summaryrefslogtreecommitdiffstats
path: root/src/crypto/isa-l/isa-l_crypto/aes/gcm256_sse.asm
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/isa-l/isa-l_crypto/aes/gcm256_sse.asm')
-rw-r--r--src/crypto/isa-l/isa-l_crypto/aes/gcm256_sse.asm2074
1 files changed, 2074 insertions, 0 deletions
diff --git a/src/crypto/isa-l/isa-l_crypto/aes/gcm256_sse.asm b/src/crypto/isa-l/isa-l_crypto/aes/gcm256_sse.asm
new file mode 100644
index 000000000..ab49e0770
--- /dev/null
+++ b/src/crypto/isa-l/isa-l_crypto/aes/gcm256_sse.asm
@@ -0,0 +1,2074 @@
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+; Copyright(c) 2011-2016 Intel Corporation All rights reserved.
+;
+; Redistribution and use in source and binary forms, with or without
+; modification, are permitted provided that the following conditions
+; are met:
+; * Redistributions of source code must retain the above copyright
+; notice, this list of conditions and the following disclaimer.
+; * Redistributions in binary form must reproduce the above copyright
+; notice, this list of conditions and the following disclaimer in
+; the documentation and/or other materials provided with the
+; distribution.
+; * Neither the name of Intel Corporation nor the names of its
+; contributors may be used to endorse or promote products derived
+; from this software without specific prior written permission.
+;
+; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;
+; Authors:
+; Erdinc Ozturk
+; Vinodh Gopal
+; James Guilford
+;
+;
+; References:
+; This code was derived and highly optimized from the code described in paper:
+; Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on Intel Architecture Processors. August, 2010
+;
+; For the shift-based reductions used in this code, we used the method described in paper:
+; Shay Gueron, Michael E. Kounavis. Intel Carry-Less Multiplication Instruction and its Usage for Computing the GCM Mode. January, 2010.
+;
+;
+;
+;
+; Assumptions:
+;
+;
+;
+; iv:
+; 0 1 2 3
+; 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+; | Salt (From the SA) |
+; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+; | Initialization Vector |
+; | (This is the sequence number from IPSec header) |
+; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+; | 0x1 |
+; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+;
+;
+;
+; AAD:
+; AAD will be padded with 0 to the next 16byte multiple
+; for example, assume AAD is a u32 vector
+;
+; if AAD is 8 bytes:
+; AAD[3] = {A0, A1};
+; padded AAD in xmm register = {A1 A0 0 0}
+;
+; 0 1 2 3
+; 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+; | SPI (A1) |
+; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+; | 32-bit Sequence Number (A0) |
+; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+; | 0x0 |
+; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+;
+; AAD Format with 32-bit Sequence Number
+;
+; if AAD is 12 bytes:
+; AAD[3] = {A0, A1, A2};
+; padded AAD in xmm register = {A2 A1 A0 0}
+;
+; 0 1 2 3
+; 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+; | SPI (A2) |
+; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+; | 64-bit Extended Sequence Number {A1,A0} |
+; | |
+; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+; | 0x0 |
+; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+;
+; AAD Format with 64-bit Extended Sequence Number
+;
+;
+; aadLen:
+; Must be a multiple of 4 bytes and from the definition of the spec.
+; The code additionally supports any aadLen length.
+;
+; TLen:
+; from the definition of the spec, TLen can only be 8, 12 or 16 bytes.
+;
+; poly = x^128 + x^127 + x^126 + x^121 + 1
+; throughout the code, one tab and two tab indentations are used. one tab is for GHASH part, two tabs is for AES part.
+;
+
+%include "reg_sizes.asm"
+%include "gcm_defines.asm"
+
+default rel
+; need to push 4 registers into stack to maintain
+%define STACK_OFFSET 8*4
+
+%define TMP2 16*0 ; Temporary storage for AES State 2 (State 1 is stored in an XMM register)
+%define TMP3 16*1 ; Temporary storage for AES State 3
+%define TMP4 16*2 ; Temporary storage for AES State 4
+%define TMP5 16*3 ; Temporary storage for AES State 5
+%define TMP6 16*4 ; Temporary storage for AES State 6
+%define TMP7 16*5 ; Temporary storage for AES State 7
+%define TMP8 16*6 ; Temporary storage for AES State 8
+
+%define LOCAL_STORAGE 16*7
+
+%ifidn __OUTPUT_FORMAT__, win64
+ %define XMM_STORAGE 16*10
+%else
+ %define XMM_STORAGE 0
+%endif
+
+%define VARIABLE_OFFSET LOCAL_STORAGE + XMM_STORAGE
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+; Utility Macros
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+; GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0)
+; Input: A and B (128-bits each, bit-reflected)
+; Output: C = A*B*x mod poly, (i.e. >>1 )
+; To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input
+; GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly.
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+%macro GHASH_MUL 7
+%define %%GH %1 ; 16 Bytes
+%define %%HK %2 ; 16 Bytes
+%define %%T1 %3
+%define %%T2 %4
+%define %%T3 %5
+%define %%T4 %6
+%define %%T5 %7
+ ; %%GH, %%HK hold the values for the two operands which are carry-less multiplied
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ; Karatsuba Method
+ movdqa %%T1, %%GH
+ pshufd %%T2, %%GH, 01001110b
+ pshufd %%T3, %%HK, 01001110b
+ pxor %%T2, %%GH ; %%T2 = (a1+a0)
+ pxor %%T3, %%HK ; %%T3 = (b1+b0)
+
+ pclmulqdq %%T1, %%HK, 0x11 ; %%T1 = a1*b1
+ pclmulqdq %%GH, %%HK, 0x00 ; %%GH = a0*b0
+ pclmulqdq %%T2, %%T3, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+ pxor %%T2, %%GH
+ pxor %%T2, %%T1 ; %%T2 = a0*b1+a1*b0
+
+ movdqa %%T3, %%T2
+ pslldq %%T3, 8 ; shift-L %%T3 2 DWs
+ psrldq %%T2, 8 ; shift-R %%T2 2 DWs
+ pxor %%GH, %%T3
+ pxor %%T1, %%T2 ; <%%T1:%%GH> holds the result of the carry-less multiplication of %%GH by %%HK
+
+
+ ;first phase of the reduction
+ movdqa %%T2, %%GH
+ movdqa %%T3, %%GH
+ movdqa %%T4, %%GH ; move %%GH into %%T2, %%T3, %%T4 in order to perform the three shifts independently
+
+ pslld %%T2, 31 ; packed right shifting << 31
+ pslld %%T3, 30 ; packed right shifting shift << 30
+ pslld %%T4, 25 ; packed right shifting shift << 25
+ pxor %%T2, %%T3 ; xor the shifted versions
+ pxor %%T2, %%T4
+
+ movdqa %%T5, %%T2
+ psrldq %%T5, 4 ; shift-R %%T5 1 DW
+
+ pslldq %%T2, 12 ; shift-L %%T2 3 DWs
+ pxor %%GH, %%T2 ; first phase of the reduction complete
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ ;second phase of the reduction
+ movdqa %%T2,%%GH ; make 3 copies of %%GH (in in %%T2, %%T3, %%T4) for doing three shift operations
+ movdqa %%T3,%%GH
+ movdqa %%T4,%%GH
+
+ psrld %%T2,1 ; packed left shifting >> 1
+ psrld %%T3,2 ; packed left shifting >> 2
+ psrld %%T4,7 ; packed left shifting >> 7
+ pxor %%T2,%%T3 ; xor the shifted versions
+ pxor %%T2,%%T4
+
+ pxor %%T2, %%T5
+ pxor %%GH, %%T2
+ pxor %%GH, %%T1 ; the result is in %%T1
+
+
+%endmacro
+
+
+%macro PRECOMPUTE 8
+%define %%GDATA %1
+%define %%HK %2
+%define %%T1 %3
+%define %%T2 %4
+%define %%T3 %5
+%define %%T4 %6
+%define %%T5 %7
+%define %%T6 %8
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+; Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
+ movdqa %%T4, %%HK
+ pshufd %%T1, %%HK, 01001110b
+ pxor %%T1, %%HK
+ movdqu [%%GDATA + HashKey_k], %%T1
+
+
+ GHASH_MUL %%T4, %%HK, %%T1, %%T2, %%T3, %%T5, %%T6 ; %%T4 = HashKey^2<<1 mod poly
+ movdqu [%%GDATA + HashKey_2], %%T4 ; [HashKey_2] = HashKey^2<<1 mod poly
+ pshufd %%T1, %%T4, 01001110b
+ pxor %%T1, %%T4
+ movdqu [%%GDATA + HashKey_2_k], %%T1
+
+ GHASH_MUL %%T4, %%HK, %%T1, %%T2, %%T3, %%T5, %%T6 ; %%T4 = HashKey^3<<1 mod poly
+ movdqu [%%GDATA + HashKey_3], %%T4
+ pshufd %%T1, %%T4, 01001110b
+ pxor %%T1, %%T4
+ movdqu [%%GDATA + HashKey_3_k], %%T1
+
+
+ GHASH_MUL %%T4, %%HK, %%T1, %%T2, %%T3, %%T5, %%T6 ; %%T4 = HashKey^4<<1 mod poly
+ movdqu [%%GDATA + HashKey_4], %%T4
+ pshufd %%T1, %%T4, 01001110b
+ pxor %%T1, %%T4
+ movdqu [%%GDATA + HashKey_4_k], %%T1
+
+ GHASH_MUL %%T4, %%HK, %%T1, %%T2, %%T3, %%T5, %%T6 ; %%T4 = HashKey^5<<1 mod poly
+ movdqu [%%GDATA + HashKey_5], %%T4
+ pshufd %%T1, %%T4, 01001110b
+ pxor %%T1, %%T4
+ movdqu [%%GDATA + HashKey_5_k], %%T1
+
+
+ GHASH_MUL %%T4, %%HK, %%T1, %%T2, %%T3, %%T5, %%T6 ; %%T4 = HashKey^6<<1 mod poly
+ movdqu [%%GDATA + HashKey_6], %%T4
+ pshufd %%T1, %%T4, 01001110b
+ pxor %%T1, %%T4
+ movdqu [%%GDATA + HashKey_6_k], %%T1
+
+ GHASH_MUL %%T4, %%HK, %%T1, %%T2, %%T3, %%T5, %%T6 ; %%T4 = HashKey^7<<1 mod poly
+ movdqu [%%GDATA + HashKey_7], %%T4
+ pshufd %%T1, %%T4, 01001110b
+ pxor %%T1, %%T4
+ movdqu [%%GDATA + HashKey_7_k], %%T1
+
+ GHASH_MUL %%T4, %%HK, %%T1, %%T2, %%T3, %%T5, %%T6 ; %%T4 = HashKey^8<<1 mod poly
+ movdqu [%%GDATA + HashKey_8], %%T4
+ pshufd %%T1, %%T4, 01001110b
+ pxor %%T1, %%T4
+ movdqu [%%GDATA + HashKey_8_k], %%T1
+
+
+%endmacro
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+; READ_SMALL_DATA_INPUT: Packs xmm register with data when data input is less than 16 bytes.
