summaryrefslogtreecommitdiffstats
path: root/doc/cephadm/services/osd.rst
diff options
context:
space:
mode:
Diffstat (limited to 'doc/cephadm/services/osd.rst')
-rw-r--r--doc/cephadm/services/osd.rst936
1 files changed, 936 insertions, 0 deletions
diff --git a/doc/cephadm/services/osd.rst b/doc/cephadm/services/osd.rst
new file mode 100644
index 000000000..de0d4f82a
--- /dev/null
+++ b/doc/cephadm/services/osd.rst
@@ -0,0 +1,936 @@
+***********
+OSD Service
+***********
+.. _device management: ../rados/operations/devices
+.. _libstoragemgmt: https://github.com/libstorage/libstoragemgmt
+
+List Devices
+============
+
+``ceph-volume`` scans each host in the cluster from time to time in order
+to determine which devices are present and whether they are eligible to be
+used as OSDs.
+
+To print a list of devices discovered by ``cephadm``, run this command:
+
+.. prompt:: bash #
+
+ ceph orch device ls [--hostname=...] [--wide] [--refresh]
+
+Example
+::
+
+ Hostname Path Type Serial Size Health Ident Fault Available
+ srv-01 /dev/sdb hdd 15P0A0YFFRD6 300G Unknown N/A N/A No
+ srv-01 /dev/sdc hdd 15R0A08WFRD6 300G Unknown N/A N/A No
+ srv-01 /dev/sdd hdd 15R0A07DFRD6 300G Unknown N/A N/A No
+ srv-01 /dev/sde hdd 15P0A0QDFRD6 300G Unknown N/A N/A No
+ srv-02 /dev/sdb hdd 15R0A033FRD6 300G Unknown N/A N/A No
+ srv-02 /dev/sdc hdd 15R0A05XFRD6 300G Unknown N/A N/A No
+ srv-02 /dev/sde hdd 15R0A0ANFRD6 300G Unknown N/A N/A No
+ srv-02 /dev/sdf hdd 15R0A06EFRD6 300G Unknown N/A N/A No
+ srv-03 /dev/sdb hdd 15R0A0OGFRD6 300G Unknown N/A N/A No
+ srv-03 /dev/sdc hdd 15R0A0P7FRD6 300G Unknown N/A N/A No
+ srv-03 /dev/sdd hdd 15R0A0O7FRD6 300G Unknown N/A N/A No
+
+Using the ``--wide`` option provides all details relating to the device,
+including any reasons that the device might not be eligible for use as an OSD.
+
+In the above example you can see fields named "Health", "Ident", and "Fault".
+This information is provided by integration with `libstoragemgmt`_. By default,
+this integration is disabled (because `libstoragemgmt`_ may not be 100%
+compatible with your hardware). To make ``cephadm`` include these fields,
+enable cephadm's "enhanced device scan" option as follows;
+
+.. prompt:: bash #
+
+ ceph config set mgr mgr/cephadm/device_enhanced_scan true
+
+.. warning::
+ Although the libstoragemgmt library performs standard SCSI inquiry calls,
+ there is no guarantee that your firmware fully implements these standards.
+ This can lead to erratic behaviour and even bus resets on some older
+ hardware. It is therefore recommended that, before enabling this feature,
+ you test your hardware's compatibility with libstoragemgmt first to avoid
+ unplanned interruptions to services.
+
+ There are a number of ways to test compatibility, but the simplest may be
+ to use the cephadm shell to call libstoragemgmt directly - ``cephadm shell
+ lsmcli ldl``. If your hardware is supported you should see something like
+ this:
+
+ ::
+
+ Path | SCSI VPD 0x83 | Link Type | Serial Number | Health Status
+ ----------------------------------------------------------------------------
+ /dev/sda | 50000396082ba631 | SAS | 15P0A0R0FRD6 | Good
+ /dev/sdb | 50000396082bbbf9 | SAS | 15P0A0YFFRD6 | Good
+
+
+After you have enabled libstoragemgmt support, the output will look something
+like this:
+
+::
+
+ # ceph orch device ls
+ Hostname Path Type Serial Size Health Ident Fault Available
+ srv-01 /dev/sdb hdd 15P0A0YFFRD6 300G Good Off Off No
+ srv-01 /dev/sdc hdd 15R0A08WFRD6 300G Good Off Off No
+ :
+
+In this example, libstoragemgmt has confirmed the health of the drives and the ability to
+interact with the Identification and Fault LEDs on the drive enclosures. For further
+information about interacting with these LEDs, refer to `device management`_.
