summaryrefslogtreecommitdiffstats
path: root/src/spdk/dpdk/lib/librte_timer
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:45:59 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:45:59 +0000
commit19fcec84d8d7d21e796c7624e521b60d28ee21ed (patch)
tree42d26aa27d1e3f7c0b8bd3fd14e7d7082f5008dc /src/spdk/dpdk/lib/librte_timer
parentInitial commit. (diff)
downloadceph-19fcec84d8d7d21e796c7624e521b60d28ee21ed.tar.xz
ceph-19fcec84d8d7d21e796c7624e521b60d28ee21ed.zip
Adding upstream version 16.2.11+ds.upstream/16.2.11+dsupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/spdk/dpdk/lib/librte_timer')
-rw-r--r--src/spdk/dpdk/lib/librte_timer/Makefile20
-rw-r--r--src/spdk/dpdk/lib/librte_timer/meson.build7
-rw-r--r--src/spdk/dpdk/lib/librte_timer/rte_timer.c1086
-rw-r--r--src/spdk/dpdk/lib/librte_timer/rte_timer.h543
-rw-r--r--src/spdk/dpdk/lib/librte_timer/rte_timer_version.map29
5 files changed, 1685 insertions, 0 deletions
diff --git a/src/spdk/dpdk/lib/librte_timer/Makefile b/src/spdk/dpdk/lib/librte_timer/Makefile
new file mode 100644
index 000000000..7e95d120c
--- /dev/null
+++ b/src/spdk/dpdk/lib/librte_timer/Makefile
@@ -0,0 +1,20 @@
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2010-2014 Intel Corporation
+
+include $(RTE_SDK)/mk/rte.vars.mk
+
+# library name
+LIB = librte_timer.a
+
+CFLAGS += $(WERROR_FLAGS) -I$(SRCDIR) -O3
+LDLIBS += -lrte_eal
+
+EXPORT_MAP := rte_timer_version.map
+
+# all source are stored in SRCS-y
+SRCS-$(CONFIG_RTE_LIBRTE_TIMER) := rte_timer.c
+
+# install this header file
+SYMLINK-$(CONFIG_RTE_LIBRTE_TIMER)-include := rte_timer.h
+
+include $(RTE_SDK)/mk/rte.lib.mk
diff --git a/src/spdk/dpdk/lib/librte_timer/meson.build b/src/spdk/dpdk/lib/librte_timer/meson.build
new file mode 100644
index 000000000..b725c6dec
--- /dev/null
+++ b/src/spdk/dpdk/lib/librte_timer/meson.build
@@ -0,0 +1,7 @@
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2017 Intel Corporation
+
+sources = files('rte_timer.c')
+headers = files('rte_timer.h')
+build = false
+reason = 'not needed by SPDK'
diff --git a/src/spdk/dpdk/lib/librte_timer/rte_timer.c b/src/spdk/dpdk/lib/librte_timer/rte_timer.c
new file mode 100644
index 000000000..6d19ce469
--- /dev/null
+++ b/src/spdk/dpdk/lib/librte_timer/rte_timer.c
@@ -0,0 +1,1086 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2010-2014 Intel Corporation
+ */
+
+#include <string.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <stdbool.h>
+#include <inttypes.h>
+#include <assert.h>
+#include <sys/queue.h>
+
+#include <rte_common.h>
+#include <rte_cycles.h>
+#include <rte_eal_memconfig.h>
+#include <rte_per_lcore.h>
+#include <rte_memory.h>
+#include <rte_launch.h>
+#include <rte_eal.h>
+#include <rte_lcore.h>
+#include <rte_branch_prediction.h>
+#include <rte_spinlock.h>
+#include <rte_random.h>
+#include <rte_pause.h>
+#include <rte_memzone.h>
+#include <rte_malloc.h>
+#include <rte_errno.h>
+
+#include "rte_timer.h"
+
+/**
+ * Per-lcore info for timers.
+ */
+struct priv_timer {
+ struct rte_timer pending_head; /**< dummy timer instance to head up list */
+ rte_spinlock_t list_lock; /**< lock to protect list access */
+
+ /** per-core variable that true if a timer was updated on this
+ * core since last reset of the variable */
+ int updated;
+
+ /** track the current depth of the skiplist */
+ unsigned curr_skiplist_depth;
+
+ unsigned prev_lcore; /**< used for lcore round robin */
+
+ /** running timer on this lcore now */
+ struct rte_timer *running_tim;
+
+#ifdef RTE_LIBRTE_TIMER_DEBUG
+ /** per-lcore statistics */
+ struct rte_timer_debug_stats stats;
+#endif
+} __rte_cache_aligned;
+
+#define FL_ALLOCATED (1 << 0)
+struct rte_timer_data {
+ struct priv_timer priv_timer[RTE_MAX_LCORE];
+ uint8_t internal_flags;
+};
+
+#define RTE_MAX_DATA_ELS 64
+static const struct rte_memzone *rte_timer_data_mz;
+static int *volatile rte_timer_mz_refcnt;
+static struct rte_timer_data *rte_timer_data_arr;
+static const uint32_t default_data_id;
+static uint32_t rte_timer_subsystem_initialized;
+
+/* when debug is enabled, store some statistics */
+#ifdef RTE_LIBRTE_TIMER_DEBUG
+#define __TIMER_STAT_ADD(priv_timer, name, n) do { \
+ unsigned __lcore_id = rte_lcore_id(); \
+ if (__lcore_id < RTE_MAX_LCORE) \
+ priv_timer[__lcore_id].stats.name += (n); \
+ } while(0)
+#else
+#define __TIMER_STAT_ADD(priv_timer, name, n) do {} while (0)
+#endif
+
+static inline int
+timer_data_valid(uint32_t id)
+{
+ return rte_timer_data_arr &&
+ (rte_timer_data_arr[id].internal_flags & FL_ALLOCATED);
+}
+
+/* validate ID and retrieve timer data pointer, or return error value */
+#define TIMER_DATA_VALID_GET_OR_ERR_RET(id, timer_data, retval) do { \
+ if (id >= RTE_MAX_DATA_ELS || !timer_data_valid(id)) \
+ return retval; \
+ timer_data = &rte_timer_data_arr[id]; \
+} while (0)
+
+int
+rte_timer_data_alloc(uint32_t *id_ptr)
+{
+ int i;
+ struct rte_timer_data *data;
+
+ if (!rte_timer_subsystem_initialized)
+ return -ENOMEM;
+
+ for (i = 0; i < RTE_MAX_DATA_ELS; i++) {
+ data = &rte_timer_data_arr[i];
+ if (!(data->internal_flags & FL_ALLOCATED)) {
+ data->internal_flags |= FL_ALLOCATED;
+
+ if (id_ptr)
+ *id_ptr = i;
+
+ return 0;
+ }
+ }
+
+ return -ENOSPC;
+}
+
+int
+rte_timer_data_dealloc(uint32_t id)
+{
+ struct rte_timer_data *timer_data;
+ TIMER_DATA_VALID_GET_OR_ERR_RET(id, timer_data, -EINVAL);
+
+ timer_data->internal_flags &= ~(FL_ALLOCATED);
+
+ return 0;
+}
+
+/* Init the timer library. Allocate an array of timer data structs in shared
+ * memory, and allocate the zeroth entry for use with original timer
+ * APIs. Since the intersection of the sets of lcore ids in primary and
+ * secondary processes should be empty, the zeroth entry can be shared by
+ * multiple processes.
