diff options
Diffstat (limited to 'src/boost/libs/math/test/test_roots.cpp')
-rw-r--r-- | src/boost/libs/math/test/test_roots.cpp | 663 |
1 files changed, 663 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/test_roots.cpp b/src/boost/libs/math/test/test_roots.cpp new file mode 100644 index 000000000..eef307216 --- /dev/null +++ b/src/boost/libs/math/test/test_roots.cpp @@ -0,0 +1,663 @@ +// (C) Copyright John Maddock 2006. +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + +#include <pch.hpp> + +#define BOOST_TEST_MAIN +#include <boost/test/unit_test.hpp> +#include <boost/test/tools/floating_point_comparison.hpp> +#include <boost/test/results_collector.hpp> +#include <boost/math/special_functions/beta.hpp> +#include <boost/math/distributions/skew_normal.hpp> +#include <boost/math/tools/polynomial.hpp> +#include <boost/math/tools/roots.hpp> +#include <boost/math/constants/constants.hpp> +#include <boost/test/results_collector.hpp> +#include <boost/test/unit_test.hpp> +#include <boost/array.hpp> +#include <boost/type_index.hpp> +#include "table_type.hpp" +#include <iostream> +#include <iomanip> + +#include <boost/multiprecision/cpp_bin_float.hpp> +#include <boost/multiprecision/cpp_complex.hpp> + +#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \ + {\ + unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\ + BOOST_CHECK_CLOSE(a, b, prec); \ + if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\ + {\ + std::cerr << "Failure was at row " << i << std::endl;\ + std::cerr << std::setprecision(35); \ + std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\ + std::cerr << " , " << data[i][3] << " , " << data[i][4] << " , " << data[i][5] << " } " << std::endl;\ + }\ + } + + +// +// Implement various versions of inverse of the incomplete beta +// using different root finding algorithms, and deliberately "bad" +// starting conditions: that way we get all the pathological cases +// we could ever wish for!!! +// + +template <class T, class Policy> +struct ibeta_roots_1 // for first order algorithms +{ + ibeta_roots_1(T _a, T _b, T t, bool inv = false, bool neg = false) + : a(_a), b(_b), target(t), invert(inv), neg(neg) {} + + T operator()(const T& x) + { + return boost::math::detail::ibeta_imp(a, b, (neg ? -x : x), Policy(), invert, true) - target; + } +private: + T a, b, target; + bool invert, neg; +}; + +template <class T, class Policy> +struct ibeta_roots_2 // for second order algorithms +{ + ibeta_roots_2(T _a, T _b, T t, bool inv = false, bool neg = false) + : a(_a), b(_b), target(t), invert(inv), neg(neg) {} + + boost::math::tuple<T, T> operator()(const T& xx) + { + typedef typename boost::math::lanczos::lanczos<T, Policy>::type L; + T x = neg ? -xx : xx; + T f = boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target; + T f1 = invert ? + -boost::math::detail::ibeta_power_terms(b, a, 1 - x, x, L(), true, Policy()) + : boost::math::detail::ibeta_power_terms(a, b, x, 1 - x, L(), true, Policy()); + T y = 1 - x; + if(y == 0) + y = boost::math::tools::min_value<T>() * 8; + f1 /= y * x; + + // make sure we don't have a zero derivative: + if(f1 == 0) + f1 = (invert ? -1 : 1) * boost::math::tools::min_value<T>() * 64; + + return boost::math::make_tuple(f, neg ? -f1 : f1); + } +private: + T a, b, target; + bool invert, neg; +}; + +template <class T, class Policy> +struct ibeta_roots_3 // for third order algorithms +{ + ibeta_roots_3(T _a, T _b, T t, bool inv = false, bool neg = false) + : a(_a), b(_b), target(t), invert(inv), neg(neg) {} + + boost::math::tuple<T, T, T> operator()(const T& xx) + { + typedef typename boost::math::lanczos::lanczos<T, Policy>::type L; + T x = neg ? -xx : xx; + T f = boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target; + T f1 = invert ? + -boost::math::detail::ibeta_power_terms(b, a, 1 - x, x, L(), true, Policy()) + : boost::math::detail::ibeta_power_terms(a, b, x, 1 - x, L(), true, Policy()); + T y = 1 - x; + if(y == 0) + y = boost::math::tools::min_value<T>() * 