+
+.. note::
+ The current release of `libstoragemgmt`_ (1.8.8) supports SCSI, SAS, and SATA based
+ local disks only. There is no official support for NVMe devices (PCIe)
+
+.. _cephadm-deploy-osds:
+
+Deploy OSDs
+===========
+
+Listing Storage Devices
+-----------------------
+
+In order to deploy an OSD, there must be a storage device that is *available* on
+which the OSD will be deployed.
+
+Run this command to display an inventory of storage devices on all cluster hosts:
+
+.. prompt:: bash #
+
+ ceph orch device ls
+
+A storage device is considered *available* if all of the following
+conditions are met:
+
+* The device must have no partitions.
+* The device must not have any LVM state.
+* The device must not be mounted.
+* The device must not contain a file system.
+* The device must not contain a Ceph BlueStore OSD.
+* The device must be larger than 5 GB.
+
+Ceph will not provision an OSD on a device that is not available.
+
+Creating New OSDs
+-----------------
+
+There are a few ways to create new OSDs:
+
+* Tell Ceph to consume any available and unused storage device:
+
+ .. prompt:: bash #
+
+ ceph orch apply osd --all-available-devices
+
+* Create an OSD from a specific device on a specific host:
+
+ .. prompt:: bash #
+
+ ceph orch daemon add osd *<host>*:*<device-path>*
+
+ For example:
+
+ .. prompt:: bash #
+
+ ceph orch daemon add osd host1:/dev/sdb
+
+ Advanced OSD creation from specific devices on a specific host:
+
+ .. prompt:: bash #
+
+ ceph orch daemon add osd host1:data_devices=/dev/sda,/dev/sdb,db_devices=/dev/sdc,osds_per_device=2
+
+* You can use :ref:`drivegroups` to categorize device(s) based on their
+ properties. This might be useful in forming a clearer picture of which
+ devices are available to consume. Properties include device type (SSD or
+ HDD), device model names, size, and the hosts on which the devices exist:
+
+ .. prompt:: bash #
+
+ ceph orch apply -i spec.yml
+
+Dry Run
+-------
+
+The ``--dry-run`` flag causes the orchestrator to present a preview of what
+will happen without actually creating the OSDs.
+
+For example:
+
+ .. prompt:: bash #
+
+ ceph orch apply osd --all-available-devices --dry-run
+
+ ::
+
+ NAME HOST DATA DB WAL
+ all-available-devices node1 /dev/vdb - -
+ all-available-devices node2 /dev/vdc - -
+ all-available-devices node3 /dev/vdd - -
+
+.. _cephadm-osd-declarative:
+
+Declarative State
+-----------------
+
+The effect of ``ceph orch apply`` is persistent. This means that drives that
+are added to the system after the ``ceph orch apply`` command completes will be
+automatically found and added to the cluster. It also means that drives that
+become available (by zapping, for example) after the ``ceph orch apply``
+command completes will be automatically found and added to the cluster.
+
+We will examine the effects of the following command:
+
+ .. prompt:: bash #
+
+ ceph orch apply osd --all-available-devices
+
+After running the above command:
+
+* If you add new disks to the cluster, they will automatically be used to
+ create new OSDs.
+* If you remove an OSD and clean the LVM physical volume, a new OSD will be
+ created automatically.
+
+To disable the automatic creation of OSD on available devices, use the
+``unmanaged`` parameter:
+
+If you want to avoid this behavior (disable automatic creation of OSD on available devices), use the ``unmanaged`` parameter:
+
+.. prompt:: bash #
+
+ ceph orch apply osd --all-available-devices --unmanaged=true
+
+.. note::
+
+ Keep these three facts in mind:
+
+ - The default behavior of ``ceph orch apply`` causes cephadm constantly to reconcile. This means that cephadm creates OSDs as soon as new drives are detected.
