summaryrefslogtreecommitdiffstats
path: root/src/crimson/os/seastore/onode_manager/staged-fltree/stages/stage.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/crimson/os/seastore/onode_manager/staged-fltree/stages/stage.h')
-rw-r--r--src/crimson/os/seastore/onode_manager/staged-fltree/stages/stage.h2186
1 files changed, 2186 insertions, 0 deletions
diff --git a/src/crimson/os/seastore/onode_manager/staged-fltree/stages/stage.h b/src/crimson/os/seastore/onode_manager/staged-fltree/stages/stage.h
new file mode 100644
index 000000000..cac167a98
--- /dev/null
+++ b/src/crimson/os/seastore/onode_manager/staged-fltree/stages/stage.h
@@ -0,0 +1,2186 @@
+// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:nil -*-
+// vim: ts=8 sw=2 smarttab
+
+#pragma once
+
+#include <cassert>
+#include <optional>
+#include <ostream>
+#include <sstream>
+#include <type_traits>
+
+#include "common/likely.h"
+
+#include "sub_items_stage.h"
+#include "item_iterator_stage.h"
+
+namespace crimson::os::seastore::onode {
+
+struct search_result_bs_t {
+ index_t index;
+ MatchKindBS match;
+};
+template <typename FGetKey>
+search_result_bs_t binary_search(
+ const full_key_t<KeyT::HOBJ>& key,
+ index_t begin, index_t end, FGetKey&& f_get_key) {
+ assert(begin <= end);
+ while (begin < end) {
+ auto total = begin + end;
+ auto mid = total >> 1;
+ // do not copy if return value is reference
+ decltype(f_get_key(mid)) target = f_get_key(mid);
+ auto match = compare_to<KeyT::HOBJ>(key, target);
+ if (match == MatchKindCMP::LT) {
+ end = mid;
+ } else if (match == MatchKindCMP::GT) {
+ begin = mid + 1;
+ } else {
+ return {mid, MatchKindBS::EQ};
+ }
+ }
+ return {begin , MatchKindBS::NE};
+}
+
+template <typename PivotType, typename FGet>
+search_result_bs_t binary_search_r(
+ index_t rend, index_t rbegin, FGet&& f_get, const PivotType& key) {
+ assert(rend <= rbegin);
+ while (rend < rbegin) {
+ auto total = rend + rbegin + 1;
+ auto mid = total >> 1;
+ // do not copy if return value is reference
+ decltype(f_get(mid)) target = f_get(mid);
+ int match = target - key;
+ if (match < 0) {
+ rend = mid;
+ } else if (match > 0) {
+ rbegin = mid - 1;
+ } else {
+ return {mid, MatchKindBS::EQ};
+ }
+ }
+ return {rbegin, MatchKindBS::NE};
+}
+
+inline bool matchable(field_type_t type, match_stat_t mstat) {
+ assert(mstat >= MSTAT_MIN && mstat <= MSTAT_MAX);
+ /*
+ * compressed prefix by field type:
+ * N0: NONE
+ * N1: pool/shard
+ * N2: pool/shard crush
+ * N3: pool/shard crush ns/oid
+ *
+ * if key matches the node's compressed prefix, return true
+ * else, return false
+ */
+#ifndef NDEBUG
+ if (mstat == MSTAT_END) {
+ assert(type == field_type_t::N0);
+ }
+#endif
+ return mstat + to_unsigned(type) < 4;
+}
+
+inline void assert_mstat(
+ const full_key_t<KeyT::HOBJ>& key,
+ const full_key_t<KeyT::VIEW>& index,
+ match_stat_t mstat) {
+ assert(mstat >= MSTAT_MIN && mstat <= MSTAT_LT2);
+ // key < index ...
+ switch (mstat) {
+ case MSTAT_EQ:
+ break;
+ case MSTAT_LT0:
+ assert(compare_to<KeyT::HOBJ>(key, index.snap_gen_packed()) == MatchKindCMP::LT);
+ break;
+ case MSTAT_LT1:
+ assert(compare_to<KeyT::HOBJ>(key, index.ns_oid_view()) == MatchKindCMP::LT);
+ break;
+ case MSTAT_LT2:
+ if (index.has_shard_pool()) {
+ assert(compare_to<KeyT::HOBJ>(key, shard_pool_crush_t{
+ index.shard_pool_packed(), index.crush_packed()}) == MatchKindCMP::LT);
+ } else {
+ assert(compare_to<KeyT::HOBJ>(key, index.crush_packed()) == MatchKindCMP::LT);
+ }
+ break;
+ default:
+ ceph_abort("impossible path");
+ }
+ // key == index ...
+ switch (mstat) {
+ case MSTAT_EQ:
+ assert(compare_to<KeyT::HOBJ>(key, index.snap_gen_packed()) == MatchKindCMP::EQ);
+ case MSTAT_LT0:
+ if (!index.has_ns_oid())
+ break;
+ assert(index.ns_oid_view().type() == ns_oid_view_t::Type::MAX ||
+ compare_to<KeyT::HOBJ>(key, index.ns_oid_view()) == MatchKindCMP::EQ);
+ case MSTAT_LT1:
+ if (!index.has_crush())
+ break;
+ assert(compare_to<KeyT::HOBJ>(key, index.crush_packed()) == MatchKindCMP::EQ);
+ if (!index.has_shard_pool())
+ break;
+ assert(compare_to<KeyT::HOBJ>(key, index.shard_pool_packed()) == MatchKindCMP::EQ);
+ default:
+ break;
+ }
+}
+
+#define NXT_STAGE_T staged<next_param_t>
+
+enum class TrimType { BEFORE, AFTER, AT };
+
+/**
+ * staged
+ *
+ * Implements recursive logic that modifies or reads the node layout
+ * (N0/N1/N2/N3 * LEAF/INTERNAL) with the multi-stage design. The specific
+ * stage implementation is flexible. So the implementations for different
+ * stages can be assembled independently, as long as they follow the
+ * definitions of container interfaces.
+ *
+ * Multi-stage is designed to index different portions of onode keys
+ * stage-by-stage. There are at most 3 stages for a node:
+ * - STAGE_LEFT: index shard-pool-crush for N0, or index crush for N1 node;
+ * - STAGE_STRING: index ns-oid for N0/N1/N2 nodes;
+ * - STAGE_RIGHT: index snap-gen for N0/N1/N2/N3 nodes;
+ *
+ * The intention is to consolidate the high-level indexing implementations at
+ * the level of stage, so we don't need to write them repeatedly for every
+ * stage and for every node type.
+ */
+template <typename Params>
+struct staged {
+ static_assert(Params::STAGE >= STAGE_BOTTOM);
+ static_assert(Params::STAGE <= STAGE_TOP);
+ using container_t = typename Params::container_t;
+ using key_get_type = typename container_t::key_get_type;
+ using next_param_t = typename Params::next_param_t;
+ using position_t = staged_position_t<Params::STAGE>;
+ using result_t = staged_result_t<Params::NODE_TYPE, Params::STAGE>;
+ using value_t = value_type_t<Params::NODE_TYPE>;
+ static constexpr auto CONTAINER_TYPE = container_t::CONTAINER_TYPE;
+ static constexpr bool IS_BOTTOM = (Params::STAGE == STAGE_BOTTOM);
+ static constexpr auto NODE_TYPE = Params::NODE_TYPE;
+ static constexpr auto STAGE = Params::STAGE;
+
+ template <bool is_exclusive>
+ static void _left_or_right(index_t& split_index, index_t insert_index,
+ std::optional<bool>& is_insert_left) {
+ assert(!is_insert_left.has_value());
+ assert(is_valid_index(split_index));
+ if constexpr (is_exclusive) {
+ if (split_index <= insert_index) {
+ // ...[s_index-1] |!| (i_index) [s_index]...
+ // offset i_position to right
+ is_insert_left = false;
+ } else {
+ // ...[s_index-1] (i_index)) |?[s_index]| ...
+ // ...(i_index)...[s_index-1] |?[s_index]| ...
+ is_insert_left = true;
+ --split_index;
+ }
+ } else {
+ if (split_index < insert_index) {
+ // ...[s_index-1] |?[s_index]| ...[(i_index)[s_index_k]...
+ is_insert_left = false;
+ } else if (split_index > insert_index) {
+ // ...[(i_index)s_index-1] |?[s_index]| ...
+ // ...[(i_index)s_index_k]...[s_index-1] |?[s_index]| ...
+ is_insert_left = true;
+ } else {
+ // ...[s_index-1] |?[(i_index)s_index]| ...