+ */
+int
+rte_timer_subsystem_init(void)
+{
+ const struct rte_memzone *mz;
+ struct rte_timer_data *data;
+ int i, lcore_id;
+ static const char *mz_name = "rte_timer_mz";
+ const size_t data_arr_size =
+ RTE_MAX_DATA_ELS * sizeof(*rte_timer_data_arr);
+ const size_t mem_size = data_arr_size + sizeof(*rte_timer_mz_refcnt);
+ bool do_full_init = true;
+
+ rte_mcfg_timer_lock();
+
+ if (rte_timer_subsystem_initialized) {
+ rte_mcfg_timer_unlock();
+ return -EALREADY;
+ }
+
+ mz = rte_memzone_lookup(mz_name);
+ if (mz == NULL) {
+ mz = rte_memzone_reserve_aligned(mz_name, mem_size,
+ SOCKET_ID_ANY, 0, RTE_CACHE_LINE_SIZE);
+ if (mz == NULL) {
+ rte_mcfg_timer_unlock();
+ return -ENOMEM;
+ }
+ do_full_init = true;
+ } else
+ do_full_init = false;
+
+ rte_timer_data_mz = mz;
+ rte_timer_data_arr = mz->addr;
+ rte_timer_mz_refcnt = (void *)((char *)mz->addr + data_arr_size);
+
+ if (do_full_init) {
+ for (i = 0; i < RTE_MAX_DATA_ELS; i++) {
+ data = &rte_timer_data_arr[i];
+
+ for (lcore_id = 0; lcore_id < RTE_MAX_LCORE;
+ lcore_id++) {
+ rte_spinlock_init(
+ &data->priv_timer[lcore_id].list_lock);
+ data->priv_timer[lcore_id].prev_lcore =
+ lcore_id;
+ }
+ }
+ }
+
+ rte_timer_data_arr[default_data_id].internal_flags |= FL_ALLOCATED;
+ (*rte_timer_mz_refcnt)++;
+
+ rte_timer_subsystem_initialized = 1;
+
+ rte_mcfg_timer_unlock();
+
+ return 0;
+}
+
+void
+rte_timer_subsystem_finalize(void)
+{
+ rte_mcfg_timer_lock();
+
+ if (!rte_timer_subsystem_initialized) {
+ rte_mcfg_timer_unlock();
+ return;
+ }
+
+ if (--(*rte_timer_mz_refcnt) == 0)
+ rte_memzone_free(rte_timer_data_mz);
+
+ rte_timer_subsystem_initialized = 0;
+
+ rte_mcfg_timer_unlock();
+}
+
+/* Initialize the timer handle tim for use */
+void
+rte_timer_init(struct rte_timer *tim)
+{
+ union rte_timer_status status;
+
+ status.state = RTE_TIMER_STOP;
+ status.owner = RTE_TIMER_NO_OWNER;
+ __atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELAXED);
+}
+
+/*
+ * if timer is pending or stopped (or running on the same core than
+ * us), mark timer as configuring, and on success return the previous
+ * status of the timer
+ */
+static int
+timer_set_config_state(struct rte_timer *tim,
+ union rte_timer_status *ret_prev_status,
+ struct priv_timer *priv_timer)
+{
+ union rte_timer_status prev_status, status;
+ int success = 0;
+ unsigned lcore_id;
+
+ lcore_id = rte_lcore_id();
+
+ /* wait that the timer is in correct status before update,
+ * and mark it as being configured */
+ prev_status.u32 = __atomic_load_n(&tim->status.u32, __ATOMIC_RELAXED);
+
+ while (success == 0) {
+ /* timer is running on another core
+ * or ready to run on local core, exit
+ */
+ if (prev_status.state == RTE_TIMER_RUNNING &&
+ (prev_status.owner != (uint16_t)lcore_id ||
+ tim != priv_timer[lcore_id].running_tim))
+ return -1;
+
+ /* timer is being configured on another core */
+ if (prev_status.state == RTE_TIMER_CONFIG)
+ return -1;
+
+ /* here, we know that timer is stopped or pending,
+ * mark it atomically as being configured */
+ status.state = RTE_TIMER_CONFIG;
+ status.owner = (int16_t)lcore_id;
+ /* CONFIG states are acting as locked states. If the
+ * timer is in CONFIG state, the state cannot be changed
+ * by other threads. So, we should use ACQUIRE here.
+ */
+ success = __atomic_compare_exchange_n(&tim->status.u32,
+ &prev_status.u32,
+ status.u32, 0,
+ __ATOMIC_ACQUIRE,
+ __ATOMIC_RELAXED);
+ }
+
+ ret_prev_status->u32 = prev_status.u32;
+ return 0;
+}
+
+/*
+ * if timer is pending, mark timer as running
+ */
+static int
+timer_set_running_state(struct rte_timer *tim)
+{
+ union rte_timer_status prev_status, status;
+ unsigned lcore_id = rte_lcore_id();
+ int success = 0;
+
+ /* wait that the timer is in correct status before update,
+ * and mark it as running */
+ prev_status.u32 = __atomic_load_n(&tim->status.u32, __ATOMIC_RELAXED);
+
+ while (success == 0) {
+ /* timer is not pending anymore */
+ if (prev_status.state != RTE_TIMER_PENDING)
+ return -1;
+
+ /* we know that the timer will be pending at this point
+ * mark it atomically as being running
+ */
+ status.state = RTE_TIMER_RUNNING;
+ status.owner = (int16_t)lcore_id;
+ /* RUNNING states are acting as locked states. If the
+ * timer is in RUNNING state, the state cannot be changed
+ * by other threads. So, we should use ACQUIRE here.
+ */
+ success = __atomic_compare_exchange_n(&tim->status.u32,
+ &prev_status.u32,
+ status.u32, 0,
+ __ATOMIC_ACQUIRE,
+ __ATOMIC_RELAXED);
+ }
+
+ return 0;
+}
+
+/*
+ * Return a skiplist level for a new entry.
+ * This probabilistically gives a level with p=1/4 that an entry at level n
+ * will also appear at level n+1.
+ */
+static uint32_t
+timer_get_skiplist_level(unsigned curr_depth)
+{
+#ifdef RTE_LIBRTE_TIMER_DEBUG
+ static uint32_t i, count = 0;
+ static uint32_t levels[MAX_SKIPLIST_DEPTH] = {0};
+#endif
+
+ /* probability value is 1/4, i.e. all at level 0, 1 in 4 is at level 1,
+ * 1 in 16 at level 2, 1 in 64 at level 3, etc. Calculated using lowest
+ * bit position of a (pseudo)random number.
+ */
+ uint32_t rand = rte_rand() & (UINT32_MAX - 1);
+ uint32_t level = rand == 0 ? MAX_SKIPLIST_DEPTH : (rte_bsf32(rand)-1) / 2;
+
+ /* limit the levels used to one above our current level, so we don't,
+ * for instance, have a level 0 and a level 7 without anything between
+ */
+ if (level > curr_depth)
+ level = curr_depth;
+ if (level >= MAX_SKIPLIST_DEPTH)
+ level = MAX_SKIPLIST_DEPTH-1;
+#ifdef RTE_LIBRTE_TIMER_DEBUG
+ count ++;
+ levels[level]++;
+ if (count % 10000 == 0)
+ for (i = 0; i < MAX_SKIPLIST_DEPTH; i++)
+ printf("Level %u: %u\n", (unsigned)i, (unsigned)levels[i]);
+#endif
+ return level;
+}
+
+/*
+ * For a given time value, get the entries at each level which
+ * are <= that time value.