+
+ - Setting ``unmanaged: True`` disables the creation of OSDs. If ``unmanaged: True`` is set, nothing will happen even if you apply a new OSD service.
+
+ - ``ceph orch daemon add`` creates OSDs, but does not add an OSD service.
+
+* For cephadm, see also :ref:`cephadm-spec-unmanaged`.
+
+.. _cephadm-osd-removal:
+
+Remove an OSD
+=============
+
+Removing an OSD from a cluster involves two steps:
+
+#. evacuating all placement groups (PGs) from the cluster
+#. removing the PG-free OSD from the cluster
+
+The following command performs these two steps:
+
+.. prompt:: bash #
+
+ ceph orch osd rm <osd_id(s)> [--replace] [--force]
+
+Example:
+
+.. prompt:: bash #
+
+ ceph orch osd rm 0
+
+Expected output::
+
+ Scheduled OSD(s) for removal
+
+OSDs that are not safe to destroy will be rejected.
+
+.. note::
+ After removing OSDs, if the drives the OSDs were deployed on once again
+ become available, cephadm may automatically try to deploy more OSDs
+ on these drives if they match an existing drivegroup spec. If you deployed
+ the OSDs you are removing with a spec and don't want any new OSDs deployed on
+ the drives after removal, it's best to modify the drivegroup spec before removal.
+ Either set ``unmanaged: true`` to stop it from picking up new drives at all,
+ or modify it in some way that it no longer matches the drives used for the
+ OSDs you wish to remove. Then re-apply the spec. For more info on drivegroup
+ specs see :ref:`drivegroups`. For more info on the declarative nature of
+ cephadm in reference to deploying OSDs, see :ref:`cephadm-osd-declarative`
+
+Monitoring OSD State
+--------------------
+
+You can query the state of OSD operation with the following command:
+
+.. prompt:: bash #
+
+ ceph orch osd rm status
+
+Expected output::
+
+ OSD_ID HOST STATE PG_COUNT REPLACE FORCE STARTED_AT
+ 2 cephadm-dev done, waiting for purge 0 True False 2020-07-17 13:01:43.147684
+ 3 cephadm-dev draining 17 False True 2020-07-17 13:01:45.162158
+ 4 cephadm-dev started 42 False True 2020-07-17 13:01:45.162158
+
+
+When no PGs are left on the OSD, it will be decommissioned and removed from the cluster.
+
+.. note::
+ After removing an OSD, if you wipe the LVM physical volume in the device used by the removed OSD, a new OSD will be created.
+ For more information on this, read about the ``unmanaged`` parameter in :ref:`cephadm-osd-declarative`.
+
+Stopping OSD Removal
+--------------------
+
+It is possible to stop queued OSD removals by using the following command:
+
+.. prompt:: bash #
+
+ ceph orch osd rm stop <osd_id(s)>
+
+Example:
+
+.. prompt:: bash #
+
+ ceph orch osd rm stop 4
+
+Expected output::
+
+ Stopped OSD(s) removal
+
+This resets the initial state of the OSD and takes it off the removal queue.
+
+.. _cephadm-replacing-an-osd:
+
+Replacing an OSD
+----------------
+
+.. prompt:: bash #
+
+ orch osd rm <osd_id(s)> --replace [--force]
+
+Example:
+
+.. prompt:: bash #
+
+ ceph orch osd rm 4 --replace
+
+Expected output::
+
+ Scheduled OSD(s) for replacement
+
+This follows the same procedure as the procedure in the "Remove OSD" section, with
+one exception: the OSD is not permanently removed from the CRUSH hierarchy, but is
+instead assigned a 'destroyed' flag.
+
+.. note::
+ The new OSD that will replace the removed OSD must be created on the same host
+ as the OSD that was removed.
+
+**Preserving the OSD ID**
+
+The 'destroyed' flag is used to determine which OSD ids will be reused in the
+next OSD deployment.
+
+If you use OSDSpecs for OSD deployment, your newly added disks will be assigned
+the OSD ids of their replaced counterparts. This assumes that the new disks
+still match the OSDSpecs.