+ // i_to_left = std::nullopt;
+ }
+ }
+ }
+
+ template <ContainerType CTYPE, typename Enable = void> class _iterator_t;
+ template <ContainerType CTYPE>
+ class _iterator_t<CTYPE, std::enable_if_t<CTYPE == ContainerType::INDEXABLE>> {
+ /*
+ * indexable container type system:
+ * CONTAINER_TYPE = ContainerType::INDEXABLE
+ * keys() const -> index_t
+ * operator[](index_t) const -> key_get_type
+ * size_before(index_t) const -> node_offset_t
+ * size_overhead_at(index_t) const -> node_offset_t
+ * (IS_BOTTOM) get_p_value(index_t) const -> const value_t*
+ * (!IS_BOTTOM) size_to_nxt_at(index_t) const -> node_offset_t
+ * (!IS_BOTTOM) get_nxt_container(index_t) const
+ * encode(p_node_start, encoded)
+ * decode(p_node_start, delta) -> container_t
+ * static:
+ * header_size() -> node_offset_t
+ * estimate_insert(key, value) -> node_offset_t
+ * (IS_BOTTOM) insert_at(mut, src, key, value,
+ * index, size, p_left_bound) -> const value_t*
+ * (!IS_BOTTOM) insert_prefix_at(mut, src, key,
+ * index, size, p_left_bound) -> memory_range_t
+ * (!IS_BOTTOM) update_size_at(mut, src, index, size)
+ * trim_until(mut, container, index) -> trim_size
+ * (!IS_BOTTOM) trim_at(mut, container, index, trimmed) -> trim_size
+ *
+ * Appender::append(const container_t& src, from, items)
+ */
+ public:
+ using me_t = _iterator_t<CTYPE>;
+
+ _iterator_t(const container_t& container) : container{container} {
+ assert(container.keys());
+ }
+
+ index_t index() const {
+ return _index;
+ }
+ key_get_type get_key() const {
+ assert(!is_end());
+ return container[_index];
+ }
+ node_offset_t size_to_nxt() const {
+ assert(!is_end());
+ return container.size_to_nxt_at(_index);
+ }
+ template <typename T = typename NXT_STAGE_T::container_t>
+ std::enable_if_t<!IS_BOTTOM, T> get_nxt_container() const {
+ assert(!is_end());
+ return container.get_nxt_container(_index);
+ }
+ template <typename T = value_t>
+ std::enable_if_t<IS_BOTTOM, const T*> get_p_value() const {
+ assert(!is_end());
+ return container.get_p_value(_index);
+ }
+ bool is_last() const {
+ return _index + 1 == container.keys();
+ }
+ bool is_end() const { return _index == container.keys(); }
+ node_offset_t size() const {
+ assert(!is_end());
+ assert(header_size() == container.size_before(0));
+ assert(container.size_before(_index + 1) > container.size_before(_index));
+ return container.size_before(_index + 1) -
+ container.size_before(_index);
+ }
+ node_offset_t size_overhead() const {
+ assert(!is_end());
+ return container.size_overhead_at(_index);
+ }
+
+ me_t& operator++() {
+ assert(!is_end());
+ assert(!is_last());
+ ++_index;
+ return *this;
+ }
+ void seek_at(index_t index) {
+ assert(index < container.keys());
+ seek_till_end(index);
+ }
+ void seek_till_end(index_t index) {
+ assert(!is_end());
+ assert(this->index() == 0);
+ assert(index <= container.keys());
+ _index = index;
+ }
+ void seek_last() {
+ assert(!is_end());
+ assert(index() == 0);
+ _index = container.keys() - 1;
+ }
+ void set_end() {
+ assert(!is_end());
+ assert(is_last());
+ ++_index;
+ }
+ // Note: possible to return an end iterator
+ MatchKindBS seek(const full_key_t<KeyT::HOBJ>& key, bool exclude_last) {
+ assert(!is_end());
+ assert(index() == 0);
+ index_t end_index = container.keys();
+ if (exclude_last) {
+ assert(end_index);
+ --end_index;
+ assert(compare_to<KeyT::HOBJ>(key, container[end_index]) == MatchKindCMP::LT);
+ }
+ auto ret = binary_search(key, _index, end_index,
+ [this] (index_t index) { return container[index]; });
+ _index = ret.index;
+ return ret.match;
+ }
+
+ template <KeyT KT, typename T = value_t>
+ std::enable_if_t<IS_BOTTOM, const T*> insert(
+ NodeExtentMutable& mut, const full_key_t<KT>& key,
+ const value_t& value, node_offset_t insert_size, const char* p_left_bound) {
+ return container_t::template insert_at<KT>(
+ mut, container, key, value, _index, insert_size, p_left_bound);
+ }
+
+ template <KeyT KT, typename T = memory_range_t>
+ std::enable_if_t<!IS_BOTTOM, T> insert_prefix(
+ NodeExtentMutable& mut, const full_key_t<KT>& key,
+ node_offset_t size, const char* p_left_bound) {
+ return container_t::template insert_prefix_at<KT>(
+ mut, container, key, _index, size, p_left_bound);
+ }
+
+ template <typename T = void>
+ std::enable_if_t<!IS_BOTTOM, T>
+ update_size(NodeExtentMutable& mut, node_offset_t insert_size) {
+ assert(!is_end());
+ container_t::update_size_at(mut, container, _index, insert_size);
+ }
+
+ // Note: possible to return an end iterator when is_exclusive is true
+ template <bool is_exclusive>
+ size_t seek_split_inserted(
+ size_t start_size, size_t extra_size, size_t target_size,
+ index_t& insert_index, size_t insert_size,
+ std::optional<bool>& is_insert_left) {
+ assert(!is_end());
+ assert(index() == 0);
+ // replace insert_index placeholder
+ if constexpr (!is_exclusive) {
+ if (insert_index == INDEX_LAST) {
+ insert_index = container.keys() - 1;
+ }
+ } else {
+ if (insert_index == INDEX_END) {
+ insert_index = container.keys();
+ }
+ }
+ assert(insert_index <= container.keys());
+
+ auto start_size_1 = start_size + extra_size;
+ auto f_get_used_size = [this, start_size, start_size_1,
+ insert_index, insert_size] (index_t index) {
+ size_t current_size;
+ if (unlikely(index == 0)) {
+ current_size = start_size;
+ } else {
+ current_size = start_size_1;
+ if (index > insert_index) {
+ current_size += insert_size;
+ if constexpr (is_exclusive) {
+ --index;
+ }
+ }
+ // already includes header size
+ current_size += container.size_before(index);
+ }
+ return current_size;
+ };
+ index_t s_end;
+ if constexpr (is_exclusive) {
+ s_end = container.keys();
+ } else {
+ s_end = container.keys() - 1;
+ }
+ _index = binary_search_r(0, s_end, f_get_used_size, target_size).index;
+ size_t current_size = f_get_used_size(_index);
+ assert(current_size <= target_size);
+
+ _left_or_right<is_exclusive>(_index, insert_index, is_insert_left);
+ return current_size;
+ }
+
+ size_t seek_split(size_t start_size, size_t extra_size, size_t target_size) {
+ assert(!is_end());
+ assert(index() == 0);
+ auto start_size_1 = start_size + extra_size;
+ auto f_get_used_size = [this, start_size, start_size_1] (index_t index) {
+ size_t current_size;
+ if (unlikely(index == 0)) {
+ current_size = start_size;
+ } else {
+ // already includes header size
+ current_size = start_size_1 + container.size_before(index);
+ }
+ return current_size;
+ };
+ _index = binary_search_r(
+ 0, container.keys() - 1, f_get_used_size, target_size).index;
+ size_t current_size = f_get_used_size(_index);
+ assert(current_size <= target_size);
+ return current_size;
+ }
+
+ // Note: possible to return an end iterater if to_index == INDEX_END
+ template <KeyT KT>
+ void copy_out_until(
+ typename container_t::template Appender<KT>& appender, index_t& to_index) {
+ auto num_keys = container.keys();
+ index_t items;
+ if (to_index == INDEX_END) {
+ items = num_keys - _index;
+ appender.append(container, _index, items);
+ _index = num_keys;
+ to_index = _index;
+ } else if (to_index == INDEX_LAST) {
+ assert(!is_end());
+ items = num_keys - 1 - _index;
+ appender.append(container, _index, items);
+ _index = num_keys - 1;
+ to_index = _index;
+ } else {
+ assert(_index <= to_index);
+ assert(to_index <= num_keys);
+ items = to_index - _index;
+ appender.append(container, _index, items);
+ _index = to_index;
+ }
+ }
+
+ node_offset_t trim_until(NodeExtentMutable& mut) {
+ return container_t::trim_until(mut, container, _index);
+ }
+
+ template <typename T = node_offset_t>
+ std::enable_if_t<!IS_BOTTOM, T>
+ trim_at(NodeExtentMutable& mut, node_offset_t trimmed) {
+ return container_t::trim_at(mut, container, _index, trimmed);
+ }
+
+ void encode(const char* p_node_start, ceph::bufferlist& encoded) const {
+ container.encode(p_node_start, encoded);
+ ceph::encode(_index, encoded);
+ }
+
+ static me_t decode(const char* p_node_start,
+ ceph::bufferlist::const_iterator& delta) {
+ auto container = container_t::decode(p_node_start, delta);
+ auto ret = me_t(container);
+ index_t index;
+ ceph::decode(index, delta);
+ ret.seek_till_end(index);
+ return ret;
+ }
+
+ static node_offset_t header_size() {
+ return container_t::header_size();
+ }
+
+ template <KeyT KT>
+ static node_offset_t estimate_insert(
+ const full_key_t<KT>& key, const value_t& value) {
+ return container_t::template estimate_insert<KT>(key, value);
+ }
+
+ private:
+ container_t container;
+ index_t _index = 0;
+ };
+
+ template <ContainerType CTYPE>
+ class _iterator_t<CTYPE, std::enable_if_t<CTYPE == ContainerType::ITERATIVE>> {
+ /*
+ * iterative container type system (!IS_BOTTOM):
+ * CONTAINER_TYPE = ContainerType::ITERATIVE
+ * index() const -> index_t
+ * get_key() const -> key_get_type
+ * size() const -> node_offset_t
+ * size_to_nxt() const -> node_offset_t
+ * size_overhead() const -> node_offset_t
+ * get_nxt_container() const