+; Returns 0 if data has length 0.
+; Input: The input data (INPUT), that data's length (LENGTH).
+; Output: The packed xmm register (OUTPUT).
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+%macro READ_SMALL_DATA_INPUT 6
+%define %%OUTPUT %1 ; %%OUTPUT is an xmm register
+%define %%INPUT %2
+%define %%LENGTH %3
+%define %%END_READ_LOCATION %4 ; All this and the lower inputs are temp registers
+%define %%COUNTER %5
+%define %%TMP1 %6
+
+ pxor %%OUTPUT, %%OUTPUT
+ mov %%COUNTER, %%LENGTH
+ mov %%END_READ_LOCATION, %%INPUT
+ add %%END_READ_LOCATION, %%LENGTH
+ xor %%TMP1, %%TMP1
+
+
+ cmp %%COUNTER, 8
+ jl %%_byte_loop_2
+ pinsrq %%OUTPUT, [%%INPUT],0 ;Read in 8 bytes if they exists
+ je %%_done
+
+ sub %%COUNTER, 8
+
+%%_byte_loop_1: ;Read in data 1 byte at a time while data is left
+ shl %%TMP1, 8 ;This loop handles when 8 bytes were already read in
+ dec %%END_READ_LOCATION
+ mov BYTE(%%TMP1), BYTE [%%END_READ_LOCATION]
+ dec %%COUNTER
+ jg %%_byte_loop_1
+ pinsrq %%OUTPUT, %%TMP1, 1
+ jmp %%_done
+
+%%_byte_loop_2: ;Read in data 1 byte at a time while data is left
+ cmp %%COUNTER, 0
+ je %%_done
+ shl %%TMP1, 8 ;This loop handles when no bytes were already read in
+ dec %%END_READ_LOCATION
+ mov BYTE(%%TMP1), BYTE [%%END_READ_LOCATION]
+ dec %%COUNTER
+ jg %%_byte_loop_2
+ pinsrq %%OUTPUT, %%TMP1, 0
+%%_done:
+
+%endmacro ; READ_SMALL_DATA_INPUT
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+; CALC_AAD_HASH: Calculates the hash of the data which will not be encrypted.
+; Input: The input data (A_IN), that data's length (A_LEN), and the hash key (HASH_KEY).
+; Output: The hash of the data (AAD_HASH).
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+%macro CALC_AAD_HASH 14
+%define %%A_IN %1
+%define %%A_LEN %2
+%define %%AAD_HASH %3
+%define %%HASH_KEY %4
+%define %%XTMP1 %5 ; xmm temp reg 5
+%define %%XTMP2 %6
+%define %%XTMP3 %7
+%define %%XTMP4 %8
+%define %%XTMP5 %9 ; xmm temp reg 5
+%define %%T1 %10 ; temp reg 1
+%define %%T2 %11
+%define %%T3 %12
+%define %%T4 %13
+%define %%T5 %14 ; temp reg 5
+
+
+ mov %%T1, %%A_IN ; T1 = AAD
+ mov %%T2, %%A_LEN ; T2 = aadLen
+ pxor %%AAD_HASH, %%AAD_HASH
+
+ cmp %%T2, 16
+ jl %%_get_small_AAD_block
+
+%%_get_AAD_loop16:
+
+ movdqu %%XTMP1, [%%T1]
+ ;byte-reflect the AAD data
+ pshufb %%XTMP1, [SHUF_MASK]
+ pxor %%AAD_HASH, %%XTMP1
+ GHASH_MUL %%AAD_HASH, %%HASH_KEY, %%XTMP1, %%XTMP2, %%XTMP3, %%XTMP4, %%XTMP5
+
+ sub %%T2, 16
+ je %%_CALC_AAD_done
+
+ add %%T1, 16
+ cmp %%T2, 16
+ jge %%_get_AAD_loop16
+
+%%_get_small_AAD_block:
+ READ_SMALL_DATA_INPUT %%XTMP1, %%T1, %%T2, %%T3, %%T4, %%T5
+ ;byte-reflect the AAD data
+ pshufb %%XTMP1, [SHUF_MASK]
+ pxor %%AAD_HASH, %%XTMP1
+ GHASH_MUL %%AAD_HASH, %%HASH_KEY, %%XTMP1, %%XTMP2, %%XTMP3, %%XTMP4, %%XTMP5
+
+%%_CALC_AAD_done:
+
+%endmacro ; CALC_AAD_HASH
+
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+; PARTIAL_BLOCK: Handles encryption/decryption and the tag partial blocks between update calls.
+; Requires the input data be at least 1 byte long.
+; Input: gcm_data struct* (GDATA), input text (PLAIN_CYPH_IN), input text length (PLAIN_CYPH_LEN),
+; the current data offset (DATA_OFFSET), and whether encoding or decoding (ENC_DEC)
+; Output: A cypher of the first partial block (CYPH_PLAIN_OUT), and updated GDATA
+; Clobbers rax, r10, r12, r13, r15, xmm0, xmm1, xmm2, xmm3, xmm5, xmm6, xmm9, xmm10, xmm11, xmm13
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+%macro PARTIAL_BLOCK 7
+%define %%GDATA %1
+%define %%CYPH_PLAIN_OUT %2
+%define %%PLAIN_CYPH_IN %3
+%define %%PLAIN_CYPH_LEN %4
+%define %%DATA_OFFSET %5
+%define %%AAD_HASH %6
+%define %%ENC_DEC %7
+ mov r13, [%%GDATA + PBlockLen]
+ cmp r13, 0
+ je %%_partial_block_done ;Leave Macro if no partial blocks
+
+ cmp %%PLAIN_CYPH_LEN, 16 ;Read in input data without over reading
+ jl %%_fewer_than_16_bytes
+ XLDR xmm1, [%%PLAIN_CYPH_IN] ;If more than 16 bytes of data, just fill the xmm register
+ jmp %%_data_read
+
+%%_fewer_than_16_bytes:
+ lea r10, [%%PLAIN_CYPH_IN + %%DATA_OFFSET]
+ READ_SMALL_DATA_INPUT xmm1, r10, %%PLAIN_CYPH_LEN, rax, r12, r15
+ mov r13, [%%GDATA + PBlockLen]
+
+%%_data_read: ;Finished reading in data
+
+
+ movdqu xmm9, [%%GDATA + PBlockEncKey] ;xmm9 = my_ctx_data.partial_block_enc_key
+ movdqu xmm13, [%%GDATA + HashKey]
+
+ lea r12, [SHIFT_MASK]
+
+ add r12, r13 ; adjust the shuffle mask pointer to be able to shift r13 bytes (16-r13 is the number of bytes in plaintext mod 16)
+ movdqu xmm2, [r12] ; get the appropriate shuffle mask
+ pshufb xmm9, xmm2 ;shift right r13 bytes
+
+%ifidn %%ENC_DEC, DEC
+ movdqa xmm3, xmm1
+ pxor xmm9, xmm1 ; Cyphertext XOR E(K, Yn)
+
+ mov r15, %%PLAIN_CYPH_LEN
+ add r15, r13
+ sub r15, 16 ;Set r15 to be the amount of data left in CYPH_PLAIN_IN after filling the block
+ jge %%_no_extra_mask_1 ;Determine if if partial block is not being filled and shift mask accordingly
+ sub r12, r15
+%%_no_extra_mask_1:
+
+ movdqu xmm1, [r12 + ALL_F-SHIFT_MASK] ; get the appropriate mask to mask out bottom r13 bytes of xmm9
+ pand xmm9, xmm1 ; mask out bottom r13 bytes of xmm9
+
+ pand xmm3, xmm1
+ pshufb xmm3, [SHUF_MASK]
+ pshufb xmm3, xmm2
+ pxor %%AAD_HASH, xmm3
+
+
+ cmp r15,0
+ jl %%_partial_incomplete_1
+
+ GHASH_MUL %%AAD_HASH, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6 ;GHASH computation for the last <16 Byte block
+ xor rax,rax
+ mov [%%GDATA+PBlockLen], rax
+ jmp %%_dec_done
+%%_partial_incomplete_1:
+ add [%%GDATA+PBlockLen], %%PLAIN_CYPH_LEN
+%%_dec_done:
+ movdqu [%%GDATA + AadHash], %%AAD_HASH
+
+%else
+ pxor xmm9, xmm1 ; Plaintext XOR E(K, Yn)
+
+ mov r15, %%PLAIN_CYPH_LEN
+ add r15, r13
+ sub r15, 16 ;Set r15 to be the amount of data left in CYPH_PLAIN_IN after filling the block
+ jge %%_no_extra_mask_2 ;Determine if if partial block is not being filled and shift mask accordingly
+ sub r12, r15
+%%_no_extra_mask_2:
+
+ movdqu xmm1, [r12 + ALL_F-SHIFT_MASK] ; get the appropriate mask to mask out bottom r13 bytes of xmm9
+ pand xmm9, xmm1 ; mask out bottom r13 bytes of xmm9
+
+ pshufb xmm9, [SHUF_MASK]
+ pshufb xmm9, xmm2
+ pxor %%AAD_HASH, xmm9
+
+ cmp r15,0
+ jl %%_partial_incomplete_2
+
+ GHASH_MUL %%AAD_HASH, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6 ;GHASH computation for the last <16 Byte block
+ xor rax,rax
+ mov [%%GDATA+PBlockLen], rax
+ jmp %%_encode_done
+%%_partial_incomplete_2:
+ add [%%GDATA+PBlockLen], %%PLAIN_CYPH_LEN
+%%_encode_done:
+ movdqu [%%GDATA + AadHash], %%AAD_HASH
+
+ pshufb xmm9, [SHUF_MASK] ; shuffle xmm9 back to output as ciphertext
+ pshufb xmm9, xmm2
+%endif
+
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ; output encrypted Bytes
+ cmp r15,0
+ jl %%_partial_fill
+ mov r12, r13
+ mov r13, 16
+ sub r13, r12 ; Set r13 to be the number of bytes to write out
+ jmp %%_count_set
+%%_partial_fill:
+ mov r13, %%PLAIN_CYPH_LEN
+%%_count_set:
+ movq rax, xmm9
+ cmp r13, 8