8; + f1 /= y * x; + T f2 = f1 * (-y * a + (b - 2) * x + 1) / (y * x); + if(invert) + f2 = -f2; + + // make sure we don't have a zero derivative: + if(f1 == 0) + f1 = (invert ? -1 : 1) * boost::math::tools::min_value<T>() * 64; + + if (neg) + { + f1 = -f1; + } + + return boost::math::make_tuple(f, f1, f2); + } +private: + T a, b, target; + bool invert, neg; +}; + +double inverse_ibeta_bisect(double a, double b, double z) +{ + typedef boost::math::policies::policy<> pol; + bool invert = false; + int bits = std::numeric_limits<double>::digits; + + // + // special cases, we need to have these because there may be other + // possible answers: + // + if(z == 1) return 1; + if(z == 0) return 0; + + // + // We need a good estimate of the error in the incomplete beta function + // so that we don't set the desired precision too high. Assume that 3-bits + // are lost each time the arguments increase by a factor of 10: + // + using namespace std; + int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3)); + if(bits_lost < 0) + bits_lost = 3; + else + bits_lost += 3; + int precision = bits - bits_lost; + + double min = 0; + double max = 1; + boost::math::tools::eps_tolerance<double> tol(precision); + return boost::math::tools::bisect(ibeta_roots_1<double, pol>(a, b, z, invert), min, max, tol).first; +} + +double inverse_ibeta_bisect_neg(double a, double b, double z) +{ + typedef boost::math::policies::policy<> pol; + bool invert = false; + int bits = std::numeric_limits<double>::digits; + + // + // special cases, we need to have these because there may be other + // possible answers: + // + if(z == 1) return 1; + if(z == 0) return 0; + + // + // We need a good estimate of the error in the incomplete beta function + // so that we don't set the desired precision too high. Assume that 3-bits + // are lost each time the arguments increase by a factor of 10: + // + using namespace std; + int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3)); + if(bits_lost < 0) + bits_lost = 3; + else + bits_lost += 3; + int precision = bits - bits_lost; + + double min = -1; + double max = 0; + boost::math::tools::eps_tolerance<double> tol(precision); + return -boost::math::tools::bisect(ibeta_roots_1<double, pol>(a, b, z, invert, true), min, max, tol).first; +} + +double inverse_ibeta_newton(double a, double b, double z) +{ + double guess = 0.5; + bool invert = false; + int bits = std::numeric_limits<double>::digits; + + // + // special cases, we need to have these because there may be other + // possible answers: + // + if(z == 1) return 1; + if(z == 0) return 0; + + // + // We need a good estimate of the error in the incomplete beta function + // so that we don't set the desired precision too high. Assume that 3-bits + // are lost each time the arguments increase by a factor of 10: + // + using namespace std; + int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3)); + if(bits_lost < 0) + bits_lost = 3; + else + bits_lost += 3; + int precision = bits - bits_lost; + + double min = 0; + double max = 1; + return boost::math::tools::newton_raphson_iterate(ibeta_roots_2<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision); +} + +double inverse_ibeta_newton_neg(double a, double b, double z) +{ + double guess = 0.5; + bool invert = false; + int bits = std::numeric_limits<double>::digits; + + // + // special cases, we need to have these because there may be other + // possible answers: + // + if(z == 1) return 1; + if(z == 0) return 0; + + // + // We need a good estimate of the error in the incomplete beta function + // so that we don't set the desired precision too high. Assume that 3-bits + // are lost each time the arguments increase by a factor of 10: + // + using namespace std; + int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3)); + if(bits_lost < 0) + bits_lost = 3; + else + bits_lost += 3; + int precision = bits - bits_lost; + + double min = -1; + double max = 0; + return -boost::math::tools::newton_raphson_iterate(ibeta_roots_2<double, boost::math::policies::policy<> >(a, b, z, invert, true), -guess, min, max, precision); +} + +double inverse_ibeta_halley(double a, double b, double z) +{ + double guess = 0.5; + bool invert = false; + int bits = std::numeric_limits<double>::digits; + + // + // special cases, we need to have these because there may be other + // possible answers: + // + if(z == 1) return 1; + if(z == 0) return 0; + + // + // We need a good estimate of the error in the incomplete beta function + // so that we don't set the desired precision too high. Assume that 3-bits + // are lost each time the arguments increase by a factor of 10: + // + using namespace std; + int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3)); + if(bits_lost < 0) + bits_lost = 3; + else + bits_lost += 3; + int precision = bits - bits_lost; + + double min = 0; + double max = 1; + return boost::math::tools::halley_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision); +} + +double inverse_ibeta_halley_neg(double a, double b, double z) +{ + double guess = -0.5; + bool invert = false; + int bits = std::numeric_limits<double>::digits; + + // + // special cases, we need to have these because there may be other + // possible answers: + // + if(z == 1) return 1; + if(z == 0) return 0; + + // + // We need a good estimate of the error in the incomplete beta function + // so that we don't set the desired precision too high. Assume that 3-bits + // are lost each time the arguments increase by a factor of 10: + // + using namespace std; + int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3)); + if(bits_lost < 0) + bits_lost = 3; + else + bits_lost += 3; + int precision = bits - bits_lost; + + double min = -1; + double max = 0; + return -boost::math::tools::halley_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(a, b, z, invert, true), guess, min, max, precision); +} + +double inverse_ibeta_schroder(double a, double b, double z) +{ + double guess = 0.5; + bool invert = false; + int bits = std::numeric_limits<double>::digits; + + // + // special cases, we need to have these because there may be other + // possible answers: + // + if(z == 1) return 1; + if(z == 0) return 0; + + // + // We need a good estimate of the error in the incomplete beta function + // so that we don't set the desired precision too high. Assume that 3-bits + // are lost each time the arguments increase by a factor of 10: + // + using namespace std; + int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3)); + if(bits_lost < 0) + bits_lost = 3; + else + bits_lost += 3; + int precision = bits - bits_lost; + + double min = 0; + double max = 1; + return boost::math::tools::schroder_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision); +} + + +template <class Real, class T> +void test_inverses(const T& data) +{ + using namespace std; + typedef Real value_type; + + value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 150; + if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50) + precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated + + for(unsigned i = 0; i < data.size(); ++i) + { + // + // These inverse tests are thrown off if the output of the + // incomplete beta is too close to 1: basically there is insuffient + // information left in the value we're using as input to the inverse + // to be able to get back to the original value. + // + if(data[i][5] == 0) + { + BOOST_CHECK_EQUAL(inverse_ibeta_halley(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0)); + BOOST_CHECK_EQUAL(inverse_ibeta_halley_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0)); + BOOST_CHECK_EQUAL(inverse_ibeta_schroder(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0)); + BOOST_CHECK_EQUAL(inverse_ibeta_newton(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0)); + BOOST_CHECK_EQUAL(inverse_ibeta_newton_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0)); + BOOST_CHECK_EQUAL(inverse_ibeta_bisect(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0)); + BOOST_CHECK_EQUAL(inverse_ibeta_bisect_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0)); + } + else