+ * has_next() const -> bool
+ * encode(p_node_start, encoded)
+ * decode(p_node_start, delta) -> container_t
+ * operator++()
+ * static:
+ * header_size() -> node_offset_t
+ * estimate_insert(key, value) -> node_offset_t
+ * insert_prefix(mut, src, key, is_end, size, p_left_bound) -> memory_range_t
+ * update_size(mut, src, size)
+ * trim_until(mut, container) -> trim_size
+ * trim_at(mut, container, trimmed) -> trim_size
+ */
+ // currently the iterative iterator is only implemented with STAGE_STRING
+ // for in-node space efficiency
+ static_assert(STAGE == STAGE_STRING);
+ public:
+ using me_t = _iterator_t<CTYPE>;
+
+ _iterator_t(const container_t& container) : container{container} {}
+
+ index_t index() const {
+ if (is_end()) {
+ return container.index() + 1;
+ } else {
+ return container.index();
+ }
+ }
+ key_get_type get_key() const {
+ assert(!is_end());
+ return container.get_key();
+ }
+ node_offset_t size_to_nxt() const {
+ assert(!is_end());
+ return container.size_to_nxt();
+ }
+ const typename NXT_STAGE_T::container_t get_nxt_container() const {
+ assert(!is_end());
+ return container.get_nxt_container();
+ }
+ bool is_last() const {
+ assert(!is_end());
+ return !container.has_next();
+ }
+ bool is_end() const {
+#ifndef NDEBUG
+ if (_is_end) {
+ assert(!container.has_next());
+ }
+#endif
+ return _is_end;
+ }
+ node_offset_t size() const {
+ assert(!is_end());
+ return container.size();
+ }
+ node_offset_t size_overhead() const {
+ assert(!is_end());
+ return container.size_overhead();
+ }
+
+ me_t& operator++() {
+ assert(!is_end());
+ assert(!is_last());
+ ++container;
+ return *this;
+ }
+ void seek_at(index_t index) {
+ assert(!is_end());
+ assert(this->index() == 0);
+ while (index > 0) {
+ assert(container.has_next());
+ ++container;
+ --index;
+ }
+ }
+ void seek_till_end(index_t index) {
+ assert(!is_end());
+ assert(this->index() == 0);
+ while (index > 0) {
+ if (!container.has_next()) {
+ assert(index == 1);
+ set_end();
+ break;
+ }
+ ++container;
+ --index;
+ }
+ }
+ void seek_last() {
+ assert(!is_end());
+ assert(index() == 0);
+ while (container.has_next()) {
+ ++container;
+ }
+ }
+ void set_end() {
+ assert(!is_end());
+ assert(is_last());
+ _is_end = true;
+ }
+ // Note: possible to return an end iterator
+ MatchKindBS seek(const full_key_t<KeyT::HOBJ>& key, bool exclude_last) {
+ assert(!is_end());
+ assert(index() == 0);
+ do {
+ if (exclude_last && is_last()) {
+ assert(compare_to<KeyT::HOBJ>(key, get_key()) == MatchKindCMP::LT);
+ return MatchKindBS::NE;
+ }
+ auto match = compare_to<KeyT::HOBJ>(key, get_key());
+ if (match == MatchKindCMP::LT) {
+ return MatchKindBS::NE;
+ } else if (match == MatchKindCMP::EQ) {
+ return MatchKindBS::EQ;
+ } else {
+ if (container.has_next()) {
+ ++container;
+ } else {
+ // end
+ break;
+ }
+ }
+ } while (true);
+ assert(!exclude_last);
+ set_end();
+ return MatchKindBS::NE;
+ }
+
+ template <KeyT KT>
+ memory_range_t insert_prefix(
+ NodeExtentMutable& mut, const full_key_t<KT>& key,
+ node_offset_t size, const char* p_left_bound) {
+ return container_t::template insert_prefix<KT>(
+ mut, container, key, is_end(), size, p_left_bound);
+ }
+
+ void update_size(NodeExtentMutable& mut, node_offset_t insert_size) {
+ assert(!is_end());
+ container_t::update_size(mut, container, insert_size);
+ }
+
+ // Note: possible to return an end iterator when is_exclusive is true
+ // insert_index can still be INDEX_LAST or INDEX_END
+ template <bool is_exclusive>
+ size_t seek_split_inserted(
+ size_t start_size, size_t extra_size, size_t target_size,
+ index_t& insert_index, size_t insert_size,
+ std::optional<bool>& is_insert_left) {
+ assert(!is_end());
+ assert(index() == 0);
+ size_t current_size = start_size;
+ index_t split_index = 0;
+ extra_size += header_size();
+ do {
+ if constexpr (!is_exclusive) {
+ if (is_last()) {
+ assert(split_index == index());
+ if (insert_index == INDEX_LAST) {
+ insert_index = index();
+ }
+ assert(insert_index <= index());
+ break;
+ }
+ }
+
+ size_t nxt_size = current_size;
+ if (split_index == 0) {
+ nxt_size += extra_size;
+ }
+ if (split_index == insert_index) {
+ nxt_size += insert_size;
+ if constexpr (is_exclusive) {
+ if (nxt_size > target_size) {
+ break;
+ }
+ current_size = nxt_size;
+ ++split_index;
+ }
+ }
+ nxt_size += size();
+ if (nxt_size > target_size) {
+ break;
+ }
+ current_size = nxt_size;
+
+ if constexpr (is_exclusive) {
+ if (is_last()) {
+ assert(split_index == index());
+ set_end();
+ split_index = index();
+ if (insert_index == INDEX_END) {
+ insert_index = index();
+ }
+ assert(insert_index == index());
+ break;
+ } else {
+ ++(*this);
+ ++split_index;
+ }
+ } else {
+ ++(*this);
+ ++split_index;
+ }
+ } while (true);
+ assert(current_size <= target_size);
+
+ _left_or_right<is_exclusive>(split_index, insert_index, is_insert_left);
+ assert(split_index == index());
+ return current_size;
+ }
+
+ size_t seek_split(size_t start_size, size_t extra_size, size_t target_size) {
+ assert(!is_end());
+ assert(index() == 0);
+ size_t current_size = start_size;
+ do {
+ if (is_last()) {
+ break;
+ }
+
+ size_t nxt_size = current_size;
+ if (index() == 0) {
+ nxt_size += extra_size;
+ }
+ nxt_size += size();
+ if (nxt_size > target_size) {
+ break;
+ }
+ current_size = nxt_size;
+ ++(*this);
+ } while (true);
+ assert(current_size <= target_size);
+ return current_size;
+ }
+
+ // Note: possible to return an end iterater if to_index == INDEX_END
+ template <KeyT KT>
+ void copy_out_until(
+ typename container_t::template Appender<KT>& appender, index_t& to_index) {
+ if (is_end()) {
+ assert(!container.has_next());
+ if (to_index == INDEX_END) {
+ to_index = index();
+ }
+ assert(to_index == index());
+ return;
+ }
+ index_t items;
+ if (to_index == INDEX_END || to_index == INDEX_LAST) {
+ items = to_index;
+ } else {
+ assert(is_valid_index(to_index));
+ assert(index() <= to_index);
+ items = to_index - index();
+ }
+ if (appender.append(container, items)) {
+ set_end();
+ }
+ to_index = index();
+ }
+
+ node_offset_t trim_until(NodeExtentMutable& mut) {
+ if (is_end()) {
+ return 0;
+ }
+ return container_t::trim_until(mut, container);
+ }
+
+ node_offset_t trim_at(NodeExtentMutable& mut, node_offset_t trimmed) {
+ assert(!is_end());
+ return container_t::trim_at(mut, container, trimmed);
+ }
+
+ void encode(const char* p_node_start, ceph::bufferlist& encoded) const {
+ container.encode(p_node_start, encoded);
+ uint8_t is_end = _is_end;
+ ceph::encode(is_end, encoded);
+ }
+
+ static me_t decode(const char* p_node_start,
+ ceph::bufferlist::const_iterator& delta) {
+ auto container = container_t::decode(p_node_start, delta);
+ auto ret = me_t(container);
+ uint8_t is_end;
+ ceph::decode(is_end, delta);
+ if (is_end) {
+ ret.set_end();
+ }
+ return ret;
+ }
+
+ static node_offset_t header_size() {
+ return container_t::header_size();
+ }
+
+ template <KeyT KT>
+ static node_offset_t estimate_insert(const full_key_t<KT>& key, const value_t& value) {
+ return container_t::template estimate_insert<KT>(key, value);
+ }
+
+ private:
+ container_t container;
+ bool _is_end = false;
+ };
+
+ /*
+ * iterator_t encapsulates both indexable and iterative implementations
+ * from a *non-empty* container.
+ * cstr(const container_t&)
+ * access:
+ * index() -> index_t
+ * get_key() -> key_get_type (const reference or value type)
+ * is_last() -> bool
+ * is_end() -> bool
+ * size() -> node_offset_t
+ * size_overhead() -> node_offset_t
+ * (IS_BOTTOM) get_p_value() -> const value_t*
+ * (!IS_BOTTOM) get_nxt_container() -> nxt_stage::container_t
+ * (!IS_BOTTOM) size_to_nxt() -> node_offset_t
+ * seek:
+ * operator++() -> iterator_t&
+ * seek_at(index)
+ * seek_till_end(index)
+ * seek_last()
+ * set_end()
+ * seek(key, exclude_last) -> MatchKindBS
+ * insert:
+ * (IS_BOTTOM) insert(mut, key, value, size, p_left_bound) -> p_value
+ * (!IS_BOTTOM) insert_prefix(mut, key, size, p_left_bound) -> memory_range_t
+ * (!IS_BOTTOM) update_size(mut, size)
+ * split:
+ * seek_split_inserted<bool is_exclusive>(
+ * start_size, extra_size, target_size, insert_index, insert_size,
+ * std::optional<bool>& is_insert_left)
+ * -> insert to left/right/unknown (!exclusive)
+ * -> insert to left/right (exclusive, can be end)
+ * -> split_size
+ * seek_split(start_size, extra_size, target_size) -> split_size
+ * copy_out_until(appender, to_index) (can be end)
+ * trim_until(mut) -> trim_size
+ * (!IS_BOTTOM) trim_at(mut, trimmed) -> trim_size
+ * denc:
+ * encode(p_node_start, encoded)
+ * decode(p_node_start, delta) -> iterator_t
+ * static:
+ * header_size() -> node_offset_t
+ * estimate_insert(key, value) -> node_offset_t
+ */
+ using iterator_t = _iterator_t<CONTAINER_TYPE>;
+ /* TODO: detailed comments
+ * - trim_until(mut) -> trim_size
+ * * keep 0 to i - 1, and remove the rest, return the size trimmed.
