summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/random/test/histogram.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/random/test/histogram.cpp')
-rw-r--r--src/boost/libs/random/test/histogram.cpp165
1 files changed, 165 insertions, 0 deletions
diff --git a/src/boost/libs/random/test/histogram.cpp b/src/boost/libs/random/test/histogram.cpp
new file mode 100644
index 000000000..522a9df30
--- /dev/null
+++ b/src/boost/libs/random/test/histogram.cpp
@@ -0,0 +1,165 @@
+/* boost histogram.cpp graphical verification of distribution functions
+ *
+ * Copyright Jens Maurer 2000
+ * Distributed under the Boost Software License, Version 1.0. (See
+ * accompanying file LICENSE_1_0.txt or copy at
+ * http://www.boost.org/LICENSE_1_0.txt)
+ *
+ * $Id$
+ *
+ * This test program allows to visibly examine the results of the
+ * distribution functions.
+ */
+
+#include <iostream>
+#include <iomanip>
+#include <vector>
+#include <algorithm>
+#include <cmath>
+#include <string>
+#include <boost/random.hpp>
+
+
+void plot_histogram(const std::vector<int>& slots, int samples,
+ double from, double to)
+{
+ int m = *std::max_element(slots.begin(), slots.end());
+ const int nRows = 20;
+ std::cout.setf(std::ios::fixed|std::ios::left);
+ std::cout.precision(5);
+ for(int r = 0; r < nRows; r++) {
+ double y = ((nRows - r) * double(m))/(nRows * samples);
+ std::cout << std::setw(10) << y << " ";
+ for(unsigned int col = 0; col < slots.size(); col++) {
+ char out = ' ';
+ if(slots[col]/double(samples) >= y)
+ out = 'x';
+ std::cout << out;
+ }
+ std::cout << std::endl;
+ }
+ std::cout << std::setw(12) << " "
+ << std::setw(10) << from;
+ std::cout.setf(std::ios::right, std::ios::adjustfield);
+ std::cout << std::setw(slots.size()-10) << to << std::endl;
+}
+
+// I am not sure whether these two should be in the library as well
+
+// maintain sum of NumberGenerator results
+template<class NumberGenerator,
+ class Sum = typename NumberGenerator::result_type>
+class sum_result
+{
+public:
+ typedef NumberGenerator base_type;
+ typedef typename base_type::result_type result_type;
+ explicit sum_result(const base_type & g) : gen(g), _sum(0) { }
+ result_type operator()() { result_type r = gen(); _sum += r; return r; }
+ base_type & base() { return gen; }
+ Sum sum() const { return _sum; }
+ void reset() { _sum = 0; }
+private:
+ base_type gen;
+ Sum _sum;
+};
+
+
+// maintain square sum of NumberGenerator results
+template<class NumberGenerator,
+ class Sum = typename NumberGenerator::result_type>
+class squaresum_result
+{
+public:
+ typedef NumberGenerator base_type;
+ typedef typename base_type::result_type result_type;
+ explicit squaresum_result(const base_type & g) : gen(g), _sum(0) { }
+ result_type operator()() { result_type r = gen(); _sum += r*r; return r; }
+ base_type & base() { return gen; }
+ Sum squaresum() const { return _sum; }
+ void reset() { _sum = 0; }
+private:
+ base_type gen;
+ Sum _sum;
+};
+
+
+template<class RNG>
+void histogram(RNG base, int samples, double from, double to,
+ const std::string & name)
+{
+ typedef squaresum_result<sum_result<RNG, double>, double > SRNG;
+ SRNG gen((sum_result<RNG, double>(base)));
+ const int nSlots = 60;
+ std::vector<int> slots(nSlots,0);
+ for(int i = 0; i < samples; i++) {
+ double val = gen();
+ if(val < from || val >= to) // early check avoids overflow
+ continue;
+ int slot = int((val-from)/(to-from) * nSlots);
+ if(slot < 0 || slot > (int)slots.size())
+ continue;
+ slots[slot]++;
+ }
+ std::cout << name << std::endl;
+ plot_histogram(slots, samples, from, to);
+ double mean = gen.base().sum() / samples;
+ std::cout << "mean: " << mean
+ << " sigma: " << std::sqrt(gen.squaresum()/samples-mean*mean)
+ << "\n" << std::endl;
+}
+
+template<class PRNG, class Dist>
+inline boost::variate_generator<PRNG&, Dist> make_gen(PRNG & rng, Dist d)
+{
+ return boost::variate_generator<PRNG&, Dist>(rng, d);
+}
+
+template<class PRNG>
+void histograms()
+{
+ PRNG rng;
+ using namespace boost;
+ histogram(make_gen(rng, uniform_smallint<>(0, 5)), 100000, -1, 6,
+ "uniform_smallint(0,5)");
+ histogram(make_gen(rng, uniform_int<>(0, 5)), 100000, -1, 6,
+ "uniform_int(0,5)");
+ histogram(make_gen(rng, uniform_real<>(0,1)), 100000, -0.5, 1.5,
+ "uniform_real(0,1)");
+ histogram(make_gen(rng, bernoulli_distribution<>(0.2)), 100000, -0.5, 1.5,
+ "bernoulli(0.2)");
+ histogram(make_gen(rng, binomial_distribution<>(4, 0.2)), 100000, -1, 5,
+ "binomial(4, 0.2)");
+ histogram(make_gen(rng, triangle_distribution<>(1, 2, 8)), 100000, 0, 10,
+ "triangle(1,2,8)");
+ histogram(make_gen(rng, geometric_distribution<>(5.0/6.0)), 100000, 0, 10,
+ "geometric(5/6)");
+ histogram(make_gen(rng, exponential_distribution<>(0.3)), 100000, 0, 10,
+ "exponential(0.3)");
+ histogram(make_gen(rng, cauchy_distribution<>()), 100000, -5, 5,
+ "cauchy");
+ histogram(make_gen(rng, lognormal_distribution<>(3, 2)), 100000, 0, 10,
+ "lognormal");
+ histogram(make_gen(rng, normal_distribution<>()), 100000, -3, 3,
+ "normal");
+ histogram(make_gen(rng, normal_distribution<>(0.5, 0.5)), 100000, -3, 3,
+ "normal(0.5, 0.5)");
+ histogram(make_gen(rng, poisson_distribution<>(1.5)), 100000, 0, 5,
+ "poisson(1.5)");
+ histogram(make_gen(rng, poisson_distribution<>(10)), 100000, 0, 20,
+ "poisson(10)");
+ histogram(make_gen(rng, gamma_distribution<>(0.5)), 100000, 0, 0.5,
+ "gamma(0.5)");
+ histogram(make_gen(rng, gamma_distribution<>(1)), 100000, 0, 3,
+ "gamma(1)");
+ histogram(make_gen(rng, gamma_distribution<>(2)), 100000, 0, 6,
+ "gamma(2)");
+}
+
+
+int main()
+{
+ histograms<boost::mt19937>();
+ // histograms<boost::lagged_fibonacci607>();
+}
+