+ jle %%_less_than_8_bytes_left
+
+ mov [%%CYPH_PLAIN_OUT+ %%DATA_OFFSET], rax
+ add %%DATA_OFFSET, 8
+ psrldq xmm9, 8
+ movq rax, xmm9
+ sub r13, 8
+%%_less_than_8_bytes_left:
+ mov BYTE [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], al
+ add %%DATA_OFFSET, 1
+ shr rax, 8
+ sub r13, 1
+ jne %%_less_than_8_bytes_left
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+%%_partial_block_done:
+%endmacro ; PARTIAL_BLOCK
+
+
+; if a = number of total plaintext bytes
+; b = floor(a/16)
+; %%num_initial_blocks = b mod 8;
+; encrypt the initial %%num_initial_blocks blocks and apply ghash on the ciphertext
+; %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r14 are used as a pointer only, not modified
+; Updated AAD_HASH is returned in %%T3
+
+%macro INITIAL_BLOCKS 23
+%define %%GDATA %1
+%define %%CYPH_PLAIN_OUT %2
+%define %%PLAIN_CYPH_IN %3
+%define %%LENGTH %4
+%define %%DATA_OFFSET %5
+%define %%num_initial_blocks %6 ; can be 0, 1, 2, 3, 4, 5, 6 or 7
+%define %%T1 %7
+%define %%HASH_KEY %8
+%define %%T3 %9
+%define %%T4 %10
+%define %%T5 %11
+%define %%CTR %12
+%define %%XMM1 %13
+%define %%XMM2 %14
+%define %%XMM3 %15
+%define %%XMM4 %16
+%define %%XMM5 %17
+%define %%XMM6 %18
+%define %%XMM7 %19
+%define %%XMM8 %20
+%define %%T6 %21
+%define %%T_key %22
+%define %%ENC_DEC %23
+
+%assign i (8-%%num_initial_blocks)
+ movdqu reg(i), %%XMM8 ; move AAD_HASH to temp reg
+
+ ; start AES for %%num_initial_blocks blocks
+ movdqu %%CTR, [%%GDATA + CurCount] ; %%CTR = Y0
+
+
+%assign i (9-%%num_initial_blocks)
+%rep %%num_initial_blocks
+ paddd %%CTR, [ONE] ; INCR Y0
+ movdqa reg(i), %%CTR
+ pshufb reg(i), [SHUF_MASK] ; perform a 16Byte swap
+%assign i (i+1)
+%endrep
+
+movdqu %%T_key, [%%GDATA+16*0]
+%assign i (9-%%num_initial_blocks)
+%rep %%num_initial_blocks
+ pxor reg(i),%%T_key
+%assign i (i+1)
+%endrep
+
+%assign j 1
+%rep 13 ; encrypt N blocks with 13 key rounds
+movdqu %%T_key, [%%GDATA+16*j]
+%assign i (9-%%num_initial_blocks)
+%rep %%num_initial_blocks
+ aesenc reg(i),%%T_key
+%assign i (i+1)
+%endrep
+
+%assign j (j+1)
+%endrep
+
+
+movdqu %%T_key, [%%GDATA+16*j] ; encrypt with last (14th) key round
+%assign i (9-%%num_initial_blocks)
+%rep %%num_initial_blocks
+ aesenclast reg(i),%%T_key
+%assign i (i+1)
+%endrep
+
+%assign i (9-%%num_initial_blocks)
+%rep %%num_initial_blocks
+ XLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET]
+ pxor reg(i), %%T1
+ XSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], reg(i) ; write back ciphertext for %%num_initial_blocks blocks
+ add %%DATA_OFFSET, 16
+ %ifidn %%ENC_DEC, DEC
+ movdqa reg(i), %%T1
+ %endif
+ pshufb reg(i), [SHUF_MASK] ; prepare ciphertext for GHASH computations
+%assign i (i+1)
+%endrep
+
+
+%assign i (8-%%num_initial_blocks)
+%assign j (9-%%num_initial_blocks)
+
+%rep %%num_initial_blocks
+ pxor reg(j), reg(i)
+ GHASH_MUL reg(j), %%HASH_KEY, %%T1, %%T3, %%T4, %%T5, %%T6 ; apply GHASH on %%num_initial_blocks blocks
+%assign i (i+1)
+%assign j (j+1)
+%endrep
+ ; %%XMM8 has the current Hash Value
+ movdqa %%T3, %%XMM8
+
+ cmp %%LENGTH, 128
+ jl %%_initial_blocks_done ; no need for precomputed constants
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+; Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
+ paddd %%CTR, [ONE] ; INCR Y0
+ movdqa %%XMM1, %%CTR
+ pshufb %%XMM1, [SHUF_MASK] ; perform a 16Byte swap
+
+ paddd %%CTR, [ONE] ; INCR Y0
+ movdqa %%XMM2, %%CTR
+ pshufb %%XMM2, [SHUF_MASK] ; perform a 16Byte swap
+
+ paddd %%CTR, [ONE] ; INCR Y0
+ movdqa %%XMM3, %%CTR
+ pshufb %%XMM3, [SHUF_MASK] ; perform a 16Byte swap
+
+ paddd %%CTR, [ONE] ; INCR Y0
+ movdqa %%XMM4, %%CTR
+ pshufb %%XMM4, [SHUF_MASK] ; perform a 16Byte swap
+
+ paddd %%CTR, [ONE] ; INCR Y0
+ movdqa %%XMM5, %%CTR
+ pshufb %%XMM5, [SHUF_MASK] ; perform a 16Byte swap
+
+ paddd %%CTR, [ONE] ; INCR Y0
+ movdqa %%XMM6, %%CTR
+ pshufb %%XMM6, [SHUF_MASK] ; perform a 16Byte swap
+
+ paddd %%CTR, [ONE] ; INCR Y0
+ movdqa %%XMM7, %%CTR
+ pshufb %%XMM7, [SHUF_MASK] ; perform a 16Byte swap
+
+ paddd %%CTR, [ONE] ; INCR Y0
+ movdqa %%XMM8, %%CTR
+ pshufb %%XMM8, [SHUF_MASK] ; perform a 16Byte swap
+
+ movdqu %%T_key, [%%GDATA+16*0]
+ pxor %%XMM1, %%T_key
+ pxor %%XMM2, %%T_key
+ pxor %%XMM3, %%T_key
+ pxor %%XMM4, %%T_key
+ pxor %%XMM5, %%T_key
+ pxor %%XMM6, %%T_key
+ pxor %%XMM7, %%T_key
+ pxor %%XMM8, %%T_key
+
+
+%assign i 1
+%rep 13 ; do early (13) rounds
+ movdqu %%T_key, [%%GDATA+16*i]
+ aesenc %%XMM1, %%T_key
+ aesenc %%XMM2, %%T_key
+ aesenc %%XMM3, %%T_key
+ aesenc %%XMM4, %%T_key
+ aesenc %%XMM5, %%T_key
+ aesenc %%XMM6, %%T_key
+ aesenc %%XMM7, %%T_key
+ aesenc %%XMM8, %%T_key
+%assign i (i+1)
+%endrep
+
+
+ movdqu %%T_key, [%%GDATA+16*i] ; do final key round
+ aesenclast %%XMM1, %%T_key
+ aesenclast %%XMM2, %%T_key
+ aesenclast %%XMM3, %%T_key
+ aesenclast %%XMM4, %%T_key
+ aesenclast %%XMM5, %%T_key
+ aesenclast %%XMM6, %%T_key
+ aesenclast %%XMM7, %%T_key
+ aesenclast %%XMM8, %%T_key
+
+ XLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*0]
+ pxor %%XMM1, %%T1
+ XSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*0], %%XMM1
+ %ifidn %%ENC_DEC, DEC
+ movdqa %%XMM1, %%T1
+ %endif
+
+ XLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*1]
+ pxor %%XMM2, %%T1
+ XSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*1], %%XMM2
+ %ifidn %%ENC_DEC, DEC
+ movdqa %%XMM2, %%T1
+ %endif
+
+ XLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*2]
+ pxor %%XMM3, %%T1
+ XSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*2], %%XMM3
+ %ifidn %%ENC_DEC, DEC
+ movdqa %%XMM3, %%T1
+ %endif
+
+ XLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*3]
+ pxor %%XMM4, %%T1
+ XSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*3], %%XMM4
+ %ifidn %%ENC_DEC, DEC
+ movdqa %%XMM4, %%T1
+ %endif
+
+ XLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*4]
+ pxor %%XMM5, %%T1
+ XSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*4], %%XMM5
+ %ifidn %%ENC_DEC, DEC
+ movdqa %%XMM5, %%T1
+ %endif
+
+ XLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*5]
+ pxor %%XMM6, %%T1
+ XSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*5], %%XMM6
+ %ifidn %%ENC_DEC, DEC
+ movdqa %%XMM6, %%T1
+ %endif
+
+ XLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*6]
+ pxor %%XMM7, %%T1
+ XSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*6], %%XMM7
+ %ifidn %%ENC_DEC, DEC
+ movdqa %%XMM7, %%T1
+ %endif
+
+ XLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*7]
+ pxor %%XMM8, %%T1
+ XSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*7], %%XMM8
+ %ifidn %%ENC_DEC, DEC
+ movdqa %%XMM8, %%T1
+ %endif
+
+ add %%DATA_OFFSET, 128
+
+ pshufb %%XMM1, [SHUF_MASK] ; perform a 16Byte swap
+ pxor %%XMM1, %%T3 ; combine GHASHed value with the corresponding ciphertext