+
+Use the ``--dry-run`` flag to make certain that the ``ceph orch apply osd``
+command does what you want it to. The ``--dry-run`` flag shows you what the
+outcome of the command will be without making the changes you specify. When
+you are satisfied that the command will do what you want, run the command
+without the ``--dry-run`` flag.
+
+.. tip::
+
+ The name of your OSDSpec can be retrieved with the command ``ceph orch ls``
+
+Alternatively, you can use your OSDSpec file:
+
+.. prompt:: bash #
+
+ ceph orch apply -i <osd_spec_file> --dry-run
+
+Expected output::
+
+ NAME HOST DATA DB WAL
+ <name_of_osd_spec> node1 /dev/vdb - -
+
+
+When this output reflects your intention, omit the ``--dry-run`` flag to
+execute the deployment.
+
+
+Erasing Devices (Zapping Devices)
+---------------------------------
+
+Erase (zap) a device so that it can be reused. ``zap`` calls ``ceph-volume
+zap`` on the remote host.
+
+.. prompt:: bash #
+
+ ceph orch device zap <hostname> <path>
+
+Example command:
+
+.. prompt:: bash #
+
+ ceph orch device zap my_hostname /dev/sdx
+
+.. note::
+ If the unmanaged flag is unset, cephadm automatically deploys drives that
+ match the OSDSpec. For example, if you use the
+ ``all-available-devices`` option when creating OSDs, when you ``zap`` a
+ device the cephadm orchestrator automatically creates a new OSD in the
+ device. To disable this behavior, see :ref:`cephadm-osd-declarative`.
+
+
+.. _osd_autotune:
+
+Automatically tuning OSD memory
+===============================
+
+OSD daemons will adjust their memory consumption based on the
+``osd_memory_target`` config option (several gigabytes, by
+default). If Ceph is deployed on dedicated nodes that are not sharing
+memory with other services, cephadm can automatically adjust the per-OSD
+memory consumption based on the total amount of RAM and the number of deployed
+OSDs.
+
+.. warning:: Cephadm sets ``osd_memory_target_autotune`` to ``true`` by default which is unsuitable for hyperconverged infrastructures.
+
+Cephadm will start with a fraction
+(``mgr/cephadm/autotune_memory_target_ratio``, which defaults to
+``.7``) of the total RAM in the system, subtract off any memory
+consumed by non-autotuned daemons (non-OSDs, for OSDs for which
+``osd_memory_target_autotune`` is false), and then divide by the
+remaining OSDs.
+
+The final targets are reflected in the config database with options like::
+
+ WHO MASK LEVEL OPTION VALUE
+ osd host:foo basic osd_memory_target 126092301926
+ osd host:bar basic osd_memory_target 6442450944
+
+Both the limits and the current memory consumed by each daemon are visible from
+the ``ceph orch ps`` output in the ``MEM LIMIT`` column::
+
+ NAME HOST PORTS STATUS REFRESHED AGE MEM USED MEM LIMIT VERSION IMAGE ID CONTAINER ID
+ osd.1 dael running (3h) 10s ago 3h 72857k 117.4G 17.0.0-3781-gafaed750 7015fda3cd67 9e183363d39c
+ osd.2 dael running (81m) 10s ago 81m 63989k 117.4G 17.0.0-3781-gafaed750 7015fda3cd67 1f0cc479b051
+ osd.3 dael running (62m) 10s ago 62m 64071k 117.4G 17.0.0-3781-gafaed750 7015fda3cd67 ac5537492f27
+
+To exclude an OSD from memory autotuning, disable the autotune option
+for that OSD and also set a specific memory target. For example,
+
+ .. prompt:: bash #
+
+ ceph config set osd.123 osd_memory_target_autotune false
+ ceph config set osd.123 osd_memory_target 16G
+
+
+.. _drivegroups:
+
+Advanced OSD Service Specifications
+===================================
+
+:ref:`orchestrator-cli-service-spec`\s of type ``osd`` are a way to describe a
+cluster layout, using the properties of disks. Service specifications give the
+user an abstract way to tell Ceph which disks should turn into OSDs with which
+configurations, without knowing the specifics of device names and paths.