+ */
+static void
+timer_get_prev_entries(uint64_t time_val, unsigned tim_lcore,
+ struct rte_timer **prev, struct priv_timer *priv_timer)
+{
+ unsigned lvl = priv_timer[tim_lcore].curr_skiplist_depth;
+ prev[lvl] = &priv_timer[tim_lcore].pending_head;
+ while(lvl != 0) {
+ lvl--;
+ prev[lvl] = prev[lvl+1];
+ while (prev[lvl]->sl_next[lvl] &&
+ prev[lvl]->sl_next[lvl]->expire <= time_val)
+ prev[lvl] = prev[lvl]->sl_next[lvl];
+ }
+}
+
+/*
+ * Given a timer node in the skiplist, find the previous entries for it at
+ * all skiplist levels.
+ */
+static void
+timer_get_prev_entries_for_node(struct rte_timer *tim, unsigned tim_lcore,
+ struct rte_timer **prev,
+ struct priv_timer *priv_timer)
+{
+ int i;
+
+ /* to get a specific entry in the list, look for just lower than the time
+ * values, and then increment on each level individually if necessary
+ */
+ timer_get_prev_entries(tim->expire - 1, tim_lcore, prev, priv_timer);
+ for (i = priv_timer[tim_lcore].curr_skiplist_depth - 1; i >= 0; i--) {
+ while (prev[i]->sl_next[i] != NULL &&
+ prev[i]->sl_next[i] != tim &&
+ prev[i]->sl_next[i]->expire <= tim->expire)
+ prev[i] = prev[i]->sl_next[i];
+ }
+}
+
+/* call with lock held as necessary
+ * add in list
+ * timer must be in config state
+ * timer must not be in a list
+ */
+static void
+timer_add(struct rte_timer *tim, unsigned int tim_lcore,
+ struct priv_timer *priv_timer)
+{
+ unsigned lvl;
+ struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1];
+
+ /* find where exactly this element goes in the list of elements
+ * for each depth. */
+ timer_get_prev_entries(tim->expire, tim_lcore, prev, priv_timer);
+
+ /* now assign it a new level and add at that level */
+ const unsigned tim_level = timer_get_skiplist_level(
+ priv_timer[tim_lcore].curr_skiplist_depth);
+ if (tim_level == priv_timer[tim_lcore].curr_skiplist_depth)
+ priv_timer[tim_lcore].curr_skiplist_depth++;
+
+ lvl = tim_level;
+ while (lvl > 0) {
+ tim->sl_next[lvl] = prev[lvl]->sl_next[lvl];
+ prev[lvl]->sl_next[lvl] = tim;
+ lvl--;
+ }
+ tim->sl_next[0] = prev[0]->sl_next[0];
+ prev[0]->sl_next[0] = tim;
+
+ /* save the lowest list entry into the expire field of the dummy hdr
+ * NOTE: this is not atomic on 32-bit*/
+ priv_timer[tim_lcore].pending_head.expire = priv_timer[tim_lcore].\
+ pending_head.sl_next[0]->expire;
+}
+
+/*
+ * del from list, lock if needed
+ * timer must be in config state
+ * timer must be in a list
+ */
+static void
+timer_del(struct rte_timer *tim, union rte_timer_status prev_status,
+ int local_is_locked, struct priv_timer *priv_timer)
+{
+ unsigned lcore_id = rte_lcore_id();
+ unsigned prev_owner = prev_status.owner;
+ int i;
+ struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1];
+
+ /* if timer needs is pending another core, we need to lock the
+ * list; if it is on local core, we need to lock if we are not
+ * called from rte_timer_manage() */
+ if (prev_owner != lcore_id || !local_is_locked)
+ rte_spinlock_lock(&priv_timer[prev_owner].list_lock);
+
+ /* save the lowest list entry into the expire field of the dummy hdr.
+ * NOTE: this is not atomic on 32-bit */
+ if (tim == priv_timer[prev_owner].pending_head.sl_next[0])
+ priv_timer[prev_owner].pending_head.expire =
+ ((tim->sl_next[0] == NULL) ? 0 : tim->sl_next[0]->expire);
+
+ /* adjust pointers from previous entries to point past this */
+ timer_get_prev_entries_for_node(tim, prev_owner, prev, priv_timer);
+ for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--) {
+ if (prev[i]->sl_next[i] == tim)
+ prev[i]->sl_next[i] = tim->sl_next[i];
+ }
+
+ /* in case we deleted last entry at a level, adjust down max level */
+ for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--)
+ if (priv_timer[prev_owner].pending_head.sl_next[i] == NULL)
+ priv_timer[prev_owner].curr_skiplist_depth --;
+ else
+ break;
+
+ if (prev_owner != lcore_id || !local_is_locked)
+ rte_spinlock_unlock(&priv_timer[prev_owner].list_lock);
+}
+
+/* Reset and start the timer associated with the timer handle (private func) */
+static int
+__rte_timer_reset(struct rte_timer *tim, uint64_t expire,
+ uint64_t period, unsigned tim_lcore,
+ rte_timer_cb_t fct, void *arg,
+ int local_is_locked,
+ struct rte_timer_data *timer_data)
+{
+ union rte_timer_status prev_status, status;
+ int ret;
+ unsigned lcore_id = rte_lcore_id();
+ struct priv_timer *priv_timer = timer_data->priv_timer;
+
+ /* round robin for tim_lcore */
+ if (tim_lcore == (unsigned)LCORE_ID_ANY) {
+ if (lcore_id < RTE_MAX_LCORE) {
+ /* EAL thread with valid lcore_id */
+ tim_lcore = rte_get_next_lcore(
+ priv_timer[lcore_id].prev_lcore,
+ 0, 1);
+ priv_timer[lcore_id].prev_lcore = tim_lcore;
+ } else
+ /* non-EAL thread do not run rte_timer_manage(),
+ * so schedule the timer on the first enabled lcore. */
+ tim_lcore = rte_get_next_lcore(LCORE_ID_ANY, 0, 1);
+ }
+
+ /* wait that the timer is in correct status before update,
+ * and mark it as being configured */
+ ret = timer_set_config_state(tim, &prev_status, priv_timer);
+ if (ret < 0)
+ return -1;
+
+ __TIMER_STAT_ADD(priv_timer, reset, 1);
+ if (prev_status.state == RTE_TIMER_RUNNING &&
+ lcore_id < RTE_MAX_LCORE) {
+ priv_timer[lcore_id].updated = 1;
+ }
+
+ /* remove it from list */
+ if (prev_status.state == RTE_TIMER_PENDING) {
+ timer_del(tim, prev_status, local_is_locked, priv_timer);
+ __TIMER_STAT_ADD(priv_timer, pending, -1);
+ }
+
+ tim->period = period;
+ tim->expire = expire;
+ tim->f = fct;
+ tim->arg = arg;
+
+ /* if timer needs to be scheduled on another core, we need to
+ * lock the destination list; if it is on local core, we need to lock if
+ * we are not called from rte_timer_manage()
+ */
+ if (tim_lcore != lcore_id || !local_is_locked)
+ rte_spinlock_lock(&priv_timer[tim_lcore].list_lock);
+
+ __TIMER_STAT_ADD(priv_timer, pending, 1);
+ timer_add(tim, tim_lcore, priv_timer);
+
+ /* update state: as we are in CONFIG state, only us can modify
+ * the state so we don't need to use cmpset() here */
+ status.state = RTE_TIMER_PENDING;
+ status.owner = (int16_t)tim_lcore;
+ /* The "RELEASE" ordering guarantees the memory operations above
+ * the status update are observed before the update by all threads
+ */
+ __atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELEASE);
+