+ pshufb %%XMM2, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM3, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM4, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM5, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM6, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM7, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM8, [SHUF_MASK] ; perform a 16Byte swap
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+%%_initial_blocks_done:
+
+
+%endmacro
+
+
+
+; encrypt 8 blocks at a time
+; ghash the 8 previously encrypted ciphertext blocks
+; %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN are used as pointers only, not modified
+; %%DATA_OFFSET is the data offset value
+%macro GHASH_8_ENCRYPT_8_PARALLEL 22
+%define %%GDATA %1
+%define %%CYPH_PLAIN_OUT %2
+%define %%PLAIN_CYPH_IN %3
+%define %%DATA_OFFSET %4
+%define %%T1 %5
+%define %%T2 %6
+%define %%T3 %7
+%define %%T4 %8
+%define %%T5 %9
+%define %%T6 %10
+%define %%CTR %11
+%define %%XMM1 %12
+%define %%XMM2 %13
+%define %%XMM3 %14
+%define %%XMM4 %15
+%define %%XMM5 %16
+%define %%XMM6 %17
+%define %%XMM7 %18
+%define %%XMM8 %19
+%define %%T7 %20
+%define %%loop_idx %21
+%define %%ENC_DEC %22
+
+ movdqa %%T7, %%XMM1
+ movdqu [rsp + TMP2], %%XMM2
+ movdqu [rsp + TMP3], %%XMM3
+ movdqu [rsp + TMP4], %%XMM4
+ movdqu [rsp + TMP5], %%XMM5
+ movdqu [rsp + TMP6], %%XMM6
+ movdqu [rsp + TMP7], %%XMM7
+ movdqu [rsp + TMP8], %%XMM8
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;; Karatsuba Method
+
+ movdqa %%T4, %%T7
+ pshufd %%T6, %%T7, 01001110b
+ pxor %%T6, %%T7
+ %ifidn %%loop_idx, in_order
+ paddd %%CTR, [ONE] ; INCR CNT
+ %else
+ paddd %%CTR, [ONEf] ; INCR CNT
+ %endif
+ movdqu %%T5, [%%GDATA + HashKey_8]
+ pclmulqdq %%T4, %%T5, 0x11 ; %%T1 = a1*b1
+ pclmulqdq %%T7, %%T5, 0x00 ; %%T7 = a0*b0
+ movdqu %%T5, [%%GDATA + HashKey_8_k]
+ pclmulqdq %%T6, %%T5, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+ movdqa %%XMM1, %%CTR
+
+ %ifidn %%loop_idx, in_order
+ paddd %%CTR, [ONE] ; INCR CNT
+ movdqa %%XMM2, %%CTR
+
+ paddd %%CTR, [ONE] ; INCR CNT
+ movdqa %%XMM3, %%CTR
+
+ paddd %%CTR, [ONE] ; INCR CNT
+ movdqa %%XMM4, %%CTR
+
+ paddd %%CTR, [ONE] ; INCR CNT
+ movdqa %%XMM5, %%CTR
+
+ paddd %%CTR, [ONE] ; INCR CNT
+ movdqa %%XMM6, %%CTR
+
+ paddd %%CTR, [ONE] ; INCR CNT
+ movdqa %%XMM7, %%CTR
+
+ paddd %%CTR, [ONE] ; INCR CNT
+ movdqa %%XMM8, %%CTR
+
+ pshufb %%XMM1, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM2, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM3, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM4, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM5, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM6, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM7, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM8, [SHUF_MASK] ; perform a 16Byte swap
+ %else
+ paddd %%CTR, [ONEf] ; INCR CNT
+ movdqa %%XMM2, %%CTR
+
+ paddd %%CTR, [ONEf] ; INCR CNT
+ movdqa %%XMM3, %%CTR
+
+ paddd %%CTR, [ONEf] ; INCR CNT
+ movdqa %%XMM4, %%CTR
+
+ paddd %%CTR, [ONEf] ; INCR CNT
+ movdqa %%XMM5, %%CTR
+
+ paddd %%CTR, [ONEf] ; INCR CNT
+ movdqa %%XMM6, %%CTR
+
+ paddd %%CTR, [ONEf] ; INCR CNT
+ movdqa %%XMM7, %%CTR
+
+ paddd %%CTR, [ONEf] ; INCR CNT
+ movdqa %%XMM8, %%CTR
+ %endif
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ movdqu %%T1, [%%GDATA + 16*0]
+ pxor %%XMM1, %%T1
+ pxor %%XMM2, %%T1
+ pxor %%XMM3, %%T1
+ pxor %%XMM4, %%T1
+ pxor %%XMM5, %%T1
+ pxor %%XMM6, %%T1
+ pxor %%XMM7, %%T1
+ pxor %%XMM8, %%T1
+
+ ;; %%XMM6, %%T5 hold the values for the two operands which are carry-less multiplied
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;; Karatsuba Method
+ movdqu %%T1, [rsp + TMP2]
+ movdqa %%T3, %%T1
+
+ pshufd %%T2, %%T3, 01001110b
+ pxor %%T2, %%T3
+ movdqu %%T5, [%%GDATA + HashKey_7]
+ pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1
+ pclmulqdq %%T3, %%T5, 0x00 ; %%T3 = a0*b0
+ movdqu %%T5, [%%GDATA + HashKey_7_k]
+ pclmulqdq %%T2, %%T5, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+ pxor %%T4, %%T1 ; accumulate the results in %%T4:%%T7, %%T6 holds the middle part
+ pxor %%T7, %%T3
+ pxor %%T6, %%T2
+
+ movdqu %%T1, [%%GDATA + 16*1]
+ aesenc %%XMM1, %%T1
+ aesenc %%XMM2, %%T1
+ aesenc %%XMM3, %%T1
+ aesenc %%XMM4, %%T1
+ aesenc %%XMM5, %%T1
+ aesenc %%XMM6, %%T1
+ aesenc %%XMM7, %%T1
+ aesenc %%XMM8, %%T1
+
+
+ movdqu %%T1, [%%GDATA + 16*2]
+ aesenc %%XMM1, %%T1
+ aesenc %%XMM2, %%T1
+ aesenc %%XMM3, %%T1
+ aesenc %%XMM4, %%T1
+ aesenc %%XMM5, %%T1
+ aesenc %%XMM6, %%T1
+ aesenc %%XMM7, %%T1
+ aesenc %%XMM8, %%T1
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ; Karatsuba Method
+ movdqu %%T1, [rsp + TMP3]
+ movdqa %%T3, %%T1
+ pshufd %%T2, %%T3, 01001110b
+ pxor %%T2, %%T3
+ movdqu %%T5, [%%GDATA + HashKey_6]
+ pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1
+ pclmulqdq %%T3, %%T5, 0x00 ; %%T3 = a0*b0
+ movdqu %%T5, [%%GDATA + HashKey_6_k]
+ pclmulqdq %%T2, %%T5, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+ pxor %%T4, %%T1 ; accumulate the results in %%T4:%%T7, %%T6 holds the middle part
+ pxor %%T7, %%T3
+ pxor %%T6, %%T2
+
+ movdqu %%T1, [%%GDATA + 16*3]
+ aesenc %%XMM1, %%T1
+ aesenc %%XMM2, %%T1
+ aesenc %%XMM3, %%T1
+ aesenc %%XMM4, %%T1
+ aesenc %%XMM5, %%T1
+ aesenc %%XMM6, %%T1
+ aesenc %%XMM7, %%T1
+ aesenc %%XMM8, %%T1
+
+ movdqu %%T1, [rsp + TMP4]
+ movdqa %%T3, %%T1
+ pshufd %%T2, %%T3, 01001110b
+ pxor %%T2, %%T3
+ movdqu %%T5, [%%GDATA + HashKey_5]
+ pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1
+ pclmulqdq %%T3, %%T5, 0x00 ; %%T3 = a0*b0
+ movdqu %%T5, [%%GDATA + HashKey_5_k]
+ pclmulqdq %%T2, %%T5, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+ pxor %%T4, %%T1 ; accumulate the results in %%T4:%%T7, %%T6 holds the middle part
+ pxor %%T7, %%T3
+ pxor %%T6, %%T2
+
+ movdqu %%T1, [%%GDATA + 16*4]
+ aesenc %%XMM1, %%T1
+ aesenc %%XMM2, %%T1
+ aesenc %%XMM3, %%T1
+ aesenc %%XMM4, %%T1
+ aesenc %%XMM5, %%T1
+ aesenc %%XMM6, %%T1
+ aesenc %%XMM7, %%T1
+ aesenc %%XMM8, %%T1
+
+ movdqu %%T1, [%%GDATA + 16*5]
+ aesenc %%XMM1, %%T1
+ aesenc %%XMM2, %%T1
+ aesenc %%XMM3, %%T1
+ aesenc %%XMM4, %%T1
+ aesenc %%XMM5, %%T1
+ aesenc %%XMM6, %%T1
+ aesenc %%XMM7, %%T1
+ aesenc %%XMM8, %%T1
+
+ movdqu %%T1, [rsp + TMP5]
+ movdqa %%T3, %%T1
+ pshufd %%T2, %%T3, 01001110b
+ pxor %%T2, %%T3
+ movdqu %%T5, [%%GDATA + HashKey_4]
+ pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1
+ pclmulqdq %%T3, %%T5, 0x00 ; %%T3 = a0*b0
+ movdqu %%T5, [%%GDATA + HashKey_4_k]
+ pclmulqdq %%T2, %%T5, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+ pxor %%T4, %%T1 ; accumulate the results in %%T4:%%T7, %%T6 holds the middle part
+ pxor %%T7, %%T3
+ pxor %%T6, %%T2
+
+
+ movdqu %%T1, [%%GDATA + 16*6]
+ aesenc %%XMM1, %%T1
+ aesenc %%XMM2, %%T1
+ aesenc %%XMM3, %%T1
+ aesenc %%XMM4, %%T1
+ aesenc %%XMM5, %%T1
+ aesenc %%XMM6, %%T1
+ aesenc %%XMM7, %%T1
+ aesenc %%XMM8, %%T1
+ movdqu %%T1, [rsp + TMP6]
+ movdqa %%T3, %%T1
+ pshufd %%T2, %%T3, 01001110b
+ pxor %%T2, %%T3