+
+Service specifications make it possible to define a yaml or json file that can
+be used to reduce the amount of manual work involved in creating OSDs.
+
+For example, instead of running the following command:
+
+.. prompt:: bash [monitor.1]#
+
+ ceph orch daemon add osd *<host>*:*<path-to-device>*
+
+for each device and each host, we can define a yaml or json file that allows us
+to describe the layout. Here's the most basic example.
+
+Create a file called (for example) ``osd_spec.yml``:
+
+.. code-block:: yaml
+
+ service_type: osd
+ service_id: default_drive_group # custom name of the osd spec
+ placement:
+ host_pattern: '*' # which hosts to target
+ spec:
+ data_devices: # the type of devices you are applying specs to
+ all: true # a filter, check below for a full list
+
+This means :
+
+#. Turn any available device (ceph-volume decides what 'available' is) into an
+ OSD on all hosts that match the glob pattern '*'. (The glob pattern matches
+ against the registered hosts from `host ls`) A more detailed section on
+ host_pattern is available below.
+
+#. Then pass it to `osd create` like this:
+
+ .. prompt:: bash [monitor.1]#
+
+ ceph orch apply -i /path/to/osd_spec.yml
+
+ This instruction will be issued to all the matching hosts, and will deploy
+ these OSDs.
+
+ Setups more complex than the one specified by the ``all`` filter are
+ possible. See :ref:`osd_filters` for details.
+
+ A ``--dry-run`` flag can be passed to the ``apply osd`` command to display a
+ synopsis of the proposed layout.
+
+Example
+
+.. prompt:: bash [monitor.1]#
+
+ ceph orch apply -i /path/to/osd_spec.yml --dry-run
+
+
+
+.. _osd_filters:
+
+Filters
+-------
+
+.. note::
+ Filters are applied using an `AND` gate by default. This means that a drive
+ must fulfill all filter criteria in order to get selected. This behavior can
+ be adjusted by setting ``filter_logic: OR`` in the OSD specification.
+
+Filters are used to assign disks to groups, using their attributes to group
+them.
+
+The attributes are based off of ceph-volume's disk query. You can retrieve
+information about the attributes with this command:
+
+.. code-block:: bash
+
+ ceph-volume inventory </path/to/disk>
+
+Vendor or Model
+^^^^^^^^^^^^^^^
+
+Specific disks can be targeted by vendor or model:
+
+.. code-block:: yaml
+
+ model: disk_model_name
+
+or
+
+.. code-block:: yaml
+
+ vendor: disk_vendor_name
+
+
+Size
+^^^^
+
+Specific disks can be targeted by `Size`:
+
+.. code-block:: yaml
+
+ size: size_spec
+
+Size specs
+__________
+
+Size specifications can be of the following forms:
+
+* LOW:HIGH
+* :HIGH
+* LOW:
+* EXACT
+
+Concrete examples:
+
+To include disks of an exact size
+
+.. code-block:: yaml
+
+ size: '10G'
+
+To include disks within a given range of size:
+
+.. code-block:: yaml
+
+ size: '10G:40G'
+
+To include disks that are less than or equal to 10G in size:
+
+.. code-block:: yaml
+
+ size: ':10G'
+
+To include disks equal to or greater than 40G in size:
+
+.. code-block:: yaml
+
+ size: '40G:'
+
+Sizes don't have to be specified exclusively in Gigabytes(G).
+
+Other units of size are supported: Megabyte(M), Gigabyte(G) and Terrabyte(T).
+Appending the (B) for byte is also supported: ``MB``, ``GB``, ``TB``.
+
+
+Rotational
+^^^^^^^^^^
+
+This operates on the 'rotational' attribute of the disk.
+
+.. code-block:: yaml
+
+ rotational: 0 | 1
+
+`1` to match all disks that are rotational
+
+`0` to match all disks that are non-rotational (SSD, NVME etc)
+
+
+All
+^^^
+
+This will take all disks that are 'available'
+
+.. note:: This is exclusive for the data_devices section.