+ * * if this is the end iterator, do nothing and return 0.
+ * * if this is the start iterator, normally needs to go to the higher
+ * stage to trim the entire container.
+ * - trim_at(mut, trimmed) -> trim_size
+ * * trim happens inside the current iterator, causing the size reduced by
+ * <trimmed>, return the total size trimmed.
+ */
+
+ /*
+ * Lookup internals (hide?)
+ */
+
+ template <bool GET_KEY>
+ static result_t smallest_result(
+ const iterator_t& iter, full_key_t<KeyT::VIEW>* index_key) {
+ static_assert(!IS_BOTTOM);
+ assert(!iter.is_end());
+ auto pos_smallest = NXT_STAGE_T::position_t::begin();
+ auto nxt_container = iter.get_nxt_container();
+ auto value_ptr = NXT_STAGE_T::template get_p_value<GET_KEY>(
+ nxt_container, pos_smallest, index_key);
+ if constexpr (GET_KEY) {
+ index_key->set(iter.get_key());
+ }
+ return result_t{{iter.index(), pos_smallest}, value_ptr, STAGE};
+ }
+
+ template <bool GET_KEY>
+ static result_t nxt_lower_bound(
+ const full_key_t<KeyT::HOBJ>& key, iterator_t& iter,
+ MatchHistory& history, full_key_t<KeyT::VIEW>* index_key) {
+ static_assert(!IS_BOTTOM);
+ assert(!iter.is_end());
+ auto nxt_container = iter.get_nxt_container();
+ auto nxt_result = NXT_STAGE_T::template lower_bound<GET_KEY>(
+ nxt_container, key, history, index_key);
+ if (nxt_result.is_end()) {
+ if (iter.is_last()) {
+ return result_t::end();
+ } else {
+ return smallest_result<GET_KEY>(++iter, index_key);
+ }
+ } else {
+ if constexpr (GET_KEY) {
+ index_key->set(iter.get_key());
+ }
+ return result_t::from_nxt(iter.index(), nxt_result);
+ }
+ }
+
+ template <bool GET_POS, bool GET_KEY, bool GET_VAL>
+ static void lookup_largest_slot(
+ const container_t& container, position_t* p_position,
+ full_key_t<KeyT::VIEW>* p_index_key, const value_t** pp_value) {
+ auto iter = iterator_t(container);
+ iter.seek_last();
+ if constexpr (GET_KEY) {
+ assert(p_index_key);
+ p_index_key->set(iter.get_key());
+ }
+ if constexpr (GET_POS) {
+ assert(p_position);
+ p_position->index = iter.index();
+ }
+ if constexpr (IS_BOTTOM) {
+ if constexpr (GET_VAL) {
+ assert(pp_value);
+ *pp_value = iter.get_p_value();
+ }
+ } else {
+ auto nxt_container = iter.get_nxt_container();
+ if constexpr (GET_POS) {
+ NXT_STAGE_T::template lookup_largest_slot<true, GET_KEY, GET_VAL>(
+ nxt_container, &p_position->nxt, p_index_key, pp_value);
+ } else {
+ NXT_STAGE_T::template lookup_largest_slot<false, GET_KEY, GET_VAL>(
+ nxt_container, nullptr, p_index_key, pp_value);
+ }
+ }
+ }
+
+ template <bool GET_KEY = false>
+ static const value_t* get_p_value(
+ const container_t& container, const position_t& position,
+ full_key_t<KeyT::VIEW>* index_key = nullptr) {
+ auto iter = iterator_t(container);
+ iter.seek_at(position.index);
+ if constexpr (GET_KEY) {
+ index_key->set(iter.get_key());
+ }
+ if constexpr (!IS_BOTTOM) {
+ auto nxt_container = iter.get_nxt_container();
+ return NXT_STAGE_T::template get_p_value<GET_KEY>(
+ nxt_container, position.nxt, index_key);
+ } else {
+ return iter.get_p_value();
+ }
+ }
+
+ static void get_key_view(
+ const container_t& container,
+ const position_t& position,
+ full_key_t<KeyT::VIEW>& index_key) {
+ auto iter = iterator_t(container);
+ iter.seek_at(position.index);
+ index_key.set(iter.get_key());
+ if constexpr (!IS_BOTTOM) {
+ auto nxt_container = iter.get_nxt_container();
+ return NXT_STAGE_T::get_key_view(nxt_container, position.nxt, index_key);
+ }
+ }
+
+ template <bool GET_KEY = false>
+ static result_t lower_bound(
+ const container_t& container,
+ const full_key_t<KeyT::HOBJ>& key,
+ MatchHistory& history,
+ full_key_t<KeyT::VIEW>* index_key = nullptr) {
+ bool exclude_last = false;
+ if (history.get<STAGE>().has_value()) {
+ if (*history.get<STAGE>() == MatchKindCMP::EQ) {
+ // lookup is short-circuited
+ if constexpr (!IS_BOTTOM) {
+ assert(history.get<STAGE - 1>().has_value());
+ if (history.is_GT<STAGE - 1>()) {
+ auto iter = iterator_t(container);
+ bool test_key_equal;
+ if constexpr (STAGE == STAGE_STRING) {
+ // TODO(cross-node string dedup)
+ // test_key_equal = (iter.get_key().type() == ns_oid_view_t::Type::MIN);
+ auto cmp = compare_to<KeyT::HOBJ>(key, iter.get_key());
+ assert(cmp != MatchKindCMP::GT);
+ test_key_equal = (cmp == MatchKindCMP::EQ);
+ } else {
+ auto cmp = compare_to<KeyT::HOBJ>(key, iter.get_key());
+ // From history, key[stage] == parent[stage][index - 1]
+ // which should be the smallest possible value for all
+ // index[stage][*]
+ assert(cmp != MatchKindCMP::GT);
+ test_key_equal = (cmp == MatchKindCMP::EQ);
+ }
+ if (test_key_equal) {
+ return nxt_lower_bound<GET_KEY>(key, iter, history, index_key);
+ } else {
+ // key[stage] < index[stage][left-most]
+ return smallest_result<GET_KEY>(iter, index_key);
+ }
+ }
+ }
+ // IS_BOTTOM || !history.is_GT<STAGE - 1>()
+ auto iter = iterator_t(container);
+ iter.seek_last();
+ if constexpr (STAGE == STAGE_STRING) {
+ // TODO(cross-node string dedup)
+ // assert(iter.get_key().type() == ns_oid_view_t::Type::MAX);
+ assert(compare_to<KeyT::HOBJ>(key, iter.get_key()) == MatchKindCMP::EQ);
+ } else {
+ assert(compare_to<KeyT::HOBJ>(key, iter.get_key()) == MatchKindCMP::EQ);
+ }
+ if constexpr (GET_KEY) {
+ index_key->set(iter.get_key());
+ }
+ if constexpr (IS_BOTTOM) {
+ auto value_ptr = iter.get_p_value();
+ return result_t{{iter.index()}, value_ptr, MSTAT_EQ};
+ } else {
+ auto nxt_container = iter.get_nxt_container();
+ auto nxt_result = NXT_STAGE_T::template lower_bound<GET_KEY>(
+ nxt_container, key, history, index_key);
+ // !history.is_GT<STAGE - 1>() means
+ // key[stage+1 ...] <= index[stage+1 ...][*]
+ assert(!nxt_result.is_end());
+ return result_t::from_nxt(iter.index(), nxt_result);
+ }
+ } else if (*history.get<STAGE>() == MatchKindCMP::LT) {
+ exclude_last = true;
+ }
+ }
+ auto iter = iterator_t(container);
+ auto bs_match = iter.seek(key, exclude_last);
+ if (iter.is_end()) {
+ assert(!exclude_last);
+ assert(bs_match == MatchKindBS::NE);
+ history.set<STAGE>(MatchKindCMP::GT);
+ return result_t::end();
+ }
+ history.set<STAGE>(bs_match == MatchKindBS::EQ ?
+ MatchKindCMP::EQ : MatchKindCMP::LT);
+ if constexpr (IS_BOTTOM) {
+ if constexpr (GET_KEY) {
+ index_key->set(iter.get_key());
+ }
+ auto value_ptr = iter.get_p_value();
+ return result_t{{iter.index()}, value_ptr,
+ (bs_match == MatchKindBS::EQ ? MSTAT_EQ : MSTAT_LT0)};
+ } else {
+ if (bs_match == MatchKindBS::EQ) {
+ return nxt_lower_bound<GET_KEY>(key, iter, history, index_key);
+ } else {
+ return smallest_result<GET_KEY>(iter, index_key);
+ }
+ }
+ }
+
+ template <KeyT KT>
+ static node_offset_t insert_size(const full_key_t<KT>& key, const value_t& value) {
+ if constexpr (IS_BOTTOM) {
+ return iterator_t::template estimate_insert<KT>(key, value);
+ } else {
+ return iterator_t::template estimate_insert<KT>(key, value) +
+ NXT_STAGE_T::iterator_t::header_size() +
+ NXT_STAGE_T::template insert_size<KT>(key, value);
+ }
+ }
+
+ template <KeyT KT>
+ static node_offset_t insert_size_at(
+ match_stage_t stage, const full_key_t<KeyT::HOBJ>& key, const value_t& value) {
+ if (stage == STAGE) {
+ return insert_size<KT>(key, value);
+ } else {
+ assert(stage < STAGE);
+ return NXT_STAGE_T::template insert_size_at<KT>(stage, key, value);
+ }
+ }
+
+ template <typename T = std::tuple<match_stage_t, node_offset_t>>
+ static std::enable_if_t<NODE_TYPE == node_type_t::INTERNAL, T> evaluate_insert(
+ const container_t& container, const full_key_t<KeyT::VIEW>& key,
+ const value_t& value, position_t& position, bool evaluate_last) {
+ auto iter = iterator_t(container);
+ auto& index = position.index;
+ if (evaluate_last || index == INDEX_END) {
+ iter.seek_last();
+ index = iter.index();
+ // evaluate the previous index
+ } else {
+ assert(is_valid_index(index));
+ // evaluate the current index
+ iter.seek_at(index);
+ auto match = compare_to<KeyT::VIEW>(key, iter.get_key());
+ if (match == MatchKindCMP::EQ) {
+ if constexpr (IS_BOTTOM) {
+ ceph_abort("insert conflict at current index!");
+ } else {
+ // insert into the current index
+ auto nxt_container = iter.get_nxt_container();
+ return NXT_STAGE_T::evaluate_insert(
+ nxt_container, key, value, position.nxt, false);
+ }
+ } else {
+ assert(match == MatchKindCMP::LT);
+ if (index == 0) {
+ // already the first index, so insert at the current index
+ return {STAGE, insert_size<KeyT::VIEW>(key, value)};
+ }
+ --index;
+ iter = iterator_t(container);
+ iter.seek_at(index);
+ // proceed to evaluate the previous index
+ }
+ }
+
+ // XXX(multi-type): when key is from a different type of node
+ auto match = compare_to<KeyT::VIEW>(key, iter.get_key());
+ if (match == MatchKindCMP::GT) {
+ // key doesn't match both indexes, so insert at the current index
+ ++index;
+ return {STAGE, insert_size<KeyT::VIEW>(key, value)};
+ } else {
+ assert(match == MatchKindCMP::EQ);
+ if constexpr (IS_BOTTOM) {
+ // ceph_abort?