+ movdqu %%T5, [%%GDATA + HashKey_3]
+ pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1
+ pclmulqdq %%T3, %%T5, 0x00 ; %%T3 = a0*b0
+ movdqu %%T5, [%%GDATA + HashKey_3_k]
+ pclmulqdq %%T2, %%T5, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+ pxor %%T4, %%T1 ; accumulate the results in %%T4:%%T7, %%T6 holds the middle part
+ pxor %%T7, %%T3
+ pxor %%T6, %%T2
+
+ movdqu %%T1, [%%GDATA + 16*7]
+ aesenc %%XMM1, %%T1
+ aesenc %%XMM2, %%T1
+ aesenc %%XMM3, %%T1
+ aesenc %%XMM4, %%T1
+ aesenc %%XMM5, %%T1
+ aesenc %%XMM6, %%T1
+ aesenc %%XMM7, %%T1
+ aesenc %%XMM8, %%T1
+
+ movdqu %%T1, [rsp + TMP7]
+ movdqa %%T3, %%T1
+ pshufd %%T2, %%T3, 01001110b
+ pxor %%T2, %%T3
+ movdqu %%T5, [%%GDATA + HashKey_2]
+ pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1
+ pclmulqdq %%T3, %%T5, 0x00 ; %%T3 = a0*b0
+ movdqu %%T5, [%%GDATA + HashKey_2_k]
+ pclmulqdq %%T2, %%T5, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+ pxor %%T4, %%T1 ; accumulate the results in %%T4:%%T7, %%T6 holds the middle part
+ pxor %%T7, %%T3
+ pxor %%T6, %%T2
+
+ movdqu %%T1, [%%GDATA + 16*8]
+ aesenc %%XMM1, %%T1
+ aesenc %%XMM2, %%T1
+ aesenc %%XMM3, %%T1
+ aesenc %%XMM4, %%T1
+ aesenc %%XMM5, %%T1
+ aesenc %%XMM6, %%T1
+ aesenc %%XMM7, %%T1
+ aesenc %%XMM8, %%T1
+
+
+ ;; %%XMM8, %%T5 hold the values for the two operands which are carry-less multiplied
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;; Karatsuba Method
+ movdqu %%T1, [rsp + TMP8]
+ movdqa %%T3, %%T1
+
+ pshufd %%T2, %%T3, 01001110b
+ pxor %%T2, %%T3
+ movdqu %%T5, [%%GDATA + HashKey]
+ pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1
+ pclmulqdq %%T3, %%T5, 0x00 ; %%T3 = a0*b0
+ movdqu %%T5, [%%GDATA + HashKey_k]
+ pclmulqdq %%T2, %%T5, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+ pxor %%T7, %%T3
+ pxor %%T4, %%T1
+
+ movdqu %%T1, [%%GDATA + 16*9]
+ aesenc %%XMM1, %%T1
+ aesenc %%XMM2, %%T1
+ aesenc %%XMM3, %%T1
+ aesenc %%XMM4, %%T1
+ aesenc %%XMM5, %%T1
+ aesenc %%XMM6, %%T1
+ aesenc %%XMM7, %%T1
+ aesenc %%XMM8, %%T1
+
+
+ movdqu %%T1, [%%GDATA + 16*10]
+ aesenc %%XMM1, %%T1
+ aesenc %%XMM2, %%T1
+ aesenc %%XMM3, %%T1
+ aesenc %%XMM4, %%T1
+ aesenc %%XMM5, %%T1
+ aesenc %%XMM6, %%T1
+ aesenc %%XMM7, %%T1
+ aesenc %%XMM8, %%T1
+
+ movdqu %%T1, [%%GDATA + 16*11]
+ aesenc %%XMM1, %%T1
+ aesenc %%XMM2, %%T1
+ aesenc %%XMM3, %%T1
+ aesenc %%XMM4, %%T1
+ aesenc %%XMM5, %%T1
+ aesenc %%XMM6, %%T1
+ aesenc %%XMM7, %%T1
+ aesenc %%XMM8, %%T1
+
+ movdqu %%T1, [%%GDATA + 16*12]
+ aesenc %%XMM1, %%T1
+ aesenc %%XMM2, %%T1
+ aesenc %%XMM3, %%T1
+ aesenc %%XMM4, %%T1
+ aesenc %%XMM5, %%T1
+ aesenc %%XMM6, %%T1
+ aesenc %%XMM7, %%T1
+ aesenc %%XMM8, %%T1
+
+ movdqu %%T1, [%%GDATA + 16*13]
+ aesenc %%XMM1, %%T1
+ aesenc %%XMM2, %%T1
+ aesenc %%XMM3, %%T1
+ aesenc %%XMM4, %%T1
+ aesenc %%XMM5, %%T1
+ aesenc %%XMM6, %%T1
+ aesenc %%XMM7, %%T1
+ aesenc %%XMM8, %%T1
+
+ movdqu %%T5, [%%GDATA + 16*14] ; finish last key round
+
+
+%assign i 0
+%assign j 1
+%rep 8
+ XLDR %%T1, [%%PLAIN_CYPH_IN+%%DATA_OFFSET+16*i]
+
+ %ifidn %%ENC_DEC, DEC
+ movdqa %%T3, %%T1
+ %endif
+
+ pxor %%T1, %%T5
+ aesenclast reg(j), %%T1 ; XMM1:XMM8
+ XSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*i], reg(j) ; Write to the Output buffer
+
+ %ifidn %%ENC_DEC, DEC
+ movdqa reg(j), %%T3
+ %endif
+%assign i (i+1)
+%assign j (j+1)
+%endrep
+
+
+
+
+ pxor %%T2, %%T6
+ pxor %%T2, %%T4
+ pxor %%T2, %%T7
+
+
+ movdqa %%T3, %%T2
+ pslldq %%T3, 8 ; shift-L %%T3 2 DWs
+ psrldq %%T2, 8 ; shift-R %%T2 2 DWs
+ pxor %%T7, %%T3
+ pxor %%T4, %%T2 ; accumulate the results in %%T4:%%T7
+
+
+
+ ;first phase of the reduction
+ movdqa %%T2, %%T7
+ movdqa %%T3, %%T7
+ movdqa %%T1, %%T7 ; move %%T7 into %%T2, %%T3, %%T1 in order to perform the three shifts independently
+
+ pslld %%T2, 31 ; packed right shifting << 31
+ pslld %%T3, 30 ; packed right shifting shift << 30
+ pslld %%T1, 25 ; packed right shifting shift << 25
+ pxor %%T2, %%T3 ; xor the shifted versions
+ pxor %%T2, %%T1
+
+ movdqa %%T5, %%T2
+ psrldq %%T5, 4 ; shift-R %%T5 1 DW
+
+ pslldq %%T2, 12 ; shift-L %%T2 3 DWs
+ pxor %%T7, %%T2 ; first phase of the reduction complete
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ pshufb %%XMM1, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM2, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM3, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM4, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM5, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM6, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM7, [SHUF_MASK] ; perform a 16Byte swap
+ pshufb %%XMM8, [SHUF_MASK] ; perform a 16Byte swap
+
+ ;second phase of the reduction
+ movdqa %%T2,%%T7 ; make 3 copies of %%T7 (in in %%T2, %%T3, %%T1) for doing three shift operations
+ movdqa %%T3,%%T7
+ movdqa %%T1,%%T7
+
+ psrld %%T2,1 ; packed left shifting >> 1
+ psrld %%T3,2 ; packed left shifting >> 2
+ psrld %%T1,7 ; packed left shifting >> 7
+ pxor %%T2,%%T3 ; xor the shifted versions
+ pxor %%T2,%%T1
+
+ pxor %%T2, %%T5
+ pxor %%T7, %%T2
+ pxor %%T7, %%T4 ; the result is in %%T4
+
+
+ pxor %%XMM1, %%T7
+
+%endmacro
+
+
+; GHASH the last 4 ciphertext blocks.
+%macro GHASH_LAST_8 16
+%define %%GDATA %1
+%define %%T1 %2
+%define %%T2 %3
+%define %%T3 %4
+%define %%T4 %5
+%define %%T5 %6
+%define %%T6 %7
+%define %%T7 %8
+%define %%XMM1 %9
+%define %%XMM2 %10
+%define %%XMM3 %11
+%define %%XMM4 %12
+%define %%XMM5 %13
+%define %%XMM6 %14
+%define %%XMM7 %15
+%define %%XMM8 %16
+
+ ; Karatsuba Method
+ movdqa %%T6, %%XMM1
+ pshufd %%T2, %%XMM1, 01001110b
+ pxor %%T2, %%XMM1
+ movdqu %%T5, [%%GDATA + HashKey_8]
+ pclmulqdq %%T6, %%T5, 0x11 ; %%T6 = a1*b1
+
+ pclmulqdq %%XMM1, %%T5, 0x00 ; %%XMM1 = a0*b0
+ movdqu %%T4, [%%GDATA + HashKey_8_k]
+ pclmulqdq %%T2, %%T4, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+
+ movdqa %%T7, %%XMM1
+ movdqa %%XMM1, %%T2 ; result in %%T6, %%T7, %%XMM1
+
+
+ ; Karatsuba Method
+ movdqa %%T1, %%XMM2
+ pshufd %%T2, %%XMM2, 01001110b
+ pxor %%T2, %%XMM2
+ movdqu %%T5, [%%GDATA + HashKey_7]
+ pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1
+
+ pclmulqdq %%XMM2, %%T5, 0x00 ; %%XMM2 = a0*b0
+ movdqu %%T4, [%%GDATA + HashKey_7_k]
+ pclmulqdq %%T2, %%T4, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+
+ pxor %%T6, %%T1
+ pxor %%T7, %%XMM2
+ pxor %%XMM1, %%T2 ; results accumulated in %%T6, %%T7, %%XMM1
+
+
+ ; Karatsuba Method
+ movdqa %%T1, %%XMM3
+ pshufd %%T2, %%XMM3, 01001110b
+ pxor %%T2, %%XMM3
+ movdqu %%T5, [%%GDATA + HashKey_6]
+ pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1
+
+ pclmulqdq %%XMM3, %%T5, 0x00 ; %%XMM3 = a0*b0
+ movdqu %%T4, [%%GDATA + HashKey_6_k]
+ pclmulqdq %%T2, %%T4, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+
+ pxor %%T6, %%T1
+ pxor %%T7, %%XMM3
+ pxor %%XMM1, %%T2 ; results accumulated in %%T6, %%T7, %%XMM1
+
+ ; Karatsuba Method
+ movdqa %%T1, %%XMM4
+ pshufd %%T2, %%XMM4, 01001110b