+ if (tim_lcore != lcore_id || !local_is_locked)
+ rte_spinlock_unlock(&priv_timer[tim_lcore].list_lock);
+
+ return 0;
+}
+
+/* Reset and start the timer associated with the timer handle tim */
+int
+rte_timer_reset(struct rte_timer *tim, uint64_t ticks,
+ enum rte_timer_type type, unsigned int tim_lcore,
+ rte_timer_cb_t fct, void *arg)
+{
+ return rte_timer_alt_reset(default_data_id, tim, ticks, type,
+ tim_lcore, fct, arg);
+}
+
+int
+rte_timer_alt_reset(uint32_t timer_data_id, struct rte_timer *tim,
+ uint64_t ticks, enum rte_timer_type type,
+ unsigned int tim_lcore, rte_timer_cb_t fct, void *arg)
+{
+ uint64_t cur_time = rte_get_timer_cycles();
+ uint64_t period;
+ struct rte_timer_data *timer_data;
+
+ TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
+
+ if (type == PERIODICAL)
+ period = ticks;
+ else
+ period = 0;
+
+ return __rte_timer_reset(tim, cur_time + ticks, period, tim_lcore,
+ fct, arg, 0, timer_data);
+}
+
+/* loop until rte_timer_reset() succeed */
+void
+rte_timer_reset_sync(struct rte_timer *tim, uint64_t ticks,
+ enum rte_timer_type type, unsigned tim_lcore,
+ rte_timer_cb_t fct, void *arg)
+{
+ while (rte_timer_reset(tim, ticks, type, tim_lcore,
+ fct, arg) != 0)
+ rte_pause();
+}
+
+static int
+__rte_timer_stop(struct rte_timer *tim, int local_is_locked,
+ struct rte_timer_data *timer_data)
+{
+ union rte_timer_status prev_status, status;
+ unsigned lcore_id = rte_lcore_id();
+ int ret;
+ struct priv_timer *priv_timer = timer_data->priv_timer;
+
+ /* wait that the timer is in correct status before update,
+ * and mark it as being configured */
+ ret = timer_set_config_state(tim, &prev_status, priv_timer);
+ if (ret < 0)
+ return -1;
+
+ __TIMER_STAT_ADD(priv_timer, stop, 1);
+ if (prev_status.state == RTE_TIMER_RUNNING &&
+ lcore_id < RTE_MAX_LCORE) {
+ priv_timer[lcore_id].updated = 1;
+ }
+
+ /* remove it from list */
+ if (prev_status.state == RTE_TIMER_PENDING) {
+ timer_del(tim, prev_status, local_is_locked, priv_timer);
+ __TIMER_STAT_ADD(priv_timer, pending, -1);
+ }
+
+ /* mark timer as stopped */
+ status.state = RTE_TIMER_STOP;
+ status.owner = RTE_TIMER_NO_OWNER;
+ /* The "RELEASE" ordering guarantees the memory operations above
+ * the status update are observed before the update by all threads
+ */
+ __atomic_store_n(&tim->status.u32, status.u32, __ATOMIC_RELEASE);
+
+ return 0;
+}
+
+/* Stop the timer associated with the timer handle tim */
+int
+rte_timer_stop(struct rte_timer *tim)
+{
+ return rte_timer_alt_stop(default_data_id, tim);
+}
+
+int
+rte_timer_alt_stop(uint32_t timer_data_id, struct rte_timer *tim)
+{
+ struct rte_timer_data *timer_data;
+
+ TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
+
+ return __rte_timer_stop(tim, 0, timer_data);
+}
+
+/* loop until rte_timer_stop() succeed */
+void
+rte_timer_stop_sync(struct rte_timer *tim)
+{
+ while (rte_timer_stop(tim) != 0)
+ rte_pause();
+}
+
+/* Test the PENDING status of the timer handle tim */
+int
+rte_timer_pending(struct rte_timer *tim)
+{
+ return __atomic_load_n(&tim->status.state,
+ __ATOMIC_RELAXED) == RTE_TIMER_PENDING;
+}
+
+/* must be called periodically, run all timer that expired */
+static void
+__rte_timer_manage(struct rte_timer_data *timer_data)
+{
+ union rte_timer_status status;
+ struct rte_timer *tim, *next_tim;
+ struct rte_timer *run_first_tim, **pprev;
+ unsigned lcore_id = rte_lcore_id();
+ struct rte_timer *prev[MAX_SKIPLIST_DEPTH + 1];
+ uint64_t cur_time;
+ int i, ret;
+ struct priv_timer *priv_timer = timer_data->priv_timer;
+
+ /* timer manager only runs on EAL thread with valid lcore_id */
+ assert(lcore_id < RTE_MAX_LCORE);
+
+ __TIMER_STAT_ADD(priv_timer, manage, 1);
+ /* optimize for the case where per-cpu list is empty */
+ if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL)
+ return;
+ cur_time = rte_get_timer_cycles();
+
+#ifdef RTE_ARCH_64
+ /* on 64-bit the value cached in the pending_head.expired will be
+ * updated atomically, so we can consult that for a quick check here
+ * outside the lock */
+ if (likely(priv_timer[lcore_id].pending_head.expire > cur_time))
+ return;
+#endif
+
+ /* browse ordered list, add expired timers in 'expired' list */
+ rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
+
+ /* if nothing to do just unlock and return */
+ if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL ||
+ priv_timer[lcore_id].pending_head.sl_next[0]->expire > cur_time) {
+ rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
+ return;
+ }
+
+ /* save start of list of expired timers */
+ tim = priv_timer[lcore_id].pending_head.sl_next[0];
+
+ /* break the existing list at current time point */
+ timer_get_prev_entries(cur_time, lcore_id, prev, priv_timer);
+ for (i = priv_timer[lcore_id].curr_skiplist_depth -1; i >= 0; i--) {
+ if (prev[i] == &priv_timer[lcore_id].pending_head)
+ continue;
+ priv_timer[lcore_id].pending_head.sl_next[i] =
+ prev[i]->sl_next[i];
+ if (prev[i]->sl_next[i] == NULL)
+ priv_timer[lcore_id].curr_skiplist_depth--;
+ prev[i] ->sl_next[i] = NULL;
+ }
+
+ /* transition run-list from PENDING to RUNNING */
+ run_first_tim = tim;
+ pprev = &run_first_tim;
+
+ for ( ; tim != NULL; tim = next_tim) {
+ next_tim = tim->sl_next[0];
+
+ ret = timer_set_running_state(tim);
+ if (likely(ret == 0)) {
+ pprev = &tim->sl_next[0];
+ } else {
+ /* another core is trying to re-config this one,
+ * remove it from local expired list
+ */
+ *pprev = next_tim;
+ }
+ }
+
+ /* update the next to expire timer value */
+ priv_timer[lcore_id].pending_head.expire =
+ (priv_timer[lcore_id].pending_head.sl_next[0] == NULL) ? 0 :
+ priv_timer[lcore_id].pending_head.sl_next[0]->expire;
+
+ rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
+
+ /* now scan expired list and call callbacks */
+ for (tim = run_first_tim; tim != NULL; tim = next_tim) {
+ next_tim = tim->sl_next[0];
+ priv_timer[lcore_id].updated = 0;
+ priv_timer[lcore_id].running_tim = tim;
+
+ /* execute callback function with list unlocked */
+ tim->f(tim, tim->arg);
+
+ __TIMER_STAT_ADD(priv_timer, pending, -1);
+ /* the timer was stopped or reloaded by the callback
+ * function, we have nothing to do here */
+ if (priv_timer[lcore_id].updated == 1)
+ continue;
+
+ if (tim->period == 0) {
+ /* remove from done list and mark timer as stopped */