+
+.. code-block:: yaml
+
+ all: true
+
+
+Limiter
+^^^^^^^
+
+If you have specified some valid filters but want to limit the number of disks that they match, use the ``limit`` directive:
+
+.. code-block:: yaml
+
+ limit: 2
+
+For example, if you used `vendor` to match all disks that are from `VendorA`
+but want to use only the first two, you could use `limit`:
+
+.. code-block:: yaml
+
+ data_devices:
+ vendor: VendorA
+ limit: 2
+
+.. note:: `limit` is a last resort and shouldn't be used if it can be avoided.
+
+
+Additional Options
+------------------
+
+There are multiple optional settings you can use to change the way OSDs are deployed.
+You can add these options to the base level of an OSD spec for it to take effect.
+
+This example would deploy all OSDs with encryption enabled.
+
+.. code-block:: yaml
+
+ service_type: osd
+ service_id: example_osd_spec
+ placement:
+ host_pattern: '*'
+ spec:
+ data_devices:
+ all: true
+ encrypted: true
+
+See a full list in the DriveGroupSpecs
+
+.. py:currentmodule:: ceph.deployment.drive_group
+
+.. autoclass:: DriveGroupSpec
+ :members:
+ :exclude-members: from_json
+
+Examples
+========
+
+The simple case
+---------------
+
+All nodes with the same setup
+
+.. code-block:: none
+
+ 20 HDDs
+ Vendor: VendorA
+ Model: HDD-123-foo
+ Size: 4TB
+
+ 2 SSDs
+ Vendor: VendorB
+ Model: MC-55-44-ZX
+ Size: 512GB
+
+This is a common setup and can be described quite easily:
+
+.. code-block:: yaml
+
+ service_type: osd
+ service_id: osd_spec_default
+ placement:
+ host_pattern: '*'
+ spec:
+ data_devices:
+ model: HDD-123-foo # Note, HDD-123 would also be valid
+ db_devices:
+ model: MC-55-44-XZ # Same here, MC-55-44 is valid
+
+However, we can improve it by reducing the filters on core properties of the drives:
+
+.. code-block:: yaml
+
+ service_type: osd
+ service_id: osd_spec_default
+ placement:
+ host_pattern: '*'
+ spec:
+ data_devices:
+ rotational: 1
+ db_devices:
+ rotational: 0
+
+Now, we enforce all rotating devices to be declared as 'data devices' and all non-rotating devices will be used as shared_devices (wal, db)
+
+If you know that drives with more than 2TB will always be the slower data devices, you can also filter by size:
+
+.. code-block:: yaml
+
+ service_type: osd
+ service_id: osd_spec_default
+ placement:
+ host_pattern: '*'
+ spec:
+ data_devices:
+ size: '2TB:'
+ db_devices:
+ size: ':2TB'
+
+.. note:: All of the above OSD specs are equally valid. Which of those you want to use depends on taste and on how much you expect your node layout to change.
+
+
+Multiple OSD specs for a single host
+------------------------------------
+
+Here we have two distinct setups
+
+.. code-block:: none
+
+ 20 HDDs
+ Vendor: VendorA
+ Model: HDD-123-foo
+ Size: 4TB
+
+ 12 SSDs
+ Vendor: VendorB
+ Model: MC-55-44-ZX
+ Size: 512GB
+
+ 2 NVMEs
+ Vendor: VendorC
+ Model: NVME-QQQQ-987
+ Size: 256GB
+
+
+* 20 HDDs should share 2 SSDs
+* 10 SSDs should share 2 NVMes
+
+This can be described with two layouts.
+
+.. code-block:: yaml
+
+ service_type: osd
+ service_id: osd_spec_hdd
+ placement:
+ host_pattern: '*'
+ spec:
+ data_devices:
+ rotational: 0
+ db_devices:
+ model: MC-55-44-XZ
+ limit: 2 # db_slots is actually to be favoured here, but it's not implemented yet
+ ---
+ service_type: osd
+ service_id: osd_spec_ssd
+ placement:
+ host_pattern: '*'
+ spec:
+ data_devices:
+ model: MC-55-44-XZ
+ db_devices:
+ vendor: VendorC
+
+This would create the desired layout by using all HDDs as data_devices with two SSD assigned as dedicated db/wal devices.