+ pxor %%T2, %%XMM4
+ movdqu %%T5, [%%GDATA + HashKey_5]
+ pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1
+
+ pclmulqdq %%XMM4, %%T5, 0x00 ; %%XMM3 = a0*b0
+ movdqu %%T4, [%%GDATA + HashKey_5_k]
+ pclmulqdq %%T2, %%T4, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+
+ pxor %%T6, %%T1
+ pxor %%T7, %%XMM4
+ pxor %%XMM1, %%T2 ; results accumulated in %%T6, %%T7, %%XMM1
+
+ ; Karatsuba Method
+ movdqa %%T1, %%XMM5
+ pshufd %%T2, %%XMM5, 01001110b
+ pxor %%T2, %%XMM5
+ movdqu %%T5, [%%GDATA + HashKey_4]
+ pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1
+
+ pclmulqdq %%XMM5, %%T5, 0x00 ; %%XMM3 = a0*b0
+ movdqu %%T4, [%%GDATA + HashKey_4_k]
+ pclmulqdq %%T2, %%T4, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+
+ pxor %%T6, %%T1
+ pxor %%T7, %%XMM5
+ pxor %%XMM1, %%T2 ; results accumulated in %%T6, %%T7, %%XMM1
+
+ ; Karatsuba Method
+ movdqa %%T1, %%XMM6
+ pshufd %%T2, %%XMM6, 01001110b
+ pxor %%T2, %%XMM6
+ movdqu %%T5, [%%GDATA + HashKey_3]
+ pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1
+
+ pclmulqdq %%XMM6, %%T5, 0x00 ; %%XMM3 = a0*b0
+ movdqu %%T4, [%%GDATA + HashKey_3_k]
+ pclmulqdq %%T2, %%T4, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+
+ pxor %%T6, %%T1
+ pxor %%T7, %%XMM6
+ pxor %%XMM1, %%T2 ; results accumulated in %%T6, %%T7, %%XMM1
+
+ ; Karatsuba Method
+ movdqa %%T1, %%XMM7
+ pshufd %%T2, %%XMM7, 01001110b
+ pxor %%T2, %%XMM7
+ movdqu %%T5, [%%GDATA + HashKey_2]
+ pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1
+
+ pclmulqdq %%XMM7, %%T5, 0x00 ; %%XMM3 = a0*b0
+ movdqu %%T4, [%%GDATA + HashKey_2_k]
+ pclmulqdq %%T2, %%T4, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+
+ pxor %%T6, %%T1
+ pxor %%T7, %%XMM7
+ pxor %%XMM1, %%T2 ; results accumulated in %%T6, %%T7, %%XMM1
+
+
+ ; Karatsuba Method
+ movdqa %%T1, %%XMM8
+ pshufd %%T2, %%XMM8, 01001110b
+ pxor %%T2, %%XMM8
+ movdqu %%T5, [%%GDATA + HashKey]
+ pclmulqdq %%T1, %%T5, 0x11 ; %%T1 = a1*b1
+
+ pclmulqdq %%XMM8, %%T5, 0x00 ; %%XMM4 = a0*b0
+ movdqu %%T4, [%%GDATA + HashKey_k]
+ pclmulqdq %%T2, %%T4, 0x00 ; %%T2 = (a1+a0)*(b1+b0)
+
+ pxor %%T6, %%T1
+ pxor %%T7, %%XMM8
+ pxor %%T2, %%XMM1
+ pxor %%T2, %%T6
+ pxor %%T2, %%T7 ; middle section of the temp results combined as in Karatsuba algorithm
+
+
+ movdqa %%T4, %%T2
+ pslldq %%T4, 8 ; shift-L %%T4 2 DWs
+ psrldq %%T2, 8 ; shift-R %%T2 2 DWs
+ pxor %%T7, %%T4
+ pxor %%T6, %%T2 ; <%%T6:%%T7> holds the result of the accumulated carry-less multiplications
+
+
+ ;first phase of the reduction
+ movdqa %%T2, %%T7
+ movdqa %%T3, %%T7
+ movdqa %%T4, %%T7 ; move %%T7 into %%T2, %%T3, %%T4 in order to perform the three shifts independently
+
+ pslld %%T2, 31 ; packed right shifting << 31
+ pslld %%T3, 30 ; packed right shifting shift << 30
+ pslld %%T4, 25 ; packed right shifting shift << 25
+ pxor %%T2, %%T3 ; xor the shifted versions
+ pxor %%T2, %%T4
+
+ movdqa %%T1, %%T2
+ psrldq %%T1, 4 ; shift-R %%T1 1 DW
+
+ pslldq %%T2, 12 ; shift-L %%T2 3 DWs
+ pxor %%T7, %%T2 ; first phase of the reduction complete
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ ;second phase of the reduction
+ movdqa %%T2,%%T7 ; make 3 copies of %%T7 (in in %%T2, %%T3, %%T4) for doing three shift operations
+ movdqa %%T3,%%T7
+ movdqa %%T4,%%T7
+
+ psrld %%T2,1 ; packed left shifting >> 1
+ psrld %%T3,2 ; packed left shifting >> 2
+ psrld %%T4,7 ; packed left shifting >> 7
+ pxor %%T2,%%T3 ; xor the shifted versions
+ pxor %%T2,%%T4
+
+ pxor %%T2, %%T1
+ pxor %%T7, %%T2
+ pxor %%T6, %%T7 ; the result is in %%T6
+
+%endmacro
+
+; Encryption of a single block
+%macro ENCRYPT_SINGLE_BLOCK 3
+%define %%GDATA %1
+%define %%ST %2
+%define %%T1 %3
+ movdqu %%T1, [%%GDATA+16*0]
+ pxor %%ST, %%T1
+%assign i 1
+%rep 13
+ movdqu %%T1, [%%GDATA+16*i]
+ aesenc %%ST, %%T1
+%assign i (i+1)
+%endrep
+ movdqu %%T1, [%%GDATA+16*i]
+ aesenclast %%ST, %%T1
+%endmacro
+
+
+;; Start of Stack Setup
+
+%macro FUNC_SAVE 0
+ ;; Required for Update/GMC_ENC
+ ;the number of pushes must equal STACK_OFFSET
+ push r12
+ push r13
+ push r14
+ push r15
+ mov r14, rsp
+
+ sub rsp, VARIABLE_OFFSET
+ and rsp, ~63
+
+%ifidn __OUTPUT_FORMAT__, win64
+ ; xmm6:xmm15 need to be maintained for Windows
+ movdqu [rsp + LOCAL_STORAGE + 0*16],xmm6
+ movdqu [rsp + LOCAL_STORAGE + 1*16],xmm7
+ movdqu [rsp + LOCAL_STORAGE + 2*16],xmm8
+ movdqu [rsp + LOCAL_STORAGE + 3*16],xmm9
+ movdqu [rsp + LOCAL_STORAGE + 4*16],xmm10
+ movdqu [rsp + LOCAL_STORAGE + 5*16],xmm11
+ movdqu [rsp + LOCAL_STORAGE + 6*16],xmm12
+ movdqu [rsp + LOCAL_STORAGE + 7*16],xmm13
+ movdqu [rsp + LOCAL_STORAGE + 8*16],xmm14
+ movdqu [rsp + LOCAL_STORAGE + 9*16],xmm15
+%endif
+%endmacro
+
+
+%macro FUNC_RESTORE 0
+
+%ifidn __OUTPUT_FORMAT__, win64
+ movdqu xmm15 , [rsp + LOCAL_STORAGE + 9*16]
+ movdqu xmm14 , [rsp + LOCAL_STORAGE + 8*16]
+ movdqu xmm13 , [rsp + LOCAL_STORAGE + 7*16]
+ movdqu xmm12 , [rsp + LOCAL_STORAGE + 6*16]
+ movdqu xmm11 , [rsp + LOCAL_STORAGE + 5*16]
+ movdqu xmm10 , [rsp + LOCAL_STORAGE + 4*16]
+ movdqu xmm9 , [rsp + LOCAL_STORAGE + 3*16]
+ movdqu xmm8 , [rsp + LOCAL_STORAGE + 2*16]
+ movdqu xmm7 , [rsp + LOCAL_STORAGE + 1*16]
+ movdqu xmm6 , [rsp + LOCAL_STORAGE + 0*16]
+%endif
+
+;; Required for Update/GMC_ENC
+ mov rsp, r14
+ pop r15
+ pop r14
+ pop r13
+ pop r12
+%endmacro
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+; GCM_INIT initializes a gcm_data struct to prepare for encoding/decoding.
+; Input: gcm_data struct* (GDATA), IV, Additional Authentication data (A_IN), Additional
+; Data length (A_LEN)
+; Output: Updated GDATA with the hash of A_IN (AadHash) and initialized other parts of GDATA.
+; Clobbers rax, r10-r13 and xmm0-xmm6
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+%macro GCM_INIT 4
+%define %%GDATA %1
+%define %%IV %2
+%define %%A_IN %3
+%define %%A_LEN %4
+%define %%AAD_HASH xmm0
+%define %%SUBHASH xmm1
+
+
+ movdqu %%SUBHASH, [%%GDATA + HashKey]
+
+ CALC_AAD_HASH %%A_IN, %%A_LEN, %%AAD_HASH, %%SUBHASH, xmm2, xmm3, xmm4, xmm5, xmm6, r10, r11, r12, r13, rax
+ pxor xmm2, xmm3
+ mov r10, %%A_LEN
+
+ movdqu [%%GDATA + AadHash], %%AAD_HASH ; my_ctx_data.aad hash = aad_hash
+ mov [%%GDATA + AadLen], r10 ; my_ctx_data.aad_length = aad_length
+ xor r10, r10
+ mov [%%GDATA + InLen], r10 ; my_ctx_data.in_length = 0
+ mov [%%GDATA + PBlockLen], r10 ; my_ctx_data.partial_block_length = 0
+ movdqu [%%GDATA + PBlockEncKey], xmm2 ; my_ctx_data.partial_block_enc_key = 0
+ mov r10, %%IV
+ movdqu xmm2, [r10]
+ movdqu [%%GDATA + OrigIV], xmm2 ; my_ctx_data.orig_IV = iv
+
+ pshufb xmm2, [SHUF_MASK]
+
+ movdqu [%%GDATA + CurCount], xmm2 ; my_ctx_data.current_counter = iv
+%endmacro
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+; GCM_ENC_DEC Encodes/Decodes given data. Assumes that the passed gcm_data struct has been
+; initialized by GCM_INIT
+; Requires the input data be at least 1 byte long because of READ_SMALL_INPUT_DATA.