+ status.state = RTE_TIMER_STOP;
+ status.owner = RTE_TIMER_NO_OWNER;
+ /* The "RELEASE" ordering guarantees the memory
+ * operations above the status update are observed
+ * before the update by all threads
+ */
+ __atomic_store_n(&tim->status.u32, status.u32,
+ __ATOMIC_RELEASE);
+ }
+ else {
+ /* keep it in list and mark timer as pending */
+ rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
+ status.state = RTE_TIMER_PENDING;
+ __TIMER_STAT_ADD(priv_timer, pending, 1);
+ status.owner = (int16_t)lcore_id;
+ /* The "RELEASE" ordering guarantees the memory
+ * operations above the status update are observed
+ * before the update by all threads
+ */
+ __atomic_store_n(&tim->status.u32, status.u32,
+ __ATOMIC_RELEASE);
+ __rte_timer_reset(tim, tim->expire + tim->period,
+ tim->period, lcore_id, tim->f, tim->arg, 1,
+ timer_data);
+ rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
+ }
+ }
+ priv_timer[lcore_id].running_tim = NULL;
+}
+
+int
+rte_timer_manage(void)
+{
+ struct rte_timer_data *timer_data;
+
+ TIMER_DATA_VALID_GET_OR_ERR_RET(default_data_id, timer_data, -EINVAL);
+
+ __rte_timer_manage(timer_data);
+
+ return 0;
+}
+
+int
+rte_timer_alt_manage(uint32_t timer_data_id,
+ unsigned int *poll_lcores,
+ int nb_poll_lcores,
+ rte_timer_alt_manage_cb_t f)
+{
+ unsigned int default_poll_lcores[] = {rte_lcore_id()};
+ union rte_timer_status status;
+ struct rte_timer *tim, *next_tim, **pprev;
+ struct rte_timer *run_first_tims[RTE_MAX_LCORE];
+ unsigned int this_lcore = rte_lcore_id();
+ struct rte_timer *prev[MAX_SKIPLIST_DEPTH + 1];
+ uint64_t cur_time;
+ int i, j, ret;
+ int nb_runlists = 0;
+ struct rte_timer_data *data;
+ struct priv_timer *privp;
+ uint32_t poll_lcore;
+
+ TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, data, -EINVAL);
+
+ /* timer manager only runs on EAL thread with valid lcore_id */
+ assert(this_lcore < RTE_MAX_LCORE);
+
+ __TIMER_STAT_ADD(data->priv_timer, manage, 1);
+
+ if (poll_lcores == NULL) {
+ poll_lcores = default_poll_lcores;
+ nb_poll_lcores = RTE_DIM(default_poll_lcores);
+ }
+
+ for (i = 0; i < nb_poll_lcores; i++) {
+ poll_lcore = poll_lcores[i];
+ privp = &data->priv_timer[poll_lcore];
+
+ /* optimize for the case where per-cpu list is empty */
+ if (privp->pending_head.sl_next[0] == NULL)
+ continue;
+ cur_time = rte_get_timer_cycles();
+
+#ifdef RTE_ARCH_64
+ /* on 64-bit the value cached in the pending_head.expired will
+ * be updated atomically, so we can consult that for a quick
+ * check here outside the lock
+ */
+ if (likely(privp->pending_head.expire > cur_time))
+ continue;
+#endif
+
+ /* browse ordered list, add expired timers in 'expired' list */
+ rte_spinlock_lock(&privp->list_lock);
+
+ /* if nothing to do just unlock and return */
+ if (privp->pending_head.sl_next[0] == NULL ||
+ privp->pending_head.sl_next[0]->expire > cur_time) {
+ rte_spinlock_unlock(&privp->list_lock);
+ continue;
+ }
+
+ /* save start of list of expired timers */
+ tim = privp->pending_head.sl_next[0];
+
+ /* break the existing list at current time point */
+ timer_get_prev_entries(cur_time, poll_lcore, prev,
+ data->priv_timer);
+ for (j = privp->curr_skiplist_depth - 1; j >= 0; j--) {
+ if (prev[j] == &privp->pending_head)
+ continue;
+ privp->pending_head.sl_next[j] =
+ prev[j]->sl_next[j];
+ if (prev[j]->sl_next[j] == NULL)
+ privp->curr_skiplist_depth--;
+
+ prev[j]->sl_next[j] = NULL;
+ }
+
+ /* transition run-list from PENDING to RUNNING */
+ run_first_tims[nb_runlists] = tim;
+ pprev = &run_first_tims[nb_runlists];
+ nb_runlists++;
+
+ for ( ; tim != NULL; tim = next_tim) {
+ next_tim = tim->sl_next[0];
+
+ ret = timer_set_running_state(tim);
+ if (likely(ret == 0)) {
+ pprev = &tim->sl_next[0];
+ } else {
+ /* another core is trying to re-config this one,
+ * remove it from local expired list
+ */
+ *pprev = next_tim;
+ }
+ }
+
+ /* update the next to expire timer value */
+ privp->pending_head.expire =
+ (privp->pending_head.sl_next[0] == NULL) ? 0 :
+ privp->pending_head.sl_next[0]->expire;
+
+ rte_spinlock_unlock(&privp->list_lock);
+ }
+
+ /* Now process the run lists */
+ while (1) {
+ bool done = true;
+ uint64_t min_expire = UINT64_MAX;
+ int min_idx = 0;
+
+ /* Find the next oldest timer to process */
+ for (i = 0; i < nb_runlists; i++) {
+ tim = run_first_tims[i];
+
+ if (tim != NULL && tim->expire < min_expire) {
+ min_expire = tim->expire;
+ min_idx = i;
+ done = false;
+ }
+ }
+
+ if (done)
+ break;
+
+ tim = run_first_tims[min_idx];
+
+ /* Move down the runlist from which we picked a timer to
+ * execute
+ */
+ run_first_tims[min_idx] = run_first_tims[min_idx]->sl_next[0];
+
+ data->priv_timer[this_lcore].updated = 0;
+ data->priv_timer[this_lcore].running_tim = tim;
+
+ /* Call the provided callback function */
+ f(tim);
+
+ __TIMER_STAT_ADD(data->priv_timer, pending, -1);
+
+ /* the timer was stopped or reloaded by the callback
+ * function, we have nothing to do here
+ */
+ if (data->priv_timer[this_lcore].updated == 1)
+ continue;
+
+ if (tim->period == 0) {
+ /* remove from done list and mark timer as stopped */
+ status.state = RTE_TIMER_STOP;
+ status.owner = RTE_TIMER_NO_OWNER;
+ /* The "RELEASE" ordering guarantees the memory
+ * operations above the status update are observed
+ * before the update by all threads
+ */
+ __atomic_store_n(&tim->status.u32, status.u32,
+ __ATOMIC_RELEASE);
+ } else {
+ /* keep it in list and mark timer as pending */
+ rte_spinlock_lock(
+ &data->priv_timer[this_lcore].list_lock);
+ status.state = RTE_TIMER_PENDING;
+ __TIMER_STAT_ADD(data->priv_timer, pending, 1);
+ status.owner = (int16_t)this_lcore;
+ /* The "RELEASE" ordering guarantees the memory
+ * operations above the status update are observed
+ * before the update by all threads
+ */
+ __atomic_store_n(&tim->status.u32, status.u32,
+ __ATOMIC_RELEASE);
+ __rte_timer_reset(tim, tim->expire + tim->period,
+ tim->period, this_lcore, tim->f, tim->arg, 1,
+ data);
+ rte_spinlock_unlock(
+ &data->priv_timer[this_lcore].list_lock);
+ }
+
+ data->priv_timer[this_lcore].running_tim = NULL;
+ }
+
+ return 0;
+}
+
+/* Walk pending lists, stopping timers and calling user-specified function */
+int
+rte_timer_stop_all(uint32_t timer_data_id, unsigned int *walk_lcores,
+ int nb_walk_lcores,