+ ceph_abort("insert conflict at the previous index!");
+ } else {
+ // insert into the previous index
+ auto nxt_container = iter.get_nxt_container();
+ return NXT_STAGE_T::evaluate_insert(
+ nxt_container, key, value, position.nxt, true);
+ }
+ }
+ }
+
+ template <typename T = bool>
+ static std::enable_if_t<NODE_TYPE == node_type_t::LEAF, T>
+ compensate_insert_position_at(match_stage_t stage, position_t& position) {
+ auto& index = position.index;
+ if (stage == STAGE) {
+ assert(index == 0);
+ // insert at the end of the current stage
+ index = INDEX_END;
+ return true;
+ } else {
+ if constexpr (IS_BOTTOM) {
+ ceph_abort("impossible path");
+ } else {
+ assert(stage < STAGE);
+ bool compensate = NXT_STAGE_T::
+ compensate_insert_position_at(stage, position.nxt);
+ if (compensate) {
+ assert(is_valid_index(index));
+ if (index == 0) {
+ // insert into the *last* index of the current stage
+ index = INDEX_LAST;
+ return true;
+ } else {
+ --index;
+ return false;
+ }
+ } else {
+ return false;
+ }
+ }
+ }
+ }
+
+ static void patch_insert_end(position_t& insert_pos, match_stage_t insert_stage) {
+ assert(insert_stage <= STAGE);
+ if (insert_stage == STAGE) {
+ insert_pos.index = INDEX_END;
+ } else if constexpr (!IS_BOTTOM) {
+ insert_pos.index = INDEX_LAST;
+ NXT_STAGE_T::patch_insert_end(insert_pos.nxt, insert_stage);
+ }
+ }
+
+ template <typename T = std::tuple<match_stage_t, node_offset_t>>
+ static std::enable_if_t<NODE_TYPE == node_type_t::LEAF, T> evaluate_insert(
+ const full_key_t<KeyT::HOBJ>& key, const onode_t& value,
+ const MatchHistory& history, match_stat_t mstat, position_t& position) {
+ match_stage_t insert_stage = STAGE_TOP;
+ while (*history.get_by_stage(insert_stage) == MatchKindCMP::EQ) {
+ assert(insert_stage != STAGE_BOTTOM && "insert conflict!");
+ --insert_stage;
+ }
+
+ if (history.is_GT()) {
+ if (position.is_end()) {
+ // no need to compensate insert position
+ assert(insert_stage <= STAGE && "impossible insert stage");
+ } else if (position == position_t::begin()) {
+ // I must be short-circuited by staged::smallest_result()
+ // in staged::lower_bound(), so we need to rely on mstat instead
+ assert(mstat >= MSTAT_LT0 && mstat <= MSTAT_LT3);
+ if (mstat == MSTAT_LT0) {
+ insert_stage = STAGE_RIGHT;
+ } else if (mstat == MSTAT_LT1) {
+ insert_stage = STAGE_STRING;
+ } else {
+ insert_stage = STAGE_LEFT;
+ }
+ // XXX(multi-type): need to upgrade node type before inserting an
+ // incompatible index at front.
+ assert(insert_stage <= STAGE && "incompatible insert");
+ } else {
+ assert(insert_stage <= STAGE && "impossible insert stage");
+ [[maybe_unused]] bool ret = compensate_insert_position_at(insert_stage, position);
+ assert(!ret);
+ }
+ }
+
+ if (position.is_end()) {
+ patch_insert_end(position, insert_stage);
+ }
+
+ node_offset_t insert_size = insert_size_at<KeyT::HOBJ>(insert_stage, key, value);
+
+ return {insert_stage, insert_size};
+ }
+
+ template <KeyT KT>
+ static const value_t* insert_new(
+ NodeExtentMutable& mut, const memory_range_t& range,
+ const full_key_t<KT>& key, const value_t& value) {
+ char* p_insert = const_cast<char*>(range.p_end);
+ const value_t* p_value = nullptr;
+ StagedAppender<KT> appender;
+ appender.init(&mut, p_insert);
+ appender.append(key, value, p_value);
+ [[maybe_unused]] const char* p_insert_front = appender.wrap();
+ assert(p_insert_front == range.p_start);
+ return p_value;
+ }
+
+ template <KeyT KT, bool SPLIT>
+ static const value_t* proceed_insert_recursively(
+ NodeExtentMutable& mut, const container_t& container,
+ const full_key_t<KT>& key, const value_t& value,
+ position_t& position, match_stage_t& stage,
+ node_offset_t& _insert_size, const char* p_left_bound) {
+ // proceed insert from right to left
+ assert(stage <= STAGE);
+ auto iter = iterator_t(container);
+ auto& index = position.index;
+
+ bool do_insert = false;
+ if (stage == STAGE) {
+ if (index == INDEX_END) {
+ iter.seek_last();
+ iter.set_end();
+ index = iter.index();
+ } else {
+ assert(is_valid_index(index));
+ iter.seek_till_end(index);
+ }
+ do_insert = true;
+ } else { // stage < STAGE
+ if (index == INDEX_LAST) {
+ iter.seek_last();
+ index = iter.index();
+ } else {
+ assert(is_valid_index(index));
+ iter.seek_till_end(index);
+ }
+ if constexpr (SPLIT) {
+ if (iter.is_end()) {
+ // insert at the higher stage due to split
+ do_insert = true;
+ _insert_size = insert_size<KT>(key, value);
+ stage = STAGE;
+ }
+ } else {
+ assert(!iter.is_end());
+ }
+ }
+
+ if (do_insert) {
+ if constexpr (!IS_BOTTOM) {
+ position.nxt = position_t::nxt_t::begin();
+ }
+ assert(_insert_size == insert_size<KT>(key, value));
+ if constexpr (IS_BOTTOM) {
+ return iter.template insert<KT>(
+ mut, key, value, _insert_size, p_left_bound);
+ } else {
+ auto range = iter.template insert_prefix<KT>(
+ mut, key, _insert_size, p_left_bound);
+ return NXT_STAGE_T::template insert_new<KT>(mut, range, key, value);
+ }
+ } else {
+ if constexpr (!IS_BOTTOM) {
+ auto nxt_container = iter.get_nxt_container();
+ auto p_value = NXT_STAGE_T::template proceed_insert_recursively<KT, SPLIT>(
+ mut, nxt_container, key, value,
+ position.nxt, stage, _insert_size, p_left_bound);
+ iter.update_size(mut, _insert_size);
+ return p_value;
+ } else {
+ ceph_abort("impossible path");
+ }
+ }
+ }
+
+ template <KeyT KT, bool SPLIT>
+ static const value_t* proceed_insert(
+ NodeExtentMutable& mut, const container_t& container,
+ const full_key_t<KT>& key, const value_t& value,
+ position_t& position, match_stage_t& stage, node_offset_t& _insert_size) {
+ auto p_left_bound = container.p_left_bound();
+ if (unlikely(!container.keys())) {
+ if (position.is_end()) {
+ position = position_t::begin();
+ assert(stage == STAGE);
+ assert(_insert_size == insert_size<KT>(key, value));
+ } else if (position == position_t::begin()) {
+ // when insert into a trimmed and empty left node
+ stage = STAGE;
+ _insert_size = insert_size<KT>(key, value);
+ } else {
+ ceph_abort("impossible path");
+ }
+ if constexpr (IS_BOTTOM) {
+ return container_t::template insert_at<KT>(
+ mut, container, key, value, 0, _insert_size, p_left_bound);
+ } else {
+ auto range = container_t::template insert_prefix_at<KT>(
+ mut, container, key, 0, _insert_size, p_left_bound);
+ return NXT_STAGE_T::template insert_new<KT>(mut, range, key, value);
+ }
+ } else {
+ return proceed_insert_recursively<KT, SPLIT>(
+ mut, container, key, value,
+ position, stage, _insert_size, p_left_bound);
+ }
+ }
+
+ static std::ostream& dump(const container_t& container,
+ std::ostream& os,
+ const std::string& prefix,
+ size_t& size,
+ const char* p_start) {
+ auto iter = iterator_t(container);
+ assert(!iter.is_end());
+ std::string prefix_blank(prefix.size(), ' ');
+ const std::string* p_prefix = &prefix;
+ size += iterator_t::header_size();
+ do {
+ std::ostringstream sos;
+ sos << *p_prefix << iter.get_key() << ": ";
+ std::string i_prefix = sos.str();
+ if constexpr (!IS_BOTTOM) {
+ auto nxt_container = iter.get_nxt_container();
+ size += iter.size_to_nxt();
+ NXT_STAGE_T::dump(nxt_container, os, i_prefix, size, p_start);
+ } else {
+ auto value_ptr = iter.get_p_value();
+ int offset = reinterpret_cast<const char*>(value_ptr) - p_start;
+ size += iter.size();
+ os << "\n" << i_prefix;
+ if constexpr (NODE_TYPE == node_type_t::LEAF) {
+ os << *value_ptr;
+ } else {
+ os << "0x" << std::hex << value_ptr->value << std::dec;
+ }
+ os << " " << size << "B"