+; Input: gcm_data struct* (GDATA), input text (PLAIN_CYPH_IN), input text length (PLAIN_CYPH_LEN),
+; and whether encoding or decoding (ENC_DEC)
+; Output: A cypher of the given plain text (CYPH_PLAIN_OUT), and updated GDATA
+; Clobbers rax, r10-r15, and xmm0-xmm15
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+%macro GCM_ENC_DEC 5
+%define %%GDATA %1
+%define %%CYPH_PLAIN_OUT %2
+%define %%PLAIN_CYPH_IN %3
+%define %%PLAIN_CYPH_LEN %4
+%define %%ENC_DEC %5
+%define %%DATA_OFFSET r11
+
+; Macro flow:
+; calculate the number of 16byte blocks in the message
+; process (number of 16byte blocks) mod 8 '%%_initial_num_blocks_is_# .. %%_initial_blocks_encrypted'
+; process 8 16 byte blocks at a time until all are done '%%_encrypt_by_8_new .. %%_eight_cipher_left'
+; if there is a block of less tahn 16 bytes process it '%%_zero_cipher_left .. %%_multiple_of_16_bytes'
+
+ cmp %%PLAIN_CYPH_LEN, 0
+ je %%_multiple_of_16_bytes
+
+ xor %%DATA_OFFSET, %%DATA_OFFSET
+ add [%%GDATA+InLen], %%PLAIN_CYPH_LEN ;Update length of data processed
+ movdqu xmm13, [%%GDATA + HashKey] ; xmm13 = HashKey
+ movdqu xmm8, [%%GDATA + AadHash]
+
+
+ PARTIAL_BLOCK %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, %%PLAIN_CYPH_LEN, %%DATA_OFFSET, xmm8, %%ENC_DEC
+
+ mov r13, %%PLAIN_CYPH_LEN ; save the number of bytes of plaintext/ciphertext
+ sub r13, %%DATA_OFFSET
+ mov r10, r13 ;save the amount of data left to process in r10
+ and r13, -16 ; r13 = r13 - (r13 mod 16)
+
+ mov r12, r13
+ shr r12, 4
+ and r12, 7
+ jz %%_initial_num_blocks_is_0
+
+ cmp r12, 7
+ je %%_initial_num_blocks_is_7
+ cmp r12, 6
+ je %%_initial_num_blocks_is_6
+ cmp r12, 5
+ je %%_initial_num_blocks_is_5
+ cmp r12, 4
+ je %%_initial_num_blocks_is_4
+ cmp r12, 3
+ je %%_initial_num_blocks_is_3
+ cmp r12, 2
+ je %%_initial_num_blocks_is_2
+
+ jmp %%_initial_num_blocks_is_1
+
+%%_initial_num_blocks_is_7:
+ INITIAL_BLOCKS %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 7, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
+ sub r13, 16*7
+ jmp %%_initial_blocks_encrypted
+
+%%_initial_num_blocks_is_6:
+ INITIAL_BLOCKS %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 6, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
+ sub r13, 16*6
+ jmp %%_initial_blocks_encrypted
+
+%%_initial_num_blocks_is_5:
+ INITIAL_BLOCKS %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 5, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
+ sub r13, 16*5
+ jmp %%_initial_blocks_encrypted
+
+%%_initial_num_blocks_is_4:
+ INITIAL_BLOCKS %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 4, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
+ sub r13, 16*4
+ jmp %%_initial_blocks_encrypted
+
+
+%%_initial_num_blocks_is_3:
+ INITIAL_BLOCKS %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 3, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
+ sub r13, 16*3
+ jmp %%_initial_blocks_encrypted
+%%_initial_num_blocks_is_2:
+ INITIAL_BLOCKS %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 2, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
+ sub r13, 16*2
+ jmp %%_initial_blocks_encrypted
+
+%%_initial_num_blocks_is_1:
+ INITIAL_BLOCKS %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 1, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
+ sub r13, 16
+ jmp %%_initial_blocks_encrypted
+
+%%_initial_num_blocks_is_0:
+ INITIAL_BLOCKS %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 0, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
+
+
+%%_initial_blocks_encrypted:
+ cmp r13, 0
+ je %%_zero_cipher_left
+
+ sub r13, 128
+ je %%_eight_cipher_left
+
+
+
+
+ movd r15d, xmm9
+ and r15d, 255
+ pshufb xmm9, [SHUF_MASK]
+
+
+%%_encrypt_by_8_new:
+ cmp r15d, 255-8
+ jg %%_encrypt_by_8
+
+
+
+ add r15b, 8
+ GHASH_8_ENCRYPT_8_PARALLEL %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, %%DATA_OFFSET, xmm0, xmm10, xmm11, xmm12, xmm13, xmm14, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm15, out_order, %%ENC_DEC
+ add %%DATA_OFFSET, 128
+ sub r13, 128
+ jne %%_encrypt_by_8_new
+
+ pshufb xmm9, [SHUF_MASK]
+ jmp %%_eight_cipher_left
+
+%%_encrypt_by_8:
+ pshufb xmm9, [SHUF_MASK]
+ add r15b, 8
+ GHASH_8_ENCRYPT_8_PARALLEL %%GDATA, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, %%DATA_OFFSET, xmm0, xmm10, xmm11, xmm12, xmm13, xmm14, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm15, in_order, %%ENC_DEC
+ pshufb xmm9, [SHUF_MASK]
+ add %%DATA_OFFSET, 128
+ sub r13, 128
+ jne %%_encrypt_by_8_new
+
+ pshufb xmm9, [SHUF_MASK]
+
+
+
+
+%%_eight_cipher_left:
+ GHASH_LAST_8 %%GDATA, xmm0, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8
+
+
+%%_zero_cipher_left:
+ movdqu [%%GDATA + AadHash], xmm14
+ movdqu [%%GDATA + CurCount], xmm9
+
+ mov r13, r10
+ and r13, 15 ; r13 = (%%PLAIN_CYPH_LEN mod 16)
+
+ je %%_multiple_of_16_bytes
+
+ mov [%%GDATA + PBlockLen], r13 ; my_ctx.data.partial_blck_length = r13
+ ; handle the last <16 Byte block seperately
+
+ paddd xmm9, [ONE] ; INCR CNT to get Yn
+ movdqu [%%GDATA + CurCount], xmm9 ; my_ctx.data.current_counter = xmm9
+ pshufb xmm9, [SHUF_MASK]
+ ENCRYPT_SINGLE_BLOCK %%GDATA, xmm9, xmm2 ; E(K, Yn)
+ movdqu [%%GDATA + PBlockEncKey], xmm9 ; my_ctx_data.partial_block_enc_key = xmm9
+
+ cmp %%PLAIN_CYPH_LEN, 16
+ jge %%_large_enough_update
+
+ lea r10, [%%PLAIN_CYPH_IN + %%DATA_OFFSET]
+ READ_SMALL_DATA_INPUT xmm1, r10, r13, r12, r15, rax
+ lea r12, [SHIFT_MASK + 16]
+ sub r12, r13
+ jmp %%_data_read
+
+%%_large_enough_update:
+ sub %%DATA_OFFSET, 16
+ add %%DATA_OFFSET, r13
+
+ movdqu xmm1, [%%PLAIN_CYPH_IN+%%DATA_OFFSET] ; receive the last <16 Byte block
+
+ sub %%DATA_OFFSET, r13
+ add %%DATA_OFFSET, 16
+
+ lea r12, [SHIFT_MASK + 16]
+ sub r12, r13 ; adjust the shuffle mask pointer to be able to shift 16-r13 bytes (r13 is the number of bytes in plaintext mod 16)
+ movdqu xmm2, [r12] ; get the appropriate shuffle mask
+ pshufb xmm1, xmm2 ; shift right 16-r13 bytes
+%%_data_read:
+ %ifidn %%ENC_DEC, DEC
+ movdqa xmm2, xmm1
+ pxor xmm9, xmm1 ; Plaintext XOR E(K, Yn)
+ movdqu xmm1, [r12 + ALL_F - SHIFT_MASK] ; get the appropriate mask to mask out top 16-r13 bytes of xmm9
+ pand xmm9, xmm1 ; mask out top 16-r13 bytes of xmm9
+ pand xmm2, xmm1
+ pshufb xmm2, [SHUF_MASK]
+ pxor xmm14, xmm2
+ movdqu [%%GDATA + AadHash], xmm14
+
+ %else
+ pxor xmm9, xmm1 ; Plaintext XOR E(K, Yn)
+ movdqu xmm1, [r12 + ALL_F - SHIFT_MASK] ; get the appropriate mask to mask out top 16-r13 bytes of xmm9
+ pand xmm9, xmm1 ; mask out top 16-r13 bytes of xmm9
+ pshufb xmm9, [SHUF_MASK]
+ pxor xmm14, xmm9
+ movdqu [%%GDATA + AadHash], xmm14
+
+ pshufb xmm9, [SHUF_MASK] ; shuffle xmm9 back to output as ciphertext
+ %endif
+
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ; output r13 Bytes
+ movq rax, xmm9
+ cmp r13, 8
+ jle %%_less_than_8_bytes_left
+
+ mov [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], rax
+ add %%DATA_OFFSET, 8
+ psrldq xmm9, 8
+ movq rax, xmm9
+ sub r13, 8
+
+%%_less_than_8_bytes_left:
+ mov BYTE [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], al
+ add %%DATA_OFFSET, 1
+ shr rax, 8
+ sub r13, 1
+ jne %%_less_than_8_bytes_left
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+%%_multiple_of_16_bytes:
+
+%endmacro
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+; GCM_COMPLETE Finishes Encyrption/Decryption of last partial block after GCM_UPDATE finishes.
+; Input: A gcm_data struct* (GDATA) and whether encoding or decoding (ENC_DEC).
