar.xz bash-6c20c8ed2cb9ab69a1a57ccb2b9b79969a808321.zip |
Adding upstream version 5.2.15.upstream/5.2.15upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'examples/shellmath/shellmath.sh')
-rw-r--r-- | examples/shellmath/shellmath.sh | 1068 |
1 files changed, 1068 insertions, 0 deletions
diff --git a/examples/shellmath/shellmath.sh b/examples/shellmath/shellmath.sh new file mode 100644 index 0000000..5804ad2 --- /dev/null +++ b/examples/shellmath/shellmath.sh @@ -0,0 +1,1068 @@ +#!/bin/env bash +################################################################################ +# shellmath.sh +# Shell functions for floating-point arithmetic using only builtins +# +# Copyright (c) 2020 by Michael Wood. All rights reserved. +# +# Usage: +# +# source _thisPath_/_thisFileName_ +# +# # Conventional method: call the APIs by subshelling +# mySum=$( _shellmath_add 202.895 6.00311 ) +# echo $mySum +# +# # Optimized method: use hidden globals to simulate more flexible pass-and-return +# _shellmath_isOptimized=1 +# _shellmath_add 44.2 -87 +# _shellmath_getReturnValue mySum +# echo $mySum +# +################################################################################ + + +################################################################################ +# Program constants +################################################################################ +declare -A -r __shellmath_numericTypes=( + [INTEGER]=0 + [DECIMAL]=1 +) + +declare -A -r __shellmath_returnCodes=( + [SUCCESS]="0:Success" + [FAIL]="1:General failure" + [ILLEGAL_NUMBER]="2:Invalid argument; decimal number required: '%s'" + [DIVIDE_BY_ZERO]="3:Divide by zero error" +) + +declare -r -i __shellmath_true=1 +declare -r -i __shellmath_false=0 + +declare __shellmath_SUCCESS __shellmath_FAIL __shellmath_ILLEGAL_NUMBER + +################################################################################ +# Program state +################################################################################ +declare __shellmath_isOptimized=${__shellmath_false} +declare __shellmath_didPrecalc=${__shellmath_false} + + +################################################################################ +# Error-handling utilities +################################################################################ +function _shellmath_getReturnCode() +{ + local errorName=$1 + return "${__shellmath_returnCodes[$errorName]%%:*}" +} + +function _shellmath_warn() +{ + # Generate an error message and return control to the caller + _shellmath_handleError -r "$@" + return $? +} + +function _shellmath_exit() +{ + # Generate an error message and EXIT THE SCRIPT / interpreter + _shellmath_handleError "$@" +} + +function _shellmath_handleError() +{ + # Hidden option "-r" causes return instead of exit + local returnDontExit=$__shellmath_false + if [[ "$1" == "-r" ]]; then + returnDontExit=${__shellmath_true} + shift + fi + + # Format of $1: returnCode:msgTemplate + [[ "$1" =~ ^([0-9]+):(.*) ]] + returnCode=${BASH_REMATCH[1]} + msgTemplate=${BASH_REMATCH[2]} + shift + + # Display error msg, making parameter substitutions as needed + msgParameters="$*" + printf "$msgTemplate" "${msgParameters[@]}" + + if ((returnDontExit)); then + return "$returnCode" + else + exit "$returnCode" + fi +} + + +################################################################################ +# precalc() +# +# Pre-calculates certain global data and by setting the global variable +# "__shellmath_didPrecalc" records that this routine has been called. As an +# optimization, the caller should check that global to prevent needless +# invocations. +################################################################################ +function _shellmath_precalc() +{ + # Set a few global constants + _shellmath_getReturnCode SUCCESS; __shellmath_SUCCESS=$? + _shellmath_getReturnCode FAIL; __shellmath_FAIL=$? + _shellmath_getReturnCode ILLEGAL_NUMBER; __shellmath_ILLEGAL_NUMBER=$? + + # Determine the decimal precision to which we can accurately calculate. + # To do this we probe for the threshold at which integers overflow and + # take the integer floor of that number's base-10 logarithm. + # We check the 64-bit, 32-bit and 16-bit thresholds only. + if ((2**63 < 2**63-1)); then + __shellmath_precision=18 + __shellmath_maxValue=$((2**63-1)) + elif ((2**31 < 2**31-1)); then + __shellmath_precision=9 + __shellmath_maxValue=$((2**31-1)) + else ## ((2**15 < 2**15-1)) + __shellmath_precision=4 + __shellmath_maxValue=$((2**15-1)) + fi + + __shellmath_didPrecalc=$__shellmath_true +} + + +################################################################################ +# Simulate pass-and-return by reference using a secret global storage array +################################################################################ + +declare -a __shellmath_storage + +function _shellmath_setReturnValues() +{ + local -i _i + + for ((_i=1; _i<=$#; _i++)); do + __shellmath_storage[_i]="${!