+ << " @" << offset << "B";
+ }
+ if (iter.is_last()) {
+ break;
+ } else {
+ ++iter;
+ p_prefix = &prefix_blank;
+ }
+ } while (true);
+ return os;
+ }
+
+ static void validate(const container_t& container) {
+ auto iter = iterator_t(container);
+ assert(!iter.is_end());
+ auto key = iter.get_key();
+ do {
+ if constexpr (!IS_BOTTOM) {
+ auto nxt_container = iter.get_nxt_container();
+ NXT_STAGE_T::validate(nxt_container);
+ }
+ if (iter.is_last()) {
+ break;
+ } else {
+ ++iter;
+ assert(compare_to(key, iter.get_key()) == MatchKindCMP::LT);
+ key = iter.get_key();
+ }
+ } while (true);
+ }
+
+ static void get_stats(const container_t& container, node_stats_t& stats,
+ full_key_t<KeyT::VIEW>& index_key) {
+ auto iter = iterator_t(container);
+ assert(!iter.is_end());
+ stats.size_overhead += iterator_t::header_size();
+ do {
+ index_key.replace(iter.get_key());
+ stats.size_overhead += iter.size_overhead();
+ if constexpr (!IS_BOTTOM) {
+ auto nxt_container = iter.get_nxt_container();
+ NXT_STAGE_T::get_stats(nxt_container, stats, index_key);
+ } else {
+ ++stats.num_kvs;
+ size_t kv_logical_size = index_key.size_logical();
+ size_t value_size;
+ if constexpr (NODE_TYPE == node_type_t::LEAF) {
+ value_size = iter.get_p_value()->size;
+ } else {
+ value_size = sizeof(value_t);
+ }
+ stats.size_value += value_size;
+ kv_logical_size += value_size;
+ stats.size_logical += kv_logical_size;
+ }
+ if (iter.is_last()) {
+ break;
+ } else {
+ ++iter;
+ }
+ } while (true);
+ }
+
+ static bool next_position(const container_t& container, position_t& pos) {
+ auto iter = iterator_t(container);
+ assert(!iter.is_end());
+ iter.seek_at(pos.index);
+ bool find_next;
+ if constexpr (!IS_BOTTOM) {
+ auto nxt_container = iter.get_nxt_container();
+ find_next = NXT_STAGE_T::next_position(nxt_container, pos.nxt);
+ } else {
+ find_next = true;
+ }
+ if (find_next) {
+ if (iter.is_last()) {
+ return true;
+ } else {
+ pos.index = iter.index() + 1;
+ if constexpr (!IS_BOTTOM) {
+ pos.nxt = NXT_STAGE_T::position_t::begin();
+ }
+ return false;
+ }
+ } else {
+ return false;
+ }
+ }
+
+ struct _BaseEmpty {};
+ class _BaseWithNxtIterator {
+ protected:
+ typename NXT_STAGE_T::StagedIterator _nxt;
+ };
+ class StagedIterator
+ : std::conditional_t<IS_BOTTOM, _BaseEmpty, _BaseWithNxtIterator> {
+ public:
+ StagedIterator() = default;
+ bool valid() const { return iter.has_value(); }
+ index_t index() const {
+ return iter->index();
+ }
+ bool is_end() const { return iter->is_end(); }
+ bool in_progress() const {
+ assert(valid());
+ if constexpr (!IS_BOTTOM) {
+ if (this->_nxt.valid()) {
+ if (this->_nxt.index() == 0) {
+ return this->_nxt.in_progress();
+ } else {
+ return true;
+ }
+ } else {
+ return false;
+ }
+ } else {
+ return false;
+ }
+ }
+ key_get_type get_key() const { return iter->get_key(); }
+
+ iterator_t& get() { return *iter; }
+ void set(const container_t& container) {
+ assert(!valid());
+ iter = iterator_t(container);
+ }
+ void set_end() { iter->set_end(); }
+ typename NXT_STAGE_T::StagedIterator& nxt() {
+ if constexpr (!IS_BOTTOM) {
+ if (!this->_nxt.valid()) {
+ auto nxt_container = iter->get_nxt_container();
+ this->_nxt.set(nxt_container);
+ }
+ return this->_nxt;
+ } else {
+ ceph_abort("impossible path");
+ }
+ }
+ typename NXT_STAGE_T::StagedIterator& get_nxt() {
+ if constexpr (!IS_BOTTOM) {
+ return this->_nxt;
+ } else {
+ ceph_abort("impossible path");
+ }
+ }
+ StagedIterator& operator++() {
+ if (iter->is_last()) {
+ iter->set_end();
+ } else {
+ ++(*iter);
+ }
+ if constexpr (!IS_BOTTOM) {
+ this->_nxt.reset();
+ }
+ return *this;
+ }
+ void reset() {
+ if (valid()) {
+ iter.reset();
+ if constexpr (!IS_BOTTOM) {
+ this->_nxt.reset();
+ }
+ }
+ }
+ std::ostream& print(std::ostream& os, bool is_top) const {
+ if (valid()) {
+ if (iter->is_end()) {
+ return os << "END";
+ } else {
+ os << index();
+ }
+ } else {
+ if (is_top) {
+ return os << "invalid StagedIterator!";
+ } else {
+ os << "0!";
+ }
+ }
+ if constexpr (!IS_BOTTOM) {
+ os << ", ";
+ return this->_nxt.print(os, false);
+ } else {
+ return os;
+ }
+ }
+ position_t get_pos() const {
+ if (valid()) {
+ if constexpr (IS_BOTTOM) {
+ return position_t{index()};
+ } else {
+ return position_t{index(), this->_nxt.get_pos()};
+ }
+ } else {
+ return position_t::begin();
+ }
+ }
+ void encode(const char* p_node_start, ceph::bufferlist& encoded) const {
+ uint8_t present = static_cast<bool>(iter);
+ ceph::encode(present, encoded);
+ if (iter.has_value()) {
+ iter->encode(p_node_start, encoded);
+ if constexpr (!IS_BOTTOM) {
+ this->_nxt.encode(p_node_start, encoded);
+ }
+ }
+ }
+ static StagedIterator decode(const char* p_node_start,
+ ceph::bufferlist::const_iterator& delta) {
+ StagedIterator ret;
+ uint8_t present;
+ ceph::decode(present, delta);
+ if (present) {
+ ret.iter = iterator_t::decode(p_node_start, delta);
+ if constexpr (!IS_BOTTOM) {
+ ret._nxt = NXT_STAGE_T::StagedIterator::decode(p_node_start, delta);
+ }
+ }
+ return ret;
+ }
+ friend std::ostream& operator<<(std::ostream& os, const StagedIterator& iter) {
+ return iter.print(os, true);
+ }
+ private:
+ std::optional<iterator_t> iter;
+ };
+
+ static bool recursively_locate_split(
+ size_t& current_size, size_t extra_size,
+ size_t target_size, StagedIterator& split_at) {
+ assert(current_size <= target_size);
+ iterator_t& split_iter = split_at.get();
+ current_size = split_iter.seek_split(current_size, extra_size, target_size);
+ assert(current_size <= target_size);
+ assert(!split_iter.is_end());
+ if (split_iter.index() == 0) {
+ extra_size += iterator_t::header_size();
+ } else {
+ extra_size = 0;
+ }
+ bool locate_nxt;
+ if constexpr (!IS_BOTTOM) {
+ locate_nxt = NXT_STAGE_T::recursively_locate_split(
+ current_size, extra_size + split_iter.size_to_nxt(),
+ target_size, split_at.nxt());
+ } else { // IS_BOTTOM
+ // located upper_bound, fair split strategy
+ size_t nxt_size = split_iter.size() + extra_size;
+ assert(current_size + nxt_size > target_size);
+ if (current_size + nxt_size/2 < target_size) {
+ // include next
+ current_size += nxt_size;
+ locate_nxt = true;
+ } else {
+ // exclude next
+ locate_nxt = false;
+ }
+ }
+ if (locate_nxt) {
+ if (split_iter.is_last()) {
+ return true;
+ } else {
+ ++split_at;
+ return false;
+ }
+ } else {
+ return false;
+ }
+ }
+
+ static bool recursively_locate_split_inserted(
+ size_t& current_size, size_t extra_size, size_t target_size,
+ position_t& insert_pos, match_stage_t insert_stage, size_t insert_size,
+ std::optional<bool>& is_insert_left, StagedIterator& split_at) {
+ assert(current_size <= target_size);
+ assert(!is_insert_left.has_value());
+ iterator_t& split_iter = split_at.get();
+ auto& insert_index = insert_pos.index;
+ if (insert_stage == STAGE) {
+ current_size = split_iter.template seek_split_inserted<true>(
+ current_size, extra_size, target_size,
+ insert_index, insert_size, is_insert_left);
+ assert(is_insert_left.has_value());
+ assert(current_size <= target_size);
+ if (split_iter.index() == 0) {
+ if (insert_index == 0) {
+ if (*is_insert_left == false) {
+ extra_size += iterator_t::header_size();
+ } else {
+ extra_size = 0;
+ }
+ } else {
+ extra_size += iterator_t::header_size();
+ }
+ } else {
+ extra_size = 0;
+ }
+ if (*is_insert_left == false && split_iter.index() == insert_index) {
+ // split_iter can be end
+ // found the lower-bound of target_size
+ // ...[s_index-1] |!| (i_index) [s_index]...