+; Output: Authorization Tag (AUTH_TAG) and Authorization Tag length (AUTH_TAG_LEN)
+; Clobbers rax, r10-r12, and xmm0, xmm1, xmm5, xmm6, xmm9, xmm11, xmm14, xmm15
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+%macro GCM_COMPLETE 4
+%define %%GDATA %1
+%define %%AUTH_TAG %2
+%define %%AUTH_TAG_LEN %3
+%define %%ENC_DEC %4
+%define %%PLAIN_CYPH_LEN rax
+
+ mov r12, [%%GDATA + PBlockLen] ; r12 = aadLen (number of bytes)
+ movdqu xmm14, [%%GDATA + AadHash]
+ movdqu xmm13, [%%GDATA + HashKey]
+
+ cmp r12, 0
+
+ je %%_partial_done
+
+ GHASH_MUL xmm14, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6 ;GHASH computation for the last <16 Byte block
+ movdqu [%%GDATA+AadHash], xmm14
+
+%%_partial_done:
+
+ mov r12, [%%GDATA + AadLen] ; r12 = aadLen (number of bytes)
+ mov %%PLAIN_CYPH_LEN, [%%GDATA + InLen]
+
+ shl r12, 3 ; convert into number of bits
+ movd xmm15, r12d ; len(A) in xmm15
+
+ shl %%PLAIN_CYPH_LEN, 3 ; len(C) in bits (*128)
+ movq xmm1, %%PLAIN_CYPH_LEN
+ pslldq xmm15, 8 ; xmm15 = len(A)|| 0x0000000000000000
+ pxor xmm15, xmm1 ; xmm15 = len(A)||len(C)
+
+ pxor xmm14, xmm15
+ GHASH_MUL xmm14, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6 ; final GHASH computation
+ pshufb xmm14, [SHUF_MASK] ; perform a 16Byte swap
+
+ movdqu xmm9, [%%GDATA + OrigIV] ; xmm9 = Y0
+
+ ENCRYPT_SINGLE_BLOCK %%GDATA, xmm9, xmm2 ; E(K, Y0)
+
+ pxor xmm9, xmm14
+
+
+
+%%_return_T:
+ mov r10, %%AUTH_TAG ; r10 = authTag
+ mov r11, %%AUTH_TAG_LEN ; r11 = auth_tag_len
+
+ cmp r11, 16
+ je %%_T_16
+
+ cmp r11, 12
+ je %%_T_12
+
+%%_T_8:
+ movq rax, xmm9
+ mov [r10], rax
+ jmp %%_return_T_done
+%%_T_12:
+ movq rax, xmm9
+ mov [r10], rax
+ psrldq xmm9, 8
+ movd eax, xmm9
+ mov [r10 + 8], eax
+ jmp %%_return_T_done
+
+%%_T_16:
+ movdqu [r10], xmm9
+
+%%_return_T_done:
+%endmacro ;GCM_COMPLETE
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;void aesni_gcm256_precomp_sse
+; (gcm_data *my_ctx_data);
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+global aesni_gcm256_precomp_sse
+aesni_gcm256_precomp_sse:
+ push r12
+ push r13
+ push r14
+ push r15
+
+ mov r14, rsp
+
+
+
+ sub rsp, VARIABLE_OFFSET
+ and rsp, ~63 ; align rsp to 64 bytes
+
+%ifidn __OUTPUT_FORMAT__, win64
+ ; only xmm6 needs to be maintained
+ movdqu [rsp + LOCAL_STORAGE + 0*16],xmm6
+%endif
+
+ pxor xmm6, xmm6
+ ENCRYPT_SINGLE_BLOCK arg1, xmm6, xmm2 ; xmm6 = HashKey
+
+ pshufb xmm6, [SHUF_MASK]
+ ;;;;;;;;;;;;;;; PRECOMPUTATION of HashKey<<1 mod poly from the HashKey;;;;;;;;;;;;;;;
+ movdqa xmm2, xmm6
+ psllq xmm6, 1
+ psrlq xmm2, 63
+ movdqa xmm1, xmm2
+ pslldq xmm2, 8
+ psrldq xmm1, 8
+ por xmm6, xmm2
+ ;reduction
+ pshufd xmm2, xmm1, 00100100b
+ pcmpeqd xmm2, [TWOONE]
+ pand xmm2, [POLY]
+ pxor xmm6, xmm2 ; xmm6 holds the HashKey<<1 mod poly
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ movdqu [arg1 + HashKey], xmm6 ; store HashKey<<1 mod poly
+
+
+ PRECOMPUTE arg1, xmm6, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5
+
+%ifidn __OUTPUT_FORMAT__, win64
+ movdqu xmm6, [rsp + LOCAL_STORAGE + 0*16]
+%endif
+ mov rsp, r14
+
+ pop r15
+ pop r14
+ pop r13
+ pop r12
+ret
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;void aesni_gcm256_init_sse(
+; gcm_data *my_ctx_data,
+; u8 *iv, /* Pre-counter block j0: 4 byte salt (from Security Association) concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload) concatenated with 0x00000001. 16-byte pointer. */
+; const u8 *aad, /* Additional Authentication Data (AAD)*/
+; u64 aad_len); /* Length of AAD in bytes (must be a multiple of 4 bytes). */
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+global aesni_gcm256_init_sse
+aesni_gcm256_init_sse:
+ push r12
+ push r13
+%ifidn __OUTPUT_FORMAT__, win64
+ ; xmm6:xmm15 need to be maintained for Windows
+ sub rsp, 1*16
+ movdqu [rsp + 0*16],xmm6
+%endif
+
+ GCM_INIT arg1, arg2, arg3, arg4
+
+%ifidn __OUTPUT_FORMAT__, win64
+ movdqu xmm6 , [rsp + 0*16]
+ add rsp, 1*16
+%endif
+ pop r13
+ pop r12
+ret
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;void aesni_gcm256_enc_update_sse(
+; gcm_data *my_ctx_data,
+; u8 *out, /* Ciphertext output. Encrypt in-place is allowed. */
+; const u8 *in, /* Plaintext input */
+; u64 plaintext_len); /* Length of data in Bytes for encryption. must be a multiple of 16 bytes*/
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+global aesni_gcm256_enc_update_sse
+aesni_gcm256_enc_update_sse:
+
+ FUNC_SAVE
+
+ GCM_ENC_DEC arg1, arg2, arg3, arg4, ENC
+
+ FUNC_RESTORE
+
+ ret
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;void aesni_gcm256_dec_update_sse(
+; gcm_data *my_ctx_data,
+; u8 *out, /* Plaintext output. Encrypt in-place is allowed. */
+; const u8 *in, /* Cyphertext input */
+; u64 plaintext_len); /* Length of data in Bytes for encryption. must be a multiple of 16 bytes*/
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+global aesni_gcm256_dec_update_sse
+aesni_gcm256_dec_update_sse:
+
+ FUNC_SAVE
+
+ GCM_ENC_DEC arg1, arg2, arg3, arg4, DEC
+
+ FUNC_RESTORE
+
+ ret
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;void aesni_gcm256_enc_finalize_sse(
+; gcm_data *my_ctx_data,
+; u8 *auth_tag, /* Authenticated Tag output. */
+; u64 auth_tag_len); /* Authenticated Tag Length in bytes. Valid values are 16 (most likely), 12 or 8. */
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+global aesni_gcm256_enc_finalize_sse
+aesni_gcm256_enc_finalize_sse:
+
+ push r12
+
+%ifidn __OUTPUT_FORMAT__, win64
+ ; xmm6:xmm15 need to be maintained for Windows
+ sub rsp, 5*16
+ movdqu [rsp + 0*16],xmm6
+ movdqu [rsp + 1*16],xmm9
+ movdqu [rsp + 2*16],xmm11
+ movdqu [rsp + 3*16],xmm14
+ movdqu [rsp + 4*16],xmm15
+%endif
+ GCM_COMPLETE arg1, arg2, arg3, ENC
+
+%ifidn __OUTPUT_FORMAT__, win64
+ movdqu xmm15 , [rsp + 4*16]
+ movdqu xmm14 , [rsp+ 3*16]
+ movdqu xmm11 , [rsp + 2*16]
+ movdqu xmm9 , [rsp + 1*16]
+ movdqu xmm6 , [rsp + 0*16]
+ add rsp, 5*16
+%endif
+
+ pop r12
+ret
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;void aesni_gcm256_dec_finalize_sse(
+; gcm_data *my_ctx_data,
+; u8 *auth_tag, /* Authenticated Tag output. */
+; u64 auth_tag_len); /* Authenticated Tag Length in bytes. Valid values are 16 (most likely), 12 or 8. */
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+global aesni_gcm256_dec_finalize_sse
+aesni_gcm256_dec_finalize_sse:
+
+ push r12
+
+%ifidn __OUTPUT_FORMAT__, win64
+ ; xmm6:xmm15 need to be maintained for Windows
+ sub rsp, 5*16
+ movdqu [rsp + 0*16],xmm6
+ movdqu [rsp + 1*16],xmm9
+ movdqu [rsp + 2*16],xmm11
+ movdqu [rsp + 3*16],xmm14
+ movdqu [rsp + 4*16],xmm15
+%endif
+ GCM_COMPLETE arg1, arg2, arg3, DEC
+
+%ifidn __OUTPUT_FORMAT__, win64
+ movdqu xmm15 , [rsp + 4*16]
+ movdqu xmm14 , [rsp+ 3*16]
+ movdqu xmm11 , [rsp + 2*16]
+ movdqu xmm9 , [rsp + 1*16]
+ movdqu xmm6 , [rsp + 0*16]
+ add rsp, 5*16
+%endif
+
+ pop r12
+ret
+
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;void aesni_gcm256_enc_sse(
+; gcm_data *my_ctx_data,
+; u8 *out, /* Ciphertext output. Encrypt in-place is allowed. */
+; const u8 *in, /* Plaintext input */
+; u64 plaintext_len, /* Length of data in Bytes for encryption. */
+; u8 *iv, /* Pre-counter block j0: 4 byte salt (from Security Association) concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload) concatenated with 0x00000001. 16-byte pointer. */
+; const u8 *aad, /* Additional Authentication Data (AAD)*/
+; u64 aad_len, /* Length of AAD in bytes (must be a multiple of 4 bytes). */
+; u8 *auth_tag, /* Authenticated Tag output. */
+; u64 auth_tag_len); /* Authenticated Tag Length in bytes. Valid values are 16 (most likely), 12 or 8. */
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+global aesni_gcm256_enc_sse
+aesni_gcm256_enc_sse:
+
+ FUNC_SAVE
+
+ GCM_INIT arg1, arg5, arg6, arg7
+
+ GCM_ENC_DEC arg1, arg2, arg3, arg4, ENC
+
+ GCM_COMPLETE arg1, arg8, arg9, ENC
+
+ FUNC_RESTORE
+
+ ret
+
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+;void aesni_gcm256_dec_sse(
+; gcm_data *my_ctx_data,
+; u8 *out, /* Plaintext output. Decrypt in-place is allowed. */
+; const u8 *in, /* Ciphertext input */
+; u64 plaintext_len, /* Length of data in Bytes for encryption. */
+; u8 *iv, /* Pre-counter block j0: 4 byte salt (from Security Association) concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload) concatenated with 0x00000001. 16-byte pointer. */
+; const u8 *aad, /* Additional Authentication Data (AAD)*/
+; u64 aad_len, /* Length of AAD in bytes (must be a multiple of 4 bytes). */
+; u8 *auth_tag, /* Authenticated Tag output. */
+; u64 auth_tag_len); /* Authenticated Tag Length in bytes. Valid values are 16 (most likely), 12 or 8. */
+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+global aesni_gcm256_dec_sse
+aesni_gcm256_dec_sse:
+
+ FUNC_SAVE
+
+ GCM_INIT arg1, arg5, arg6, arg7
+
+ GCM_ENC_DEC arg1, arg2, arg3, arg4, DEC
+
+ GCM_COMPLETE arg1, arg8, arg9, DEC
+
+ FUNC_RESTORE
+
+ ret