if((1 - data[i][5] > 0.001) + && (fabs(data[i][5]) > 2 * boost::math::tools::min_value<value_type>()) + && (fabs(data[i][5]) > 2 * boost::math::tools::min_value<double>())) + { + value_type inv = inverse_ibeta_halley(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])); + BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i); + inv = inverse_ibeta_halley_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])); + BOOST_ASSERT(boost::math::isfinite(inv)); + BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i); + inv = inverse_ibeta_schroder(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])); + BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i); + inv = inverse_ibeta_newton(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])); + BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i); + inv = inverse_ibeta_newton_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])); + BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i); + inv = inverse_ibeta_bisect(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])); + BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i); + inv = inverse_ibeta_bisect_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])); + BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i); + } + else if(1 == data[i][5]) + { + BOOST_CHECK_EQUAL(inverse_ibeta_halley(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1)); + BOOST_CHECK_EQUAL(inverse_ibeta_halley_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1)); + BOOST_CHECK_EQUAL(inverse_ibeta_schroder(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1)); + BOOST_CHECK_EQUAL(inverse_ibeta_newton(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1)); + BOOST_CHECK_EQUAL(inverse_ibeta_newton_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1)); + BOOST_CHECK_EQUAL(inverse_ibeta_bisect(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1)); + BOOST_CHECK_EQUAL(inverse_ibeta_bisect_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1)); + } + + } +} + +#ifndef SC_ +#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L)) +#endif + +template <class T> +void test_beta(T, const char* /* name */) +{ + // + // The actual test data is rather verbose, so it's in a separate file + // + // The contents are as follows, each row of data contains + // five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x): + // +# include "ibeta_small_data.ipp" + + test_inverses<T>(ibeta_small_data); + +# include "ibeta_data.ipp" + + test_inverses<T>(ibeta_data); + +# include "ibeta_large_data.ipp" + + test_inverses<T>(ibeta_large_data); +} + +#if !defined(BOOST_NO_CXX11_AUTO_DECLARATIONS) && !defined(BOOST_NO_CXX11_UNIFIED_INITIALIZATION_SYNTAX) && !defined(BOOST_NO_CXX11_LAMBDAS) +template <class Complex> +void test_complex_newton() +{ + typedef typename Complex::value_type Real; + std::cout << "Testing complex Newton's Method on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n"; + using std::abs; + using std::sqrt; + using boost::math::tools::complex_newton; + using boost::math::tools::polynomial; + using boost::math::constants::half; + + Real tol = std::numeric_limits<Real>::epsilon(); + // p(z) = z^2 + 1, roots: \pm i. + polynomial<Complex> p{{1,0}, {0, 0}, {1,0}}; + Complex guess{1,1}; + polynomial<Complex> p_prime = p.prime(); + auto f = [&](Complex z) { return std::make_pair<Complex, Complex>(p(z), p_prime(z)); }; + Complex root = complex_newton(f, guess); + + BOOST_CHECK(abs(root.real()) <= tol); + BOOST_CHECK_CLOSE(root.imag(), (Real)1, tol); + + guess = -guess; + root = complex_newton(f, guess); + BOOST_CHECK(abs(root.real()) <= tol); + BOOST_CHECK_CLOSE(root.imag(), (Real)-1, tol); + + // Test that double roots are handled correctly-as correctly as possible. + // Convergence at a double root is not quadratic. + // This sets p = (z-i)^2: + p = polynomial<Complex>({{-1,0}, {0,-2}, {1,0}}); + p_prime = p.prime(); + guess = -guess; + auto g = [&](Complex z) { return std::make_pair<Complex, Complex>(p(z), p_prime(z)); }; + root = complex_newton(g, guess); + BOOST_CHECK(abs(root.real()) < 10*sqrt(tol)); + BOOST_CHECK_CLOSE(root.imag(), (Real)1, tol); + + // Test that zero derivatives are handled. + // p(z) = z^2 + iz + 1 + p = polynomial<Complex>({{1,0}, {0,1}, {1,0}}); + // p'(z) = 2z + i + p_prime = p.prime(); + guess = Complex(0,-boost::math::constants::half<Real>()); + auto g2 = [&](Complex z) { return std::make_pair<Complex, Complex>(p(z), p_prime(z)); }; + root = complex_newton(g2, guess); + + // Here's the other root, in case code changes cause it to be found: + //Complex expected_root1{0, half<Real>()*(sqrt(static_cast<Real>(5)) - static_cast<Real>(1))}; + Complex expected_root2{0, -half<Real>()*(sqrt(static_cast<Real>(5)) + static_cast<Real>(1))}; + + BOOST_CHECK_CLOSE(expected_root2.imag(),root.imag(), tol); + BOOST_CHECK(abs(root.real()) < tol); + + // Does a zero root pass the termination criteria? + p = polynomial<Complex>({{0,0}, {0,0}, {1,0}}); + p_prime = p.prime(); + guess = Complex(0, -boost::math::constants::half<Real>()); + auto g3 = [&](Complex z) { return std::make_pair<Complex, Complex>(p(z), p_prime(z)); }; + root = complex_newton(g3, guess); + BOOST_CHECK(abs(root.real()) < tol); + + // Does a monstrous root pass? + Real x = -pow(static_cast<Real>(10), 20); + p = polynomial<Complex>({{x, x}, {1,0}}); + p_prime = p.prime(); + guess = Complex(0, -boost::math::constants::half<Real>()); + auto g4 = [&](Complex z) { return std::make_pair<Complex, Complex>(p(z), p_prime(z)); }; + root = complex_newton(g4, guess); + BOOST_CHECK(abs(root.real() + x) < tol); + BOOST_CHECK(abs(root.imag() + x) < tol); + +} + +// Polynomials which didn't factorize using Newton's method at first: +void test_daubechies_fails() +{ + std::cout << "Testing failures from Daubechies filter computation.\n"; + using std::abs; + using std::sqrt; + using boost::math::tools::complex_newton; + using boost::math::tools::polynomial; + using boost::math::constants::half; + + double tol = 500*std::numeric_limits<double>::epsilon(); + polynomial<std::complex<double>> p{{-185961388.136908293,141732493.98435241}, {601080390,0}}; + std::complex<double> guess{1,1}; + polynomial<std::complex<double>> p_prime = p.prime(); + auto f = [&](std::complex<double> z) { return std::make_pair<std::complex<double>, std::complex<double>>(p(z), p_prime(z)); }; + std::complex<double> root = complex_newton(f, guess); + + std::complex<double> expected_root = -p.data()[0]/p.data()[1]; + BOOST_CHECK_CLOSE(expected_root.imag(), root.imag(), tol); + BOOST_CHECK_CLOSE(expected_root.real(), root.real(), tol); +} +#endif + +#if !defined(BOOST_NO_CXX17_IF_CONSTEXPR) +template<class Real> +void test_solve_real_quadratic() +{ + Real tol = std::numeric_limits<Real>::epsilon(); + using boost::math::tools::quadratic_roots; + auto [x0, x1] = quadratic_roots<Real>(1, 0, -1); + BOOST_CHECK_CLOSE(x0, Real(-1), tol); + BOOST_CHECK_CLOSE(x1, Real(1), tol); + + auto p = quadratic_roots((Real)7, (Real)0, (Real)0); + BOOST_CHECK_SMALL(p.first, tol); + BOOST_CHECK_SMALL(p.second, tol); + + // (x-7)^2 = x^2 - 14*x + 49: + p = quadratic_roots((Real)1, (Real)-14, (Real)49); + BOOST_CHECK_CLOSE(p.first, Real(7), tol); + BOOST_CHECK_CLOSE(p.second, Real(7), tol); + + // This test does not pass in multiprecision, + // due to the fact it does not have an fma: + if (std::is_floating_point<Real>::value) + { + // (x-1)(x-1-eps) = x^2 + (-eps - 2)x + (1)(1+eps) + Real eps = 2*std::numeric_limits<Real>::epsilon(); + Real b = 256 * (-2 - eps); + Real c = 256 * (1 + eps); + p = quadratic_roots((Real)256, b, c); + BOOST_CHECK_CLOSE(p.first, Real(1), tol); + BOOST_CHECK_CLOSE(p.second, Real(1) + eps, tol); + } + + if (std::is_same<Real, double>::value) + { + // Kahan's example: This is the test that demonstrates the necessity of the fma