_i}" + done + + __shellmath_storage[0]=$# +} + +function _shellmath_getReturnValues() +{ + local -i _i + local evalString + + for ((_i=1; _i<=$#; _i++)); do + evalString+=${!_i}="${__shellmath_storage[_i]}"" " + done + + eval "$evalString" +} + +function _shellmath_setReturnValue() { __shellmath_storage=(1 "$1"); } +function _shellmath_getReturnValue() { eval "$1"=\"${__shellmath_storage[1]}\"; } +function _shellmath_getReturnValueCount() { eval "$1"=\"${__shellmath_storage[0]}\"; } + +################################################################################ +# validateAndParse(numericString) +# Return Code: SUCCESS or ILLEGAL_NUMBER +# Return Signature: integerPart fractionalPart isNegative numericType isScientific +# +# Validate and parse arguments to the main arithmetic routines +################################################################################ + +function _shellmath_validateAndParse() +{ + local n="$1" + local isNegative=${__shellmath_false} + local isScientific=${__shellmath_false} + local numericType returnCode + + ((returnCode = __shellmath_SUCCESS)) + + # Accept decimals: leading digits (optional), decimal point, trailing digits + if [[ "$n" =~ ^[-]?([0-9]*)\.([0-9]+)$ ]]; then + local integerPart=${BASH_REMATCH[1]:-0} + local fractionalPart=${BASH_REMATCH[2]} + + # Strip superfluous trailing zeros + if [[ "$fractionalPart" =~ ^(.*[^0])0*$ ]]; then + fractionalPart=${BASH_REMATCH[1]} + fi + + numericType=${__shellmath_numericTypes[DECIMAL]} + + # Factor out the negative sign if it is present + if [[ "$n" =~ ^- ]]; then + isNegative=${__shellmath_true} + n=${n:1} + fi + + _shellmath_setReturnValues "$integerPart" "$fractionalPart" \ + $isNegative "$numericType" $isScientific + return "$returnCode" + + # Accept integers + elif [[ "$n" =~ ^[-]?[0-9]+$ ]]; then + numericType=${__shellmath_numericTypes[INTEGER]} + + # Factor out the negative sign if it is present + if [[ "$n" =~ ^- ]]; then + isNegative=${__shellmath_true} + n=${n:1} + fi + + _shellmath_setReturnValues "$n" 0 $isNegative "$numericType" $isScientific + return "$returnCode" + + # Accept scientific notation: 1e5, 2.44E+10, etc. + elif [[ "$n" =~ (.*)[Ee](.*) ]]; then + local significand=${BASH_REMATCH[1]} + local exponent=${BASH_REMATCH[2]} + + # Validate the significand: optional sign, integer part, + # optional decimal point and fractional part + if [[ "$significand" =~ ^[-]?([0-9]+)(\.([0-9]+))?$ ]]; then + + isScientific=${__shellmath_true} + + # Separate the integer and fractional parts + local sigInteger=${BASH_REMATCH[1]} + local sigIntLength=${#sigInteger} + local sigFraction=${BASH_REMATCH[3]} + + # Strip superfluous trailing zeros + if [[ "$sigFraction" =~ ^(.*[^0])0*$ ]]; then + sigFraction=${BASH_REMATCH[1]} + fi + + local sigFracLength=${#sigFraction} + + if [[ "$n" =~ ^- ]]; then + isNegative=${__shellmath_true} + n=${n:1} + fi + + # Rewrite the scientifically-notated number in ordinary decimal notation. + # IOW, realign the integer and fractional parts. Separate with a space + # so they can be returned as two separate values + if ((exponent > 0)); then + local zeroCount integer fraction + ((zeroCount = exponent - sigFracLength)) + if ((zeroCount > 0)); then + printf -v zeros "%0*d" "$zeroCount" 0 + n=${sigInteger}${sigFraction}${zeros}" 0" + numericType=${__shellmath_numericTypes[INTEGER]} + elif ((zeroCount < 0)); then + n=${sigInteger}${sigFraction:0:exponent}" "${sigFraction:exponent} + numericType=${__shellmath_numericTypes[DECIMAL]} + else + n=${sigInteger}${sigFraction}" 0" + numericType=${__shellmath_numericTypes[INTEGER]} + fi + integer=${n% *}; fraction=${n#* } + _shellmath_setReturnValues "$integer" "$fraction" $isNegative "$numericType" $isScientific + return "$returnCode" + + elif ((exponent < 0)); then + local zeroCount integer fraction + ((zeroCount = -exponent - sigIntLength)) + if ((zeroCount > 0)); then + printf -v zeros "%0*d" "$zeroCount" 0 + n="0 "${zeros}${sigInteger}${sigFraction} + numericType=${__shellmath_numericTypes[DECIMAL]} + elif ((zeroCount < 0)); then + n=${sigInteger:0:-zeroCount}" "${sigInteger:(-zeroCount)}${sigFraction} + numericType=${__shellmath_numericTypes[DECIMAL]} + else + n="0 "${sigInteger}${sigFraction} + numericType=${__shellmath_numericTypes[DECIMAL]} + fi + integer=${n% *}; fraction=${n#* } + _shellmath_setReturnValues "$integer" "$fraction" $isNegative "$numericType" $isScientific + return "$returnCode" + + else + # exponent == 0 means the number is already aligned as desired + numericType=${__shellmath_numericTypes[DECIMAL]} + _shellmath_setReturnValues "$sigInteger" "$sigFraction" $isNegative "$numericType" $isScientific + return "$returnCode" + fi + + # Reject strings like xxx[Ee]yyy where xxx, yyy are not valid numbers + else + ((returnCode = __shellmath_ILLEGAL_NUMBER)) + _shellmath_setReturnValues "" + return "$returnCode" + fi + + # Reject everything else + else + ((returnCode = __shellmath_ILLEGAL_NUMBER)) + _shellmath_setReturnValues "" + return "$returnCode" + fi +} + + +################################################################################ +# numToScientific (integerPart, fractionalPart) +# +# Format conversion utility function +################################################################################ +function _shellmath_numToScientific() +{ + local integerPart=$1 fractionalPart=$2 + local exponent head tail scientific + + if ((integerPart > 0)); then + ((exponent = ${#integerPart}-1)) + head=${integerPart:0:1} + tail=${integerPart:1}${fractionalPart} + elif ((integerPart < 0)); then + ((exponent = ${#integerPart}-2)) # skip "-" and first digit + head=${integerPart:0:2} + tail=${integerPart:2}${fractionalPart} + else + [[ "$fractionalPart" =~ ^[-]?(0*)([^0])(.*)$ ]] + exponent=$((-(${#BASH_REMATCH[1]} + 1))) + head=${BASH_REMATCH[2]} + tail=${BASH_REMATCH[3]} + fi + + # Remove trailing zeros + [[ $tail =~ ^.*[^0] ]]; tail=${BASH_REMATCH[0]:-0} + + printf -v scientific "%d.%de%d" "$head" "$tail" "$exponent" + + _shellmath_setReturnValue "$scientific" +} + + +################################################################################ +# _shellmath_add (addend_1, addend_2) +################################################################################ +function _shellmath_add() +{ + local n1="$1" + local n2="$2" + + if ((! __shellmath_didPrecalc)); then + _shellmath_precalc; __shellmath_didPrecalc=$__shellmath_true + fi + + local isVerbose=$(( __shellmath_isOptimized == __shellmath_false )) + + # Is the caller itself an arithmetic function? + local isSubcall=${__shellmath_false} + local isMultiplication=${__shellmath_false} + if [[ "${FUNCNAME[1]}" =~ shellmath_(add|subtract|multiply|divide)$ ]]; then + isSubcall=${__shellmath_true} + if [[ "${BASH_REMATCH[1]}" == multiply ]]; then + isMultiplication=${__shellmath_true} + fi + fi + + # Handle corner cases where argument count is not 2 + local argCount=$# + if ((argCount == 0)); then + echo "Usage: ${FUNCNAME[0]} addend_1 addend_2" + return "$__shellmath_SUCCESS" + elif ((argCount == 1)); then + # Note the result as-is, print if running "normally", and return + _shellmath_setReturnValue "$n1" + (( isVerbose && ! isSubcall )) && echo "$n1" + return "$__shellmath_SUCCESS" + elif ((argCount > 2 && !isSubcall)); then + local recursiveReturn + + # Use a binary recursion tree to add everything up + # 1) left branch + _shellmath_add "${@:1:$((argCount/2))}"; recursiveReturn=$? + _shellmath_getReturnValue n1 + if (( recursiveReturn != __shellmath_SUCCESS )); then + _shellmath_setReturnValue "$n1" + return "$recursiveReturn" + fi + # 2) right branch + _shellmath_add "${@:$((argCount/2+1))}"; recursiveReturn=$? + _shellmath_getReturnValue n2 + if (( recursiveReturn != __shellmath_SUCCESS )); then + _shellmath_setReturnValue "$n2" + return "$recursiveReturn" + fi + # 3) head node + local sum + _shellmath_add "$n1" "$n2"; recursiveReturn=$? + _shellmath_getReturnValue sum + _shellmath_setReturnValue "$sum" + if (( isVerbose && ! isSubcall )); then + echo "$sum" + fi + return "$recursiveReturn" + fi + + local integerPart1 fractionalPart1 integerPart2 fractionalPart2 + local isNegative1 type1 isScientific1 isNegative2 type2 isScientific2 + local flags + + if ((isMultiplication)); then + integerPart1="$1" + fractionalPart1="$2" + integerPart2="$3" + fractionalPart2="$4" + + type1=${__shellmath_numericTypes[DECIMAL]} + type2=${__shellmath_numericTypes[DECIMAL]} + isNegative1=$__shellmath_false + isNegative2=$__shellmath_false + isScientific1=$__shellmath_false + isScientific2=$__shellmath_false + else + # Check and parse the arguments + _shellmath_validateAndParse "$n1"; flags=$? + _shellmath_getReturnValues