+The remaining SSDs(8) will be data_devices that have the 'VendorC' NVMEs assigned as dedicated db/wal devices.
+
+Multiple hosts with the same disk layout
+----------------------------------------
+
+Assuming the cluster has different kinds of hosts each with similar disk
+layout, it is recommended to apply different OSD specs matching only one
+set of hosts. Typically you will have a spec for multiple hosts with the
+same layout.
+
+The sevice id as the unique key: In case a new OSD spec with an already
+applied service id is applied, the existing OSD spec will be superseeded.
+cephadm will now create new OSD daemons based on the new spec
+definition. Existing OSD daemons will not be affected. See :ref:`cephadm-osd-declarative`.
+
+Node1-5
+
+.. code-block:: none
+
+ 20 HDDs
+ Vendor: Intel
+ Model: SSD-123-foo
+ Size: 4TB
+ 2 SSDs
+ Vendor: VendorA
+ Model: MC-55-44-ZX
+ Size: 512GB
+
+Node6-10
+
+.. code-block:: none
+
+ 5 NVMEs
+ Vendor: Intel
+ Model: SSD-123-foo
+ Size: 4TB
+ 20 SSDs
+ Vendor: VendorA
+ Model: MC-55-44-ZX
+ Size: 512GB
+
+You can use the 'placement' key in the layout to target certain nodes.
+
+.. code-block:: yaml
+
+ service_type: osd
+ service_id: disk_layout_a
+ placement:
+ label: disk_layout_a
+ spec:
+ data_devices:
+ rotational: 1
+ db_devices:
+ rotational: 0
+ ---
+ service_type: osd
+ service_id: disk_layout_b
+ placement:
+ label: disk_layout_b
+ spec:
+ data_devices:
+ model: MC-55-44-XZ
+ db_devices:
+ model: SSD-123-foo
+
+This applies different OSD specs to different hosts depending on the `placement` key.
+See :ref:`orchestrator-cli-placement-spec`
+
+.. note::
+
+ Assuming each host has a unique disk layout, each OSD
+ spec needs to have a different service id
+
+
+Dedicated wal + db
+------------------
+
+All previous cases co-located the WALs with the DBs.
+It's however possible to deploy the WAL on a dedicated device as well, if it makes sense.
+
+.. code-block:: none
+
+ 20 HDDs
+ Vendor: VendorA
+ Model: SSD-123-foo
+ Size: 4TB
+
+ 2 SSDs
+ Vendor: VendorB
+ Model: MC-55-44-ZX
+ Size: 512GB
+
+ 2 NVMEs
+ Vendor: VendorC
+ Model: NVME-QQQQ-987
+ Size: 256GB
+
+
+The OSD spec for this case would look like the following (using the `model` filter):
+
+.. code-block:: yaml
+
+ service_type: osd
+ service_id: osd_spec_default
+ placement:
+ host_pattern: '*'
+ spec:
+ data_devices:
+ model: MC-55-44-XZ
+ db_devices:
+ model: SSD-123-foo
+ wal_devices:
+ model: NVME-QQQQ-987
+
+
+It is also possible to specify directly device paths in specific hosts like the following:
+
+.. code-block:: yaml
+
+ service_type: osd
+ service_id: osd_using_paths
+ placement:
+ hosts:
+ - Node01
+ - Node02
+ spec:
+ data_devices:
+ paths:
+ - /dev/sdb
+ db_devices:
+ paths:
+ - /dev/sdc
+ wal_devices:
+ paths:
+ - /dev/sdd
+
+
+This can easily be done with other filters, like `size` or `vendor` as well.
+
+.. _cephadm-osd-activate:
+
+Activate existing OSDs
+======================
+
+In case the OS of a host was reinstalled, existing OSDs need to be activated
+again. For this use case, cephadm provides a wrapper for :ref:`ceph-volume-lvm-activate` that
+activates all existing OSDs on a host.
+
+.. prompt:: bash #
+
+ ceph cephadm osd activate <host>...
+
+This will scan all existing disks for OSDs and deploy corresponding daemons.
+
+Futher Reading
+==============
+
+* :ref:`ceph-volume`
+* :ref:`rados-index`