+ rte_timer_stop_all_cb_t f, void *f_arg)
+{
+ int i;
+ struct priv_timer *priv_timer;
+ uint32_t walk_lcore;
+ struct rte_timer *tim, *next_tim;
+ struct rte_timer_data *timer_data;
+
+ TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
+
+ for (i = 0; i < nb_walk_lcores; i++) {
+ walk_lcore = walk_lcores[i];
+ priv_timer = &timer_data->priv_timer[walk_lcore];
+
+ rte_spinlock_lock(&priv_timer->list_lock);
+
+ for (tim = priv_timer->pending_head.sl_next[0];
+ tim != NULL;
+ tim = next_tim) {
+ next_tim = tim->sl_next[0];
+
+ /* Call timer_stop with lock held */
+ __rte_timer_stop(tim, 1, timer_data);
+
+ if (f)
+ f(tim, f_arg);
+ }
+
+ rte_spinlock_unlock(&priv_timer->list_lock);
+ }
+
+ return 0;
+}
+
+int64_t
+rte_timer_next_ticks(void)
+{
+ unsigned int lcore_id = rte_lcore_id();
+ struct rte_timer_data *timer_data;
+ struct priv_timer *priv_timer;
+ const struct rte_timer *tm;
+ uint64_t cur_time;
+ int64_t left = -ENOENT;
+
+ TIMER_DATA_VALID_GET_OR_ERR_RET(default_data_id, timer_data, -EINVAL);
+
+ priv_timer = timer_data->priv_timer;
+ cur_time = rte_get_timer_cycles();
+
+ rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
+ tm = priv_timer[lcore_id].pending_head.sl_next[0];
+ if (tm) {
+ left = tm->expire - cur_time;
+ if (left < 0)
+ left = 0;
+ }
+ rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
+
+ return left;
+}
+
+/* dump statistics about timers */
+static void
+__rte_timer_dump_stats(struct rte_timer_data *timer_data __rte_unused, FILE *f)
+{
+#ifdef RTE_LIBRTE_TIMER_DEBUG
+ struct rte_timer_debug_stats sum;
+ unsigned lcore_id;
+ struct priv_timer *priv_timer = timer_data->priv_timer;
+
+ memset(&sum, 0, sizeof(sum));
+ for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
+ sum.reset += priv_timer[lcore_id].stats.reset;
+ sum.stop += priv_timer[lcore_id].stats.stop;
+ sum.manage += priv_timer[lcore_id].stats.manage;
+ sum.pending += priv_timer[lcore_id].stats.pending;
+ }
+ fprintf(f, "Timer statistics:\n");
+ fprintf(f, " reset = %"PRIu64"\n", sum.reset);
+ fprintf(f, " stop = %"PRIu64"\n", sum.stop);
+ fprintf(f, " manage = %"PRIu64"\n", sum.manage);
+ fprintf(f, " pending = %"PRIu64"\n", sum.pending);
+#else
+ fprintf(f, "No timer statistics, RTE_LIBRTE_TIMER_DEBUG is disabled\n");
+#endif
+}
+
+int
+rte_timer_dump_stats(FILE *f)
+{
+ return rte_timer_alt_dump_stats(default_data_id, f);
+}
+
+int
+rte_timer_alt_dump_stats(uint32_t timer_data_id __rte_unused, FILE *f)
+{
+ struct rte_timer_data *timer_data;
+
+ TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
+
+ __rte_timer_dump_stats(timer_data, f);
+
+ return 0;
+}
diff --git a/src/spdk/dpdk/lib/librte_timer/rte_timer.h b/src/spdk/dpdk/lib/librte_timer/rte_timer.h
new file mode 100644
index 000000000..c6b3d450d
--- /dev/null
+++ b/src/spdk/dpdk/lib/librte_timer/rte_timer.h
@@ -0,0 +1,543 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2010-2014 Intel Corporation
+ */
+
+#ifndef _RTE_TIMER_H_
+#define _RTE_TIMER_H_
+
+/**
+ * @file
+ RTE Timer
+ *
+ * This library provides a timer service to RTE Data Plane execution
+ * units that allows the execution of callback functions asynchronously.
+ *
+ * - Timers can be periodic or single (one-shot).
+ * - The timers can be loaded from one core and executed on another. This has
+ * to be specified in the call to rte_timer_reset().
+ * - High precision is possible. NOTE: this depends on the call frequency to
+ * rte_timer_manage() that check the timer expiration for the local core.
+ * - If not used in an application, for improved performance, it can be
+ * disabled at compilation time by not calling the rte_timer_manage()
+ * to improve performance.
+ *
+ * The timer library uses the rte_get_hpet_cycles() function that
+ * uses the HPET, when available, to provide a reliable time reference. [HPET
+ * routines are provided by EAL, which falls back to using the chip TSC (time-
+ * stamp counter) as fallback when HPET is not available]
+ *
+ * This library provides an interface to add, delete and restart a
+ * timer. The API is based on the BSD callout(9) API with a few
+ * differences.
+ *
+ * See the RTE architecture documentation for more information about the
+ * design of this library.
+ */
+
+#include <stdio.h>
+#include <stdint.h>
+#include <stddef.h>
+#include <rte_common.h>
+#include <rte_config.h>
+#include <rte_spinlock.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define RTE_TIMER_STOP 0 /**< State: timer is stopped. */
+#define RTE_TIMER_PENDING 1 /**< State: timer is scheduled. */
+#define RTE_TIMER_RUNNING 2 /**< State: timer function is running. */
+#define RTE_TIMER_CONFIG 3 /**< State: timer is being configured. */
+
+#define RTE_TIMER_NO_OWNER -2 /**< Timer has no owner. */
+
+/**
+ * Timer type: Periodic or single (one-shot).
+ */
+enum rte_timer_type {
+ SINGLE,
+ PERIODICAL
+};
+
+/**
+ * Timer status: A union of the state (stopped, pending, running,
+ * config) and an owner (the id of the lcore that owns the timer).
+ */
+union rte_timer_status {
+ RTE_STD_C11
+ struct {
+ uint16_t state; /**< Stop, pending, running, config. */
+ int16_t owner; /**< The lcore that owns the timer. */
+ };
+ uint32_t u32; /**< To atomic-set status + owner. */
+};
+
+#ifdef RTE_LIBRTE_TIMER_DEBUG
+/**
+ * A structure that stores the timer statistics (per-lcore).
+ */
+struct rte_timer_debug_stats {
+ uint64_t reset; /**< Number of success calls to rte_timer_reset(). */
+ uint64_t stop; /**< Number of success calls to rte_timer_stop(). */
+ uint64_t manage; /**< Number of calls to rte_timer_manage(). */
+ uint64_t pending; /**< Number of pending/running timers. */
+};
+#endif
+
+struct rte_timer;
+
+/**
+ * Callback function type for timer expiry.
+ */
+typedef void (*rte_timer_cb_t)(struct rte_timer *, void *);
+
+#define MAX_SKIPLIST_DEPTH 10
+
+/**
+ * A structure describing a timer in RTE.
+ */
+struct rte_timer
+{
+ uint64_t expire; /**< Time when timer expire. */
+ struct rte_timer *sl_next[MAX_SKIPLIST_DEPTH];
+ volatile union rte_timer_status status; /**< Status of timer. */
+ uint64_t period; /**< Period of timer (0 if not periodic). */
+ rte_timer_cb_t f; /**< Callback function. */
+ void *arg; /**< Argument to callback function. */
+};
+
+
+#ifdef __cplusplus
+/**
+ * A C++ static initializer for a timer structure.