integerPart1 fractionalPart1 isNegative1 type1 isScientific1 + if ((flags == __shellmath_ILLEGAL_NUMBER)); then + _shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n1" + return $? + fi + _shellmath_validateAndParse "$n2"; flags=$? + _shellmath_getReturnValues integerPart2 fractionalPart2 isNegative2 type2 isScientific2 + if ((flags == __shellmath_ILLEGAL_NUMBER)); then + _shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n2" + return $? + fi + fi + + # Quick add & return for integer adds + if ((type1==type2 && type1==__shellmath_numericTypes[INTEGER])); then + ((isNegative1)) && ((integerPart1*=-1)) + ((isNegative2)) && ((integerPart2*=-1)) + local sum=$((integerPart1 + integerPart2)) + if (( (!isSubcall) && (isScientific1 || isScientific2) )); then + _shellmath_numToScientific $sum "" + _shellmath_getReturnValue sum + fi + _shellmath_setReturnValue $sum + if (( isVerbose && ! isSubcall )); then + echo "$sum" + fi + return "$__shellmath_SUCCESS" + fi + + # Right-pad both fractional parts with zeros to the same length + local fractionalLen1=${#fractionalPart1} + local fractionalLen2=${#fractionalPart2} + if ((fractionalLen1 > fractionalLen2)); then + # Use printf to zero-pad. This avoids mathematical side effects. + printf -v fractionalPart2 %-*s "$fractionalLen1" "$fractionalPart2" + fractionalPart2=${fractionalPart2// /0} + elif ((fractionalLen2 > fractionalLen1)); then + printf -v fractionalPart1 %-*s "$fractionalLen2" "$fractionalPart1" + fractionalPart1=${fractionalPart1// /0} + fi + local unsignedFracLength=${#fractionalPart1} + + # Implement a sign convention that will enable us to detect carries by + # comparing string lengths of addends and sums: propagate the sign across + # both numeric parts (whether unsigned or zero). + if ((isNegative1)); then + fractionalPart1="-"$fractionalPart1 + integerPart1="-"$integerPart1 + fi + if ((isNegative2)); then + fractionalPart2="-"$fractionalPart2 + integerPart2="-"$integerPart2 + fi + + local integerSum=0 + local fractionalSum=0 + + ((integerSum = integerPart1+integerPart2)) + + # Summing the fractional parts is tricky: We need to override the shell's + # default interpretation of leading zeros, but the operator for doing this + # (the "10#" operator) cannot work directly with negative numbers. So we + # break it all down. + if ((isNegative1)); then + ((fractionalSum += (-1) * 10#${fractionalPart1:1})) + else + ((fractionalSum += 10#$fractionalPart1)) + fi + if ((isNegative2)); then + ((fractionalSum += (-1) * 10#${fractionalPart2:1})) + else + ((fractionalSum += 10#$fractionalPart2)) + fi + + unsignedFracSumLength=${#fractionalSum} + if [[ "$fractionalSum" =~ ^[-] ]]; then + ((unsignedFracSumLength--)) + fi + + # Restore any leading zeroes that were lost when adding + if ((unsignedFracSumLength < unsignedFracLength)); then + local lengthDiff=$((unsignedFracLength - unsignedFracSumLength)) + local zeroPrefix + printf -v zeroPrefix "%0*d" "$lengthDiff" 0 + if ((fractionalSum < 0)); then + fractionalSum="-"${zeroPrefix}${fractionalSum:1} + else + fractionalSum=${zeroPrefix}${fractionalSum} + fi + fi + + # Carry a digit from fraction to integer if required + if ((10#$fractionalSum!=0 && unsignedFracSumLength > unsignedFracLength)); then + local carryAmount + ((carryAmount = isNegative1?-1:1)) + ((integerSum += carryAmount)) + # Remove the leading 1-digit whether the fraction is + or - + fractionalSum=${fractionalSum/1/} + fi + + # Transform the partial sums from additive to concatenative. Example: the + # pair (-2,3) is not -2.3 but rather (-2)+(0.3), i.e. -1.7 so we want to + # transform (-2,3) to (-1,7). This transformation is meaningful when + # the two parts have opposite signs, so that's what we look for. + if ((integerSum < 0 && 10#$fractionalSum > 0)); then + ((integerSum += 1)) + ((fractionalSum = 10#$fractionalSum - 10**unsignedFracSumLength)) + elif ((integerSum > 0 && 10#$fractionalSum < 0)); then + ((integerSum -= 1)) + ((fractionalSum = 10**unsignedFracSumLength + 10#$fractionalSum)) + fi + # This last case needs to function either as an "else" for the above, + # or as a coda to the "if" clause when integerSum is -1 initially. + if ((integerSum == 0 && 10#$fractionalSum < 0)); then + integerSum="-"$integerSum + ((fractionalSum *= -1)) + fi + + # Touch up the numbers for display + local sum + ((10#$fractionalSum < 0)) && fractionalSum=${fractionalSum:1} + if (( (!isSubcall) && (isScientific1 || isScientific2) )); then + _shellmath_numToScientific "$integerSum" "$fractionalSum" + _shellmath_getReturnValue sum + elif ((10#$fractionalSum)); then + printf -v sum "%s.