+
+ // located upper-bound, fair split strategy
+ // look at the next slot (the insert item)
+ size_t nxt_size = insert_size + extra_size;
+ assert(current_size + nxt_size > target_size);
+ if (current_size + nxt_size/2 < target_size) {
+ // include next
+ *is_insert_left = true;
+ current_size += nxt_size;
+ if (split_iter.is_end()) {
+ // ...[s_index-1] (i_index) |!|
+ return true;
+ } else {
+ return false;
+ }
+ } else {
+ // exclude next
+ return false;
+ }
+ } else {
+ // Already considered insert effect in the current stage.
+ // Look into the next stage to identify the target_size lower-bound w/o
+ // insert effect.
+ assert(!split_iter.is_end());
+ bool locate_nxt;
+ if constexpr (!IS_BOTTOM) {
+ locate_nxt = NXT_STAGE_T::recursively_locate_split(
+ current_size, extra_size + split_iter.size_to_nxt(),
+ target_size, split_at.nxt());
+ } else { // IS_BOTTOM
+ // located upper-bound, fair split strategy
+ // look at the next slot
+ size_t nxt_size = split_iter.size() + extra_size;
+ assert(current_size + nxt_size > target_size);
+ if (current_size + nxt_size/2 < target_size) {
+ // include next
+ current_size += nxt_size;
+ locate_nxt = true;
+ } else {
+ // exclude next
+ locate_nxt = false;
+ }
+ }
+ if (locate_nxt) {
+ if (split_iter.is_last()) {
+ auto end_index = split_iter.index() + 1;
+ if (insert_index == INDEX_END) {
+ insert_index = end_index;
+ }
+ assert(insert_index <= end_index);
+ if (insert_index == end_index) {
+ assert(*is_insert_left == false);
+ split_iter.set_end();
+ // ...[s_index-1] |!| (i_index)
+ return false;
+ } else {
+ assert(*is_insert_left == true);
+ return true;
+ }
+ } else {
+ ++split_at;
+ return false;
+ }
+ } else {
+ return false;
+ }
+ }
+ } else {
+ if constexpr (!IS_BOTTOM) {
+ assert(insert_stage < STAGE);
+ current_size = split_iter.template seek_split_inserted<false>(
+ current_size, extra_size, target_size,
+ insert_index, insert_size, is_insert_left);
+ assert(!split_iter.is_end());
+ assert(current_size <= target_size);
+ if (split_iter.index() == 0) {
+ extra_size += iterator_t::header_size();
+ } else {
+ extra_size = 0;
+ }
+ bool locate_nxt;
+ if (!is_insert_left.has_value()) {
+ // Considered insert effect in the current stage, and insert happens
+ // in the lower stage.
+ // Look into the next stage to identify the target_size lower-bound w/
+ // insert effect.
+ assert(split_iter.index() == insert_index);
+ locate_nxt = NXT_STAGE_T::recursively_locate_split_inserted(
+ current_size, extra_size + split_iter.size_to_nxt(), target_size,
+ insert_pos.nxt, insert_stage, insert_size,
+ is_insert_left, split_at.nxt());
+ assert(is_insert_left.has_value());
+#ifndef NDEBUG
+ if (locate_nxt) {
+ assert(*is_insert_left == true);
+ }
+#endif
+ } else {
+ // is_insert_left.has_value() == true
+ // Insert will *not* happen in the lower stage.
+ // Need to look into the next stage to identify the target_size
+ // lower-bound w/ insert effect
+ assert(split_iter.index() != insert_index);
+ locate_nxt = NXT_STAGE_T::recursively_locate_split(
+ current_size, extra_size + split_iter.size_to_nxt(),
+ target_size, split_at.nxt());
+#ifndef NDEBUG
+ if (split_iter.index() < insert_index) {
+ assert(*is_insert_left == false);
+ } else {
+ assert(*is_insert_left == true);
+ }
+#endif
+ }
+ if (locate_nxt) {
+ if (split_iter.is_last()) {
+ return true;
+ } else {
+ ++split_at;
+ return false;
+ }
+ } else {
+ return false;
+ }
+ } else {
+ ceph_abort("impossible path");
+ return false;;
+ }
+ }
+ }
+
+ /*
+ * container appender type system
+ * container_t::Appender(NodeExtentMutable& mut, char* p_append)
+ * append(const container_t& src, index_t from, index_t items)
+ * wrap() -> char*
+ * IF !IS_BOTTOM:
+ * open_nxt(const key_get_type&)
+ * open_nxt(const full_key_t&)
+ * -> std::tuple<NodeExtentMutable&, char*>
+ * wrap_nxt(char* p_append)
+ * ELSE
+ * append(const full_key_t& key, const value_t& value)
+ */
+ template <KeyT KT>
+ struct _BaseWithNxtAppender {
+ typename NXT_STAGE_T::template StagedAppender<KT> _nxt;
+ };
+ template <KeyT KT>
+ class StagedAppender
+ : std::conditional_t<IS_BOTTOM, _BaseEmpty, _BaseWithNxtAppender<KT>> {
+ public:
+ StagedAppender() = default;
+ ~StagedAppender() {
+ assert(!require_wrap_nxt);
+ assert(!valid());
+ }
+ bool valid() const { return appender.has_value(); }
+ index_t index() const {
+ assert(valid());
+ return _index;
+ }
+ bool in_progress() const { return require_wrap_nxt; }
+ // TODO: pass by reference
+ void init(NodeExtentMutable* p_mut, char* p_start) {
+ assert(!valid());
+ appender = typename container_t::template Appender<KT>(p_mut, p_start);
+ _index = 0;
+ }
+ // possible to make src_iter end if to_index == INDEX_END
+ void append_until(StagedIterator& src_iter, index_t& to_index) {
+ assert(!require_wrap_nxt);
+ auto s_index = src_iter.index();
+ src_iter.get().template copy_out_until<KT>(*appender, to_index);
+ assert(src_iter.index() == to_index);
+ assert(to_index >= s_index);
+ auto increment = (to_index - s_index);
+ if (increment) {
+ _index += increment;
+ if constexpr (!IS_BOTTOM) {
+ src_iter.get_nxt().reset();
+ }
+ }
+ }
+ void append(const full_key_t<KT>& key,
+ const value_t& value, const value_t*& p_value) {
+ assert(!require_wrap_nxt);
+ if constexpr (!IS_BOTTOM) {
+ auto& nxt = open_nxt(key);
+ nxt.append(key, value, p_value);
+ wrap_nxt();
+ } else {
+ appender->append(key, value, p_value);
+ ++_index;
+ }
+ }
+ char* wrap() {
+ assert(valid());
+ assert(_index > 0);
+ if constexpr (!IS_BOTTOM) {
+ if (require_wrap_nxt) {
+ wrap_nxt();
+ }
+ }
+ auto ret = appender->wrap();
+ appender.reset();
+ return ret;
+ }
+ typename NXT_STAGE_T::template StagedAppender<KT>&
+ open_nxt(key_get_type paritial_key) {
+ assert(!require_wrap_nxt);
+ if constexpr (!IS_BOTTOM) {
+ require_wrap_nxt = true;
+ auto [p_mut, p_append] = appender->open_nxt(paritial_key);
+ this->_nxt.init(p_mut, p_append);
+ return this->_nxt;
+ } else {
+ ceph_abort("impossible path");
+ }
+ }
+ typename NXT_STAGE_T::template StagedAppender<KT>&
+ open_nxt(const full_key_t<KT>& key) {
+ assert(!require_wrap_nxt);
+ if constexpr (!IS_BOTTOM) {
+ require_wrap_nxt = true;
+ auto [p_mut, p_append] = appender->open_nxt(key);
+ this->_nxt.init(p_mut, p_append);
+ return this->_nxt;
+ } else {
+ ceph_abort("impossible path");
+ }
+ }
+ typename NXT_STAGE_T::template StagedAppender<KT>& get_nxt() {
+ if constexpr (!IS_BOTTOM) {
+ assert(require_wrap_nxt);
+ return this->_nxt;
+ } else {
+ ceph_abort("impossible path");
+ }
+ }
+ void wrap_nxt() {
+ if constexpr (!IS_BOTTOM) {
+ assert(require_wrap_nxt);
+ require_wrap_nxt = false;
+ auto p_append = this->_nxt.wrap();
+ appender->wrap_nxt(p_append);
+ ++_index;
+ } else {
+ ceph_abort("impossible path");
+ }
+ }
+ private:
+ std::optional<typename container_t::template Appender<KT>> appender;
+ index_t _index;
+ bool require_wrap_nxt = false;
+ };
+
+ template <KeyT KT>
+ static void _append_range(
+ StagedIterator& src_iter, StagedAppender<KT>& appender, index_t& to_index) {
+ if (src_iter.is_end()) {
+ // append done
+ assert(to_index == INDEX_END);
+ to_index = src_iter.index();
+ } else if constexpr (!IS_BOTTOM) {
+ if (appender.in_progress()) {
+ // appender has appended something at the current item,
+ // cannot append the current item as-a-whole
+ index_t to_index_nxt = INDEX_END;
+ NXT_STAGE_T::template _append_range<KT>(
+ src_iter.nxt(), appender.get_nxt(), to_index_nxt);
+ ++src_iter;
+ appender.wrap_nxt();
+ } else if (src_iter.in_progress()) {
+ // src_iter is not at the beginning of the current item,
+ // cannot append the current item as-a-whole
+ index_t to_index_nxt = INDEX_END;
+ NXT_STAGE_T::template _append_range<KT>(