+ */
+#define RTE_TIMER_INITIALIZER { \
+ 0, \
+ {NULL}, \
+ {{RTE_TIMER_STOP, RTE_TIMER_NO_OWNER}}, \
+ 0, \
+ NULL, \
+ NULL, \
+ }
+#else
+/**
+ * A static initializer for a timer structure.
+ */
+#define RTE_TIMER_INITIALIZER { \
+ .status = {{ \
+ .state = RTE_TIMER_STOP, \
+ .owner = RTE_TIMER_NO_OWNER, \
+ }}, \
+ }
+#endif
+
+/**
+ * @warning
+ * @b EXPERIMENTAL: this API may change without prior notice
+ *
+ * Allocate a timer data instance in shared memory to track a set of pending
+ * timer lists.
+ *
+ * @param id_ptr
+ * Pointer to variable into which to write the identifier of the allocated
+ * timer data instance.
+ *
+ * @return
+ * - 0: Success
+ * - -ENOSPC: maximum number of timer data instances already allocated
+ */
+__rte_experimental
+int rte_timer_data_alloc(uint32_t *id_ptr);
+
+/**
+ * @warning
+ * @b EXPERIMENTAL: this API may change without prior notice
+ *
+ * Deallocate a timer data instance.
+ *
+ * @param id
+ * Identifier of the timer data instance to deallocate.
+ *
+ * @return
+ * - 0: Success
+ * - -EINVAL: invalid timer data instance identifier
+ */
+__rte_experimental
+int rte_timer_data_dealloc(uint32_t id);
+
+/**
+ * Initialize the timer library.
+ *
+ * Initializes internal variables (list, locks and so on) for the RTE
+ * timer library.
+ *
+ * @note
+ * This function must be called in every process before using the library.
+ *
+ * @return
+ * - 0: Success
+ * - -ENOMEM: Unable to allocate memory needed to initialize timer
+ * subsystem
+ */
+int rte_timer_subsystem_init(void);
+
+/**
+ * @warning
+ * @b EXPERIMENTAL: this API may change without prior notice
+ *
+ * Free timer subsystem resources.
+ */
+__rte_experimental
+void rte_timer_subsystem_finalize(void);
+
+/**
+ * Initialize a timer handle.
+ *
+ * The rte_timer_init() function initializes the timer handle *tim*
+ * for use. No operations can be performed on a timer before it is
+ * initialized.
+ *
+ * @param tim
+ * The timer to initialize.
+ */
+void rte_timer_init(struct rte_timer *tim);
+
+/**
+ * Reset and start the timer associated with the timer handle.
+ *
+ * The rte_timer_reset() function resets and starts the timer
+ * associated with the timer handle *tim*. When the timer expires after
+ * *ticks* HPET cycles, the function specified by *fct* will be called
+ * with the argument *arg* on core *tim_lcore*.
+ *
+ * If the timer associated with the timer handle is already running
+ * (in the RUNNING state), the function will fail. The user has to check
+ * the return value of the function to see if there is a chance that the
+ * timer is in the RUNNING state.
+ *
+ * If the timer is being configured on another core (the CONFIG state),
+ * it will also fail.
+ *
+ * If the timer is pending or stopped, it will be rescheduled with the
+ * new parameters.
+ *
+ * @param tim
+ * The timer handle.
+ * @param ticks
+ * The number of cycles (see rte_get_hpet_hz()) before the callback
+ * function is called.
+ * @param type
+ * The type can be either:
+ * - PERIODICAL: The timer is automatically reloaded after execution
+ * (returns to the PENDING state)
+ * - SINGLE: The timer is one-shot, that is, the timer goes to a
+ * STOPPED state after execution.
+ * @param tim_lcore
+ * The ID of the lcore where the timer callback function has to be
+ * executed. If tim_lcore is LCORE_ID_ANY, the timer library will
+ * launch it on a different core for each call (round-robin).
+ * @param fct
+ * The callback function of the timer.
+ * @param arg
+ * The user argument of the callback function.
+ * @return
+ * - 0: Success; the timer is scheduled.
+ * - (-1): Timer is in the RUNNING or CONFIG state.
+ */
+int rte_timer_reset(struct rte_timer *tim, uint64_t ticks,
+ enum rte_timer_type type, unsigned tim_lcore,
+ rte_timer_cb_t fct, void *arg);
+
+/**
+ * Loop until rte_timer_reset() succeeds.
+ *
+ * Reset and start the timer associated with the timer handle. Always
+ * succeed. See rte_timer_reset() for details.
+ *
+ * @param tim
+ * The timer handle.
+ * @param ticks
+ * The number of cycles (see rte_get_hpet_hz()) before the callback
+ * function is called.
+ * @param type
+ * The type can be either:
+ * - PERIODICAL: The timer is automatically reloaded after execution
+ * (returns to the PENDING state)
+ * - SINGLE: The timer is one-shot, that is, the timer goes to a
+ * STOPPED state after execution.
+ * @param tim_lcore
+ * The ID of the lcore where the timer callback function has to be
+ * executed. If tim_lcore is LCORE_ID_ANY, the timer library will
+ * launch it on a different core for each call (round-robin).
+ * @param fct
+ * The callback function of the timer.
+ * @param arg
+ * The user argument of the callback function.
+ */
+void
+rte_timer_reset_sync(struct rte_timer *tim, uint64_t ticks,
+ enum rte_timer_type type, unsigned tim_lcore,
+ rte_timer_cb_t fct, void *arg);
+
+/**
+ * Stop a timer.
+ *
+ * The rte_timer_stop() function stops the timer associated with the
+ * timer handle *tim*. It may fail if the timer is currently running or
+ * being configured.
+ *
+ * If the timer is pending or stopped (for instance, already expired),
+ * the function will succeed. The timer handle tim must have been
+ * initialized using rte_timer_init(), otherwise, undefined behavior
+ * will occur.
+ *
+ * This function can be called safely from a timer callback. If it
+ * succeeds, the timer is not referenced anymore by the timer library
+ * and the timer structure can be freed (even in the callback
+ * function).
+ *
+ * @param tim
+ * The timer handle.
+ * @return
+ * - 0: Success; the timer is stopped.
+ * - (-1): The timer is in the RUNNING or CONFIG state.
+ */
+int rte_timer_stop(struct rte_timer *tim);
+
+/**
+ * Loop until rte_timer_stop() succeeds.
+ *
+ * After a call to this function, the timer identified by *tim* is
+ * stopped. See rte_timer_stop() for details.
+ *
+ * @param tim
+ * The timer handle.
+ */
+void rte_timer_stop_sync(struct rte_timer *tim);
+
+/**
+ * Test if a timer is pending.
+ *
+ * The rte_timer_pending() function tests the PENDING status
+ * of the timer handle *tim*. A PENDING timer is one that has been
+ * scheduled and whose function has not yet been called.
+ *
+ * @param tim
+ * The timer handle.
+ * @return
+ * - 0: The timer is not pending.
+ * - 1: The timer is pending.
+ */
+int rte_timer_pending(struct rte_timer *tim);
+
+/**
+ * @warning
+ * @b EXPERIMENTAL: this API may change without prior notice
+ *
+ * Time until the next timer on the current lcore
+ * This function gives the ticks until the next timer will be active.
+ *
+ * @return
+ * - -EINVAL: invalid timer data instance identifier
+ * - -ENOENT: no timer pending
+ * - 0: a timer is pending and will run at next rte_timer_manage()
+ * - >0: ticks until the next timer is ready
+ */
+__rte_experimental
+int64_t rte_timer_next_ticks(void);
+
+/**
+ * Manage the timer list and execute callback functions.
+ *
+ * This function must be called periodically from EAL lcores
+ * main_loop(). It browses the list of pending timers and runs all
+ * timers that are expired.