%s" "$integerSum" "$fractionalSum" + else + sum=$integerSum + fi + + # Note the result, print if running "normally", and return + _shellmath_setReturnValue $sum + if (( isVerbose && ! isSubcall )); then + echo "$sum" + fi + + return "$__shellmath_SUCCESS" +} + + +################################################################################ +# subtract (subtrahend, minuend) +################################################################################ +function _shellmath_subtract() +{ + local n1="$1" + local n2="$2" + local isVerbose=$(( __shellmath_isOptimized == __shellmath_false )) + + if ((! __shellmath_didPrecalc)); then + _shellmath_precalc; __shellmath_didPrecalc=$__shellmath_true + fi + + if (( $# == 0 || $# > 2 )); then + echo "Usage: ${FUNCNAME[0]} subtrahend minuend" + return "$__shellmath_SUCCESS" + elif (( $# == 1 )); then + # Note the value as-is and return + _shellmath_setReturnValue "$n1" + ((isVerbose)) && echo "$n1" + return "$__shellmath_SUCCESS" + fi + + # Symbolically negate the second argument + if [[ "$n2" =~ ^- ]]; then + n2=${n2:1} + else + n2="-"$n2 + fi + + # Calculate, note the result, print if running "normally", and return + local difference + _shellmath_add "$n1" "$n2" + _shellmath_getReturnValue difference + if ((isVerbose)); then + echo "$difference" + fi + + return $? +} + + +################################################################################ +# reduceOuterPairs (two integer parts [, two fractional parts]) +# +# Examines the magnitudes of two numbers in advance of a multiplication +# and either chops off their lowest-order digits or pushes them to the +# corresponding lower-order parts in order to prevent overflow in the product. +# The choice depends on whether 2 or 4 arguments are supplied. +################################################################################ +function _shellmath_reduceOuterPairs() +{ + local value1="$1" value2="$2" subvalue1="$3" subvalue2="$4" + + local digitExcess value1Len=${#value1} value2Len=${#value2} + ((digitExcess = value1Len + value2Len - __shellmath_precision)) + + # Be very precise about detecting overflow. The "digit excess" underestimates + # this: floor(log_10(longLongMax)). We don't want to needlessly lose precision + # when a product barely squeezes under the exact threshold. + if ((digitExcess>1 || (digitExcess==1 && value1 > __shellmath_maxValue/value2) )); then + + # Identify the digit-tails to be pruned off and either discarded or + # pushed past the decimal point. In pruning the two values we want to + # retain as much "significance" as possible, so we try to equalize the + # lengths of the remaining digit sequences. + local tail1 tail2 + local lengthDiff leftOver + + # Which digit string is longer, and by how much? + ((lengthDiff = value1Len - value2Len)) + if ((lengthDiff > 0)); then + if ((digitExcess <= lengthDiff)); then + # Chop digits from the longer string only + tail1=${value1:(-digitExcess)} + tail2="" # do not chop anything + else + # Chop more digits from the longer string so the two strings + # end up as nearly-equal in length as possible + ((leftOver = digitExcess - lengthDiff)) + tail1=${value1:(-(lengthDiff + leftOver/2))} + tail2=${value2:(-((leftOver+1)/2))} + fi + else + ((lengthDiff *= -1)) + # Mirror the above code block but swap 1 and 2 + if ((digitExcess <= lengthDiff)); then + tail1="" + tail2=${value2:(-digitExcess)} + else + ((leftOver = digitExcess - lengthDiff)) + tail1=${value1:(-((leftOver+1)/2))} + tail2=${value2:(-(lengthDiff + leftOver/2))} + fi + fi + + # Discard the least-significant digits or move them past the decimal point + value1=${value1%${tail1}} + [[ -n "$subvalue1" ]] && subvalue1=${tail1}${subvalue1%0} # remove placeholder zero + value2=${value2%${tail2}} + [[ -n "$subvalue2" ]] && subvalue2=${tail2}${subvalue2%0} + else + # Signal the caller that no rescaling was actually done + ((digitExcess = 0)) + fi + + _shellmath_setReturnValues "$value1" "$value2" \ + "$subvalue1" "$subvalue2" "$digitExcess" +} + +################################################################################ +# rescaleValue(value, rescaleFactor) +# +# Upscales a decimal value by "factor" orders of magnitude: 3.14159 --> 3141.59 +################################################################################ +function _shellmath_rescaleValue() +{ + local value="$1" rescalingFactor="$2" + local head tail zeroCount zeroTail + + [[ "$value" =~ ^(.