instruction. + // https://en.wikipedia.org/wiki/Loss_of_significance#Instability_of_the_quadratic_equation + p = quadratic_roots<Real>((Real)94906265.625, (Real )-189812534, (Real)94906268.375); + BOOST_CHECK_CLOSE_FRACTION(p.first, Real(1), tol); + BOOST_CHECK_CLOSE_FRACTION(p.second, 1.000000028975958, 4*tol); + } +} + +template<class Z> +void test_solve_int_quadratic() +{ + double tol = std::numeric_limits<double>::epsilon(); + using boost::math::tools::quadratic_roots; + auto [x0, x1] = quadratic_roots(1, 0, -1); + BOOST_CHECK_CLOSE(x0, double(-1), tol); + BOOST_CHECK_CLOSE(x1, double(1), tol); + + auto p = quadratic_roots(7, 0, 0); + BOOST_CHECK_SMALL(p.first, tol); + BOOST_CHECK_SMALL(p.second, tol); + + // (x-7)^2 = x^2 - 14*x + 49: + p = quadratic_roots(1, -14, 49); + BOOST_CHECK_CLOSE(p.first, double(7), tol); + BOOST_CHECK_CLOSE(p.second, double(7), tol); +} + +template<class Complex> +void test_solve_complex_quadratic() +{ + using Real = typename Complex::value_type; + Real tol = std::numeric_limits<Real>::epsilon(); + using boost::math::tools::quadratic_roots; + auto [x0, x1] = quadratic_roots<Complex>({1,0}, {0,0}, {-1,0}); + BOOST_CHECK_CLOSE(x0.real(), Real(-1), tol); + BOOST_CHECK_CLOSE(x1.real(), Real(1), tol); + BOOST_CHECK_SMALL(x0.imag(), tol); + BOOST_CHECK_SMALL(x1.imag(), tol); + + auto p = quadratic_roots<Complex>({7,0}, {0,0}, {0,0}); + BOOST_CHECK_SMALL(p.first.real(), tol); + BOOST_CHECK_SMALL(p.second.real(), tol); + + // (x-7)^2 = x^2 - 14*x + 49: + p = quadratic_roots<Complex>({1,0}, {-14,0}, {49,0}); + BOOST_CHECK_CLOSE(p.first.real(), Real(7), tol); + BOOST_CHECK_CLOSE(p.second.real(), Real(7), tol); + +} + +#endif + +void test_failures() +{ +#if !defined(BOOST_NO_CXX11_LAMBDAS) + // There is no root: + BOOST_CHECK_THROW(boost::math::tools::newton_raphson_iterate([](double x) { return std::make_pair(x * x + 1, 2 * x); }, 10.0, -12.0, 12.0, 52), boost::math::evaluation_error); + BOOST_CHECK_THROW(boost::math::tools::newton_raphson_iterate([](double x) { return std::make_pair(x * x + 1, 2 * x); }, -10.0, -12.0, 12.0, 52), boost::math::evaluation_error); + // There is a root, but a bad guess takes us into a local minima: + BOOST_CHECK_THROW(boost::math::tools::newton_raphson_iterate([](double x) { return std::make_pair(boost::math::pow<6>(x) - 2 * boost::math::pow<4>(x) + x + 0.5, 6 * boost::math::pow<5>(x) - 8 * boost::math::pow<3>(x) + 1); }, 0.75, -20., 20., 52), boost::math::evaluation_error); + + // There is no root: + BOOST_CHECK_THROW(boost::math::tools::halley_iterate([](double x) { return std::make_tuple(x * x + 1, 2 * x, 2); }, 10.0, -12.0, 12.0, 52), boost::math::evaluation_error); + BOOST_CHECK_THROW(boost::math::tools::halley_iterate([](double x) { return std::make_tuple(x * x + 1, 2 * x, 2); }, -10.0, -12.0, 12.0, 52), boost::math::evaluation_error); + // There is a root, but a bad guess takes us into a local minima: + BOOST_CHECK_THROW(boost::math::tools::halley_iterate([](double x) { return std::make_tuple(boost::math::pow<6>(x) - 2 * boost::math::pow<4>(x) + x + 0.5, 6 * boost::math::pow<5>(x) - 8 * boost::math::pow<3>(x) + 1, 30 * boost::math::pow<4>(x) - 24 * boost::math::pow<2>(x)); }, 0.75, -20., 20., 52), boost::math::evaluation_error); +#endif +} + +BOOST_AUTO_TEST_CASE( test_main ) +{ + + test_beta(0.1, "double"); + +#if !defined(BOOST_NO_CXX11_AUTO_DECLARATIONS) && !defined(BOOST_NO_CXX11_UNIFIED_INITIALIZATION_SYNTAX) && !defined(BOOST_NO_CXX11_LAMBDAS) + test_complex_newton<std::complex<float>>(); + test_complex_newton<std::complex<double>>(); + test_complex_newton<boost::multiprecision::cpp_complex_100>(); + test_daubechies_fails(); +#endif + +#if !defined(BOOST_NO_CXX17_IF_CONSTEXPR) + test_solve_real_quadratic<float>(); + test_solve_real_quadratic<double>(); + test_solve_real_quadratic<long double>(); + test_solve_real_quadratic<boost::multiprecision::cpp_bin_float_50>(); + + test_solve_int_quadratic<int>(); + test_solve_complex_quadratic<std::complex<double>>(); +#endif + test_failures(); +} |