+ *
+ * The precision of the timer depends on the call frequency of this
+ * function. However, the more often the function is called, the more
+ * CPU resources it will use.
+ *
+ * @return
+ * - 0: Success
+ * - -EINVAL: timer subsystem not yet initialized
+ */
+int rte_timer_manage(void);
+
+/**
+ * Dump statistics about timers.
+ *
+ * @param f
+ * A pointer to a file for output
+ * @return
+ * - 0: Success
+ * - -EINVAL: timer subsystem not yet initialized
+ */
+int rte_timer_dump_stats(FILE *f);
+
+/**
+ * @warning
+ * @b EXPERIMENTAL: this API may change without prior notice
+ *
+ * This function is the same as rte_timer_reset(), except that it allows a
+ * caller to specify the rte_timer_data instance containing the list to which
+ * the timer should be added.
+ *
+ * @see rte_timer_reset()
+ *
+ * @param timer_data_id
+ * An identifier indicating which instance of timer data should be used for
+ * this operation.
+ * @param tim
+ * The timer handle.
+ * @param ticks
+ * The number of cycles (see rte_get_hpet_hz()) before the callback
+ * function is called.
+ * @param type
+ * The type can be either:
+ * - PERIODICAL: The timer is automatically reloaded after execution
+ * (returns to the PENDING state)
+ * - SINGLE: The timer is one-shot, that is, the timer goes to a
+ * STOPPED state after execution.
+ * @param tim_lcore
+ * The ID of the lcore where the timer callback function has to be
+ * executed. If tim_lcore is LCORE_ID_ANY, the timer library will
+ * launch it on a different core for each call (round-robin).
+ * @param fct
+ * The callback function of the timer. This parameter can be NULL if (and
+ * only if) rte_timer_alt_manage() will be used to manage this timer.
+ * @param arg
+ * The user argument of the callback function.
+ * @return
+ * - 0: Success; the timer is scheduled.
+ * - (-1): Timer is in the RUNNING or CONFIG state.
+ * - -EINVAL: invalid timer_data_id
+ */
+__rte_experimental
+int
+rte_timer_alt_reset(uint32_t timer_data_id, struct rte_timer *tim,
+ uint64_t ticks, enum rte_timer_type type,
+ unsigned int tim_lcore, rte_timer_cb_t fct, void *arg);
+
+/**
+ * @warning
+ * @b EXPERIMENTAL: this API may change without prior notice
+ *
+ * This function is the same as rte_timer_stop(), except that it allows a
+ * caller to specify the rte_timer_data instance containing the list from which
+ * this timer should be removed.
+ *
+ * @see rte_timer_stop()
+ *
+ * @param timer_data_id
+ * An identifier indicating which instance of timer data should be used for
+ * this operation.
+ * @param tim
+ * The timer handle.
+ * @return
+ * - 0: Success; the timer is stopped.
+ * - (-1): The timer is in the RUNNING or CONFIG state.
+ * - -EINVAL: invalid timer_data_id
+ */
+__rte_experimental
+int
+rte_timer_alt_stop(uint32_t timer_data_id, struct rte_timer *tim);
+
+/**
+ * Callback function type for rte_timer_alt_manage().
+ */
+typedef void (*rte_timer_alt_manage_cb_t)(struct rte_timer *tim);
+
+/**
+ * @warning
+ * @b EXPERIMENTAL: this API may change without prior notice
+ *
+ * Manage a set of timer lists and execute the specified callback function for
+ * all expired timers. This function is similar to rte_timer_manage(), except
+ * that it allows a caller to specify the timer_data instance that should
+ * be operated on, as well as a set of lcore IDs identifying which timer lists
+ * should be processed. Callback functions of individual timers are ignored.
+ *
+ * @see rte_timer_manage()
+ *
+ * @param timer_data_id
+ * An identifier indicating which instance of timer data should be used for
+ * this operation.
+ * @param poll_lcores
+ * An array of lcore ids identifying the timer lists that should be processed.
+ * NULL is allowed - if NULL, the timer list corresponding to the lcore
+ * calling this routine is processed (same as rte_timer_manage()).
+ * @param n_poll_lcores
+ * The size of the poll_lcores array. If 'poll_lcores' is NULL, this parameter
+ * is ignored.
+ * @param f
+ * The callback function which should be called for all expired timers.
+ * @return
+ * - 0: success
+ * - -EINVAL: invalid timer_data_id
+ */
+__rte_experimental
+int
+rte_timer_alt_manage(uint32_t timer_data_id, unsigned int *poll_lcores,
+ int n_poll_lcores, rte_timer_alt_manage_cb_t f);
+
+/**
+ * Callback function type for rte_timer_stop_all().
+ */
+typedef void (*rte_timer_stop_all_cb_t)(struct rte_timer *tim, void *arg);
+
+/**
+ * @warning
+ * @b EXPERIMENTAL: this API may change without prior notice
+ *
+ * Walk the pending timer lists for the specified lcore IDs, and for each timer
+ * that is encountered, stop it and call the specified callback function to
+ * process it further.
+ *
+ * @param timer_data_id
+ * An identifier indicating which instance of timer data should be used for
+ * this operation.
+ * @param walk_lcores
+ * An array of lcore ids identifying the timer lists that should be processed.
+ * @param nb_walk_lcores
+ * The size of the walk_lcores array.
+ * @param f
+ * The callback function which should be called for each timers. Can be NULL.
+ * @param f_arg
+ * An arbitrary argument that will be passed to f, if it is called.
+ * @return
+ * - 0: success
+ * - EINVAL: invalid timer_data_id
+ */
+__rte_experimental
+int
+rte_timer_stop_all(uint32_t timer_data_id, unsigned int *walk_lcores,
+ int nb_walk_lcores, rte_timer_stop_all_cb_t f, void *f_arg);
+
+/**
+ * @warning
+ * @b EXPERIMENTAL: this API may change without prior notice
+ *
+ * This function is the same as rte_timer_dump_stats(), except that it allows
+ * the caller to specify the rte_timer_data instance that should be used.
+ *
+ * @see rte_timer_dump_stats()
+ *
+ * @param timer_data_id
+ * An identifier indicating which instance of timer data should be used for
+ * this operation.
+ * @param f
+ * A pointer to a file for output
+ * @return
+ * - 0: success
+ * - -EINVAL: invalid timer_data_id
+ */
+__rte_experimental
+int
+rte_timer_alt_dump_stats(uint32_t timer_data_id, FILE *f);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _RTE_TIMER_H_ */
diff --git a/src/spdk/dpdk/lib/librte_timer/rte_timer_version.map b/src/spdk/dpdk/lib/librte_timer/rte_timer_version.map
new file mode 100644
index 000000000..4471cef92
--- /dev/null
+++ b/src/spdk/dpdk/lib/librte_timer/rte_timer_version.map
@@ -0,0 +1,29 @@
+DPDK_20.0 {
+ global:
+
+ rte_timer_dump_stats;
+ rte_timer_init;
+ rte_timer_manage;
+ rte_timer_pending;
+ rte_timer_reset;
+ rte_timer_reset_sync;
+ rte_timer_stop;
+ rte_timer_stop_sync;
+ rte_timer_subsystem_init;
+
+ local: *;
+};
+
+EXPERIMENTAL {
+ global:
+
+ rte_timer_alt_dump_stats;
+ rte_timer_alt_manage;
+ rte_timer_alt_reset;
+ rte_timer_alt_stop;
+ rte_timer_data_alloc;
+ rte_timer_data_dealloc;
+ rte_timer_next_ticks;
+ rte_timer_stop_all;
+ rte_timer_subsystem_finalize;
+};