*)\.(.*)$ ]] + head=${BASH_REMATCH[1]} + tail=${BASH_REMATCH[2]} + ((zeroCount = rescalingFactor - ${#tail})) + if ((zeroCount > 0)); then + printf -v zeroTail "%0*d" "$zeroCount" 0 + value=${head}${tail}${zeroTail} + elif ((zeroCount < 0)); then + value=${head}${tail:0:rescalingFactor}"."${tail:rescalingFactor} + else + value=${head}${tail} + fi + + _shellmath_setReturnValue "$value" +} + +################################################################################ +# reduceCrossPairs (two integer parts, two fractional parts) +# +# Examines the precision of the inner products (of "multiplication by parts") +# and if necessary truncates the fractional part(s) to prevent overflow +################################################################################ +function _shellmath_reduceCrossPairs() +{ + local value1="$1" value2="$2" subvalue1="$3" subvalue2="$4" + + local digitExcess value1Len=${#value1} value2Len=${#value2} + local subvalue1Len=${#subvalue1} subvalue2Len=${#subvalue2} + + # Check BOTH cross-products + ((digitExcess = value1Len + subvalue2Len - __shellmath_precision)) + if ((digitExcess > 1 || (digitExcess==1 && value1 > __shellmath_maxValue/subvalue2) )); then + subvalue2=${subvalue2:0:(-digitExcess)} + fi + ((digitExcess = value2Len + subvalue1Len - __shellmath_precision)) + if ((digitExcess > 1 || (digitExcess==1 && value2 > __shellmath_maxValue/subvalue1) )); then + subvalue1=${subvalue1:0:(-digitExcess)} + fi + + _shellmath_setReturnValues "$subvalue1" "$subvalue2" +} + + +function _shellmath_round() +{ + local number="$1" digitCount="$2" + local nextDigit=${number:digitCount:1} + + number=${number:0:digitCount} + if ((nextDigit >= 5)); then + printf -v number "%0*d" "$digitCount" $((10#$number + 1)) + fi + + _shellmath_setReturnValue "$number" +} + +################################################################################ +# multiply (multiplicand, multiplier) +################################################################################ +function _shellmath_multiply() +{ + local n1="$1" + local n2="$2" + + if ((! __shellmath_didPrecalc)); then + _shellmath_precalc; __shellmath_didPrecalc=$__shellmath_true + fi + + local isVerbose=$(( __shellmath_isOptimized == __shellmath_false )) + + # Is the caller itself an arithmetic function? + local isSubcall=${__shellmath_false} + if [[ "${FUNCNAME[1]}" =~ shellmath_(add|subtract|multiply|divide)$ ]]; then + isSubcall=${__shellmath_true} + fi + + # Handle corner cases where argument count is not 2 + local argCount=$# + if ((argCount == 0)); then + echo "Usage: ${FUNCNAME[0]} factor_1 factor_2" + return "$__shellmath_SUCCESS" + elif ((argCount == 1)); then + # Note the value as-is and return + _shellmath_setReturnValue "$n1" + (( isVerbose && ! isSubcall )) && echo "$n1" + return "$__shellmath_SUCCESS" + elif ((argCount > 2)); then + local recursiveReturn + + # Use a binary recursion tree to multiply everything out + # 1) left branch + _shellmath_multiply "${@:1:$((argCount/2))}"; recursiveReturn=$? + _shellmath_getReturnValue n1 + if (( recursiveReturn != __shellmath_SUCCESS )); then + _shellmath_setReturnValue "$n1" + return "$recursiveReturn" + fi + # 2) right branch + _shellmath_multiply "${@:$((argCount/2+1))}"; recursiveReturn=$? + _shellmath_getReturnValue n2 + if (( recursiveReturn != __shellmath_SUCCESS )); then + _shellmath_setReturnValue "$n2" + return "$recursiveReturn" + fi + # 3) head node + local product + _shellmath_multiply "$n1" "$n2"; recursiveReturn=$? + _shellmath_getReturnValue product + _shellmath_setReturnValue "$product" + if (( isVerbose && ! isSubcall )); then + echo "$product" + fi + return "$recursiveReturn" + fi + + local integerPart1 fractionalPart1 integerPart2 fractionalPart2 + local isNegative1 type1 isScientific1 isNegative2 type2 isScientific2 + local flags + + # Check and parse the arguments + _shellmath_validateAndParse "$n1"; flags=$? + _shellmath_getReturnValues integerPart1 fractionalPart1 isNegative1 type1 isScientific1 + if ((flags == __shellmath_ILLEGAL_NUMBER)); then + _shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n1" + return $? + fi + _shellmath_validateAndParse "$n2"; flags=$? + _shellmath_getReturnValues integerPart2 fractionalPart2 isNegative2 type2 isScientific2 + if ((flags == __shellmath_ILLEGAL_NUMBER)); then + _shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n2" + return $? + fi + + # Overflow / underflow detection and accommodation + local rescalingFactor=0 + if ((${#integerPart1} + ${#integerPart2} + ${#fractionalPart1} + ${#fractionalPart2} >= ${__shellmath_precision})); then + _shellmath_reduceOuterPairs "$integerPart1" "$integerPart2" "$fractionalPart1" "$fractionalPart2" + _shellmath_getReturnValues integerPart1 integerPart2 fractionalPart1 fractionalPart2 rescalingFactor + if ((10#$fractionalPart1)); then type1=${__shellmath_numericTypes[DECIMAL]}; fi + if ((10#$fractionalPart2)); then type2=${__shellmath_numericTypes[DECIMAL]}; fi + + _shellmath_reduceCrossPairs "$integerPart1" "$integerPart2" "$fractionalPart1" "$fractionalPart2" + _shellmath_getReturnValues fractionalPart1 fractionalPart2 + + _shellmath_reduceOuterPairs "$fractionalPart1" "$fractionalPart2" + _shellmath_getReturnValues fractionalPart1 fractionalPart2 + fi + + # Quick multiply & return for integer multiplies + if ((type1==type2 && type1==__shellmath_numericTypes[INTEGER])); then + ((isNegative1)) && ((integerPart1*=-1)) + ((isNegative2)) && ((integerPart2*=-1)) + local product=$((integerPart1 * integerPart2)) + if ((rescalingFactor > 0)); then + _shellmath_rescaleValue "$product" "$rescalingFactor" + _shellmath_getReturnValue product + fi + if (( (!isSubcall) && (isScientific1 || isScientific2) )); then + _shellmath_numToScientific $product "" + _shellmath_getReturnValue product + fi + _shellmath_setReturnValue $product + if (( isVerbose && ! isSubcall )); then + echo "$product" + fi + return "$__shellmath_SUCCESS" + fi + + # The product has four components per the distributive law + local intProduct floatProduct innerProduct1 innerProduct2 + # Widths of the decimal parts + local floatWidth fractionalWidth1 fractionalWidth2 + + # Compute the integer and floating-point components + ((intProduct = integerPart1 * integerPart2)) + + fractionalWidth1=${#fractionalPart1} + fractionalWidth2=${#fractionalPart2} + ((floatWidth = fractionalWidth1 + fractionalWidth2)) + ((floatProduct = 10#$fractionalPart1 * 10#$fractionalPart2)) + if ((${#floatProduct} < floatWidth)); then + printf -v floatProduct "%0*d" "$floatWidth" "$floatProduct" + fi + + # Compute the inner products: First integer-multiply, then rescale + ((innerProduct1 = integerPart1 * 10#$fractionalPart2)) + ((innerProduct2 = integerPart2 * 10#$fractionalPart1)) + + # Rescale the inner products back to decimals so we can shellmath_add() them + if ((fractionalWidth2 <= ${#innerProduct1})); then + local innerInt1=${innerProduct1:0:(-$fractionalWidth2)} + local innerFloat1=${innerProduct1:(-$fractionalWidth2)} + integerPart1=${innerInt1} + fractionalPart1=${innerFloat1} + else + integerPart1=0 + printf -v fractionalPart1 "%0*d" "$fractionalWidth2" "$innerProduct1" + fi + if ((fractionalWidth1 <= ${#innerProduct2})); then + local innerInt2=${innerProduct2:0:(-$fractionalWidth1)} + local innerFloat2=${innerProduct2:(-$fractionalWidth1)} + integerPart2=${innerInt2} + fractionalPart2=${innerFloat2} + else + integerPart2=0 + printf -v fractionalPart2 "%0*d" "$fractionalWidth1" "$innerProduct2" + fi + + # Combine the distributed parts + local innerSum product + # Add the inner products to get the inner sum + _shellmath_add "$integerPart1" "$fractionalPart1" "$integerPart2" "$fractionalPart2" + _shellmath_getReturnValue innerSum + [[ "$innerSum" =~ (.*)\.(.*) ]] + integerPart1=${BASH_REMATCH[1]} + fractionalPart1=${BASH_REMATCH[2]} + # Add inner sum + outer sum + _shellmath_add "$integerPart1" "$fractionalPart1" "$intProduct" "$floatProduct" + _shellmath_getReturnValue product + + # Determine the sign of the product + if ((isNegative1 != isNegative2)); then + product="-"$product + fi + + # When we pre-detect overflow in the integer part of the computation, + # we compensate by shrinking the inputs by some order of magnitude. + # Having now finished the computation, we revert to the original magnitude. + if ((rescalingFactor > 0)); then + _shellmath_rescaleValue "$product" "$rescalingFactor" + _shellmath_getReturnValue product + fi + + # Convert to scientific notation if appropriate + if (( (!isSubcall) && (isScientific1 || isScientific2) )); then + _shellmath_numToScientific "${product%.*}" "${product#*.}" + _shellmath_getReturnValue product + fi + + # Note the result, print if running "normally", and return + _shellmath_setReturnValue $product + if (( isVerbose && ! isSubcall )); then + echo "$product" + fi + + return "$__shellmath_SUCCESS" +} + + +################################################################################ +# divide (dividend, divisor) +################################################################################ +function _shellmath_divide() +{ + local n1="$1" + local n2="$2" + local integerPart1 fractionalPart1 integerPart2 fractionalPart2 + local isNegative1 type1 isScientific1 isNegative2 type2 isScientific2 + + if ((! __shellmath_didPrecalc)); then + _shellmath_precalc; __shellmath_didPrecalc=$__shellmath_true + fi + + local isVerbose=$(( __shellmath_isOptimized == __shellmath_false )) + + local isTesting=${__shellmath_false} + if [[ "${FUNCNAME[1]}" == "_shellmath_assert_functionReturn" ]]; then + isTesting=${__shellmath_true} + fi + + if [[ $# -eq 0 || $# -gt 2 ]]; then + echo "Usage: ${FUNCNAME[0]} dividend divisor" + return "$__shellmath_SUCCESS" + elif [[ $# -eq 1 ]]; then + # Note the value as-is and return + _shellmath_setReturnValue "$n1" + ((isVerbose)) && echo "$n1" + return "$__shellmath_SUCCESS" + fi + + # Check and parse the arguments + local flags + _shellmath_validateAndParse "$n1"; flags=$? + _shellmath_getReturnValues integerPart1 fractionalPart1 isNegative1 type1 isScientific1 + if ((flags == __shellmath_ILLEGAL_NUMBER)); then + _shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n1" + return $? + fi + _shellmath_validateAndParse "$n2"; flags=$? + _shellmath_getReturnValues integerPart2 fractionalPart2 isNegative2 type2 isScientific2 + if ((flags == __shellmath_ILLEGAL_NUMBER)); then + _shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n2" + return $? + fi + + # Throw error on divide by zero + if ((integerPart2 == 0 && 10#$fractionalPart2 == 0)); then + _shellmath_warn "${__shellmath_returnCodes[DIVIDE_BY_ZERO]}" "$n2" + return $? + fi + + # Convert the division problem to an *integer* division problem by rescaling + # both inputs so as to lose their decimal points. To obtain maximal precision, + # we scale up the numerator further, padding with as many zeros as it can hold + local numerator denominator quotient + local rescaleFactor zeroCount zeroTail + + if ((integerPart1 == 0)); then + integerPart1="" + fi + ((zeroCount = __shellmath_precision - ${#integerPart1} - ${#fractionalPart1})) + ((rescaleFactor = __shellmath_precision - ${#integerPart1} - ${#fractionalPart2})) + if ((zeroCount > 0)); then + printf -v zeroTail "%0*d" "$zeroCount" 0 + fi + + # Rescale and rewrite the fraction to be computed, and compute it + numerator=${integerPart1}${fractionalPart1}${zeroTail} + denominator=${integerPart2}${fractionalPart2} + ((quotient = 10#$numerator / 10#$denominator)) + + # For greater precision, re-divide by the remainder to get the next digits of the quotient + local remainder quotient_2 + ((remainder = 10#$numerator % 10#$denominator)) # cannot exceed numerator or thus, maxValue + ((zeroCount = __shellmath_precision - ${#remainder})) + if ((zeroCount > 0)); then + printf -v zeroTail "%0*d" "$zeroCount" 0 + else + zeroTail="" + fi + # Derive the new numerator from the remainder. Do not change the denominator. + numerator=${remainder}${zeroTail} + ((quotient_2 = 10#$numerator / 10#$denominator)) + quotient=${quotient}${quotient_2} + ((rescaleFactor += ${#quotient_2})) + + # Rescale back. For aesthetic reasons we also round off at the "precision"th decimal place + ((zeroCount = rescaleFactor - ${#quotient})) + if ((zeroCount >= 0)); then + local zeroPrefix="" fractionalPart + if ((zeroCount > 0)); then + printf -v zeroPrefix "%0*d" "$((rescaleFactor - ${#quotient}))" 0 + fi + fractionalPart=${zeroPrefix}${quotient} + _shellmath_round "$fractionalPart" $__shellmath_precision + _shellmath_getReturnValue fractionalPart + quotient="0."${fractionalPart} + else + fractionalPart=${quotient:(-$rescaleFactor)} + _shellmath_round "$fractionalPart" $__shellmath_precision + _shellmath_getReturnValue fractionalPart + quotient=${quotient:0:(-$rescaleFactor)}"."${fractionalPart} + fi + + # Determine the sign of the quotient + if ((isNegative1 != isNegative2)); then + quotient="-"$quotient + fi + + if ((isTesting)); then + # Trim zeros. (Requires decimal point and zero tail.) + if [[ "$quotient" =~ [\.].*0$ ]]; then + # If the decimal point IMMEDIATELY precedes the 0s, remove that too + [[ $quotient =~ [\.]?0+$ ]] + quotient=${quotient%${BASH_REMATCH[0]}} + fi + fi + + # Convert to scientific notation if appropriate + if ((isScientific1 || isScientific2)); then + _shellmath_numToScientific "${quotient%.*}" "${quotient#*.}" + _shellmath_getReturnValue quotient + fi + + # Note the result, print if running "normally", and return + _shellmath_setReturnValue "$quotient" + if ((isVerbose)); then + echo "$quotient" + fi + + return "$__shellmath_SUCCESS" +} + |