diff options
Diffstat (limited to 'src/spdk/dpdk/app/test/test_atomic.c')
-rw-r--r-- | src/spdk/dpdk/app/test/test_atomic.c | 634 |
1 files changed, 634 insertions, 0 deletions
diff --git a/src/spdk/dpdk/app/test/test_atomic.c b/src/spdk/dpdk/app/test/test_