+ src_iter.nxt(), appender.open_nxt(src_iter.get_key()), to_index_nxt);
+ ++src_iter;
+ appender.wrap_nxt();
+ } else {
+ // we can safely append the current item as-a-whole
+ }
+ }
+ appender.append_until(src_iter, to_index);
+ }
+
+ template <KeyT KT>
+ static void _append_into(StagedIterator& src_iter, StagedAppender<KT>& appender,
+ position_t& position, match_stage_t stage) {
+ assert(position.index == src_iter.index());
+ // reaches the last item
+ if (stage == STAGE) {
+ // done, end recursion
+ if constexpr (!IS_BOTTOM) {
+ position.nxt = position_t::nxt_t::begin();
+ }
+ } else {
+ assert(stage < STAGE);
+ // proceed append in the next stage
+ NXT_STAGE_T::template append_until<KT>(
+ src_iter.nxt(), appender.open_nxt(src_iter.get_key()),
+ position.nxt, stage);
+ }
+ }
+
+ template <KeyT KT>
+ static void append_until(StagedIterator& src_iter, StagedAppender<KT>& appender,
+ position_t& position, match_stage_t stage) {
+ index_t from_index = src_iter.index();
+ index_t& to_index = position.index;
+ assert(from_index <= to_index);
+ if constexpr (IS_BOTTOM) {
+ assert(stage == STAGE);
+ appender.append_until(src_iter, to_index);
+ } else {
+ assert(stage <= STAGE);
+ if (src_iter.index() == to_index) {
+ _append_into<KT>(src_iter, appender, position, stage);
+ } else {
+ if (to_index == INDEX_END) {
+ assert(stage == STAGE);
+ } else if (to_index == INDEX_LAST) {
+ assert(stage < STAGE);
+ }
+ _append_range<KT>(src_iter, appender, to_index);
+ _append_into<KT>(src_iter, appender, position, stage);
+ }
+ }
+ to_index -= from_index;
+ }
+
+ template <KeyT KT>
+ static bool append_insert(
+ const full_key_t<KT>& key, const value_t& value,
+ StagedIterator& src_iter, StagedAppender<KT>& appender,
+ bool is_front_insert, match_stage_t& stage, const value_t*& p_value) {
+ assert(src_iter.valid());
+ if (stage == STAGE) {
+ appender.append(key, value, p_value);
+ if (src_iter.is_end()) {
+ return true;
+ } else {
+ return false;
+ }
+ } else {
+ assert(stage < STAGE);
+ if constexpr (!IS_BOTTOM) {
+ auto nxt_is_end = NXT_STAGE_T::template append_insert<KT>(
+ key, value, src_iter.get_nxt(), appender.get_nxt(),
+ is_front_insert, stage, p_value);
+ if (nxt_is_end) {
+ appender.wrap_nxt();
+ ++src_iter;
+ if (is_front_insert) {
+ stage = STAGE;
+ }
+ if (src_iter.is_end()) {
+ return true;
+ }
+ }
+ return false;
+ } else {
+ ceph_abort("impossible path");
+ }
+ }
+ }
+
+ /* TrimType:
+ * BEFORE: remove the entire container, normally means the according higher
+ * stage iterator needs to be trimmed as-a-whole.
+ * AFTER: retain the entire container, normally means the trim should be
+ * start from the next iterator at the higher stage.
+ * AT: trim happens in the current container, and the according higher
+ * stage iterator needs to be adjusted by the trimmed size.
+ */
+ static std::tuple<TrimType, node_offset_t>
+ recursively_trim(NodeExtentMutable& mut, StagedIterator& trim_at) {
+ if (!trim_at.valid()) {
+ return {TrimType::BEFORE, 0u};
+ }
+ if (trim_at.is_end()) {
+ return {TrimType::AFTER, 0u};
+ }
+
+ auto& iter = trim_at.get();
+ if constexpr (!IS_BOTTOM) {
+ auto [type, trimmed] = NXT_STAGE_T::recursively_trim(
+ mut, trim_at.get_nxt());
+ node_offset_t trim_size;
+ if (type == TrimType::AFTER) {
+ if (iter.is_last()) {
+ return {TrimType::AFTER, 0u};
+ }
+ ++trim_at;
+ trim_size = iter.trim_until(mut);
+ } else if (type == TrimType::BEFORE) {
+ if (iter.index() == 0) {
+ return {TrimType::BEFORE, 0u};
+ }
+ trim_size = iter.trim_until(mut);
+ } else {
+ trim_size = iter.trim_at(mut, trimmed);
+ }
+ return {TrimType::AT, trim_size};
+ } else {
+ if (iter.index() == 0) {
+ return {TrimType::BEFORE, 0u};
+ } else {
+ auto trimmed = iter.trim_until(mut);
+ return {TrimType::AT, trimmed};
+ }
+ }
+ }
+
+ static void trim(NodeExtentMutable& mut, StagedIterator& trim_at) {
+ auto [type, trimmed] = recursively_trim(mut, trim_at);
+ if (type == TrimType::BEFORE) {
+ assert(trim_at.valid());
+ auto& iter = trim_at.get();
+ iter.trim_until(mut);
+ }
+ }
+};
+
+/**
+ * Configurations for struct staged
+ *
+ * staged_params_* assembles different container_t implementations (defined by
+ * stated::_iterator_t) by STAGE, and constructs the final multi-stage
+ * implementations for different node layouts defined by
+ * node_extent_t<FieldType, NODE_TYPE>.
+ *
+ * The specialized implementations for different layouts are accessible through
+ * the helper type node_to_stage_t<node_extent_t<FieldType, NODE_TYPE>>.
+ *
+ * Specifically, the settings of 8 layouts are:
+ *
+ * The layout (N0, LEAF/INTERNAL) has 3 stages:
+ * - STAGE_LEFT: node_extent_t<node_fields_0_t, LEAF/INTERNAL>
+ * - STAGE_STRING: item_iterator_t<LEAF/INTERNAL>
+ * - STAGE_RIGHT: sub_items_t<LEAF/INTERNAL>
+ *
+ * The layout (N1, LEAF/INTERNAL) has 3 stages:
+ * - STAGE_LEFT: node_extent_t<node_fields_1_t, LEAF/INTERNAL>
+ * - STAGE_STRING: item_iterator_t<LEAF/INTERNAL>
+ * - STAGE_RIGHT: sub_items_t<LEAF/INTERNAL>
+ *
+ * The layout (N2, LEAF/INTERNAL) has 2 stages:
+ * - STAGE_STRING: node_extent_t<node_fields_2_t, LEAF/INTERNAL>
+ * - STAGE_RIGHT: sub_items_t<LEAF/INTERNAL>
+ *
+ * The layout (N3, LEAF) has 1 stage:
+ * - STAGE_RIGHT: node_extent_t<leaf_fields_3_t, LEAF>
+ *
+ * The layout (N3, INTERNAL) has 1 stage:
+ * - STAGE_RIGHT: node_extent_t<internal_fields_3_t, INTERNAL>
+ */
+
+template <node_type_t _NODE_TYPE>
+struct staged_params_subitems {
+ using container_t = sub_items_t<_NODE_TYPE>;
+ static constexpr auto NODE_TYPE = _NODE_TYPE;
+ static constexpr auto STAGE = STAGE_RIGHT;
+
+ // dummy type in order to make our type system work
+ // any better solution to get rid of this?
+ using next_param_t = staged_params_subitems<NODE_TYPE>;
+};
+
+template <node_type_t _NODE_TYPE>
+struct staged_params_item_iterator {
+ using container_t = item_iterator_t<_NODE_TYPE>;
+ static constexpr auto NODE_TYPE = _NODE_TYPE;
+ static constexpr auto STAGE = STAGE_STRING;
+
+ using next_param_t = staged_params_subitems<NODE_TYPE>;
+};
+
+template <typename NodeType>
+struct staged_params_node_01 {
+ using container_t = NodeType;
+ static constexpr auto NODE_TYPE = NodeType::NODE_TYPE;
+ static constexpr auto STAGE = STAGE_LEFT;
+
+ using next_param_t = staged_params_item_iterator<NODE_TYPE>;
+};
+
+template <typename NodeType>
+struct staged_params_node_2 {
+ using container_t = NodeType;
+ static constexpr auto NODE_TYPE = NodeType::NODE_TYPE;
+ static constexpr auto STAGE = STAGE_STRING;
+
+ using next_param_t = staged_params_subitems<NODE_TYPE>;
+};
+
+template <typename NodeType>
+struct staged_params_node_3 {
+ using container_t = NodeType;
+ static constexpr auto NODE_TYPE = NodeType::NODE_TYPE;
+ static constexpr auto STAGE = STAGE_RIGHT;
+
+ // dummy type in order to make our type system work
+ // any better solution to get rid of this?
+ using next_param_t = staged_params_node_3<NodeType>;
+};
+
+template <typename NodeType, typename Enable = void> struct _node_to_stage_t;
+template <typename NodeType>
+struct _node_to_stage_t<NodeType,
+ std::enable_if_t<NodeType::FIELD_TYPE == field_type_t::N0 ||
+ NodeType::FIELD_TYPE == field_type_t::N1>> {
+ using type = staged<staged_params_node_01<NodeType>>;
+};
+template <typename NodeType>
+struct _node_to_stage_t<NodeType,
+ std::enable_if_t<NodeType::FIELD_TYPE == field_type_t::N2>> {
+ using type = staged<staged_params_node_2<NodeType>>;
+};
+template <typename NodeType>
+struct _node_to_stage_t<NodeType,
+ std::enable_if_t<NodeType::FIELD_TYPE == field_type_t::N3>> {
+ using type = staged<staged_params_node_3<NodeType>>;
+};
+template <typename NodeType>
+using node_to_stage_t = typename _node_to_stage_t<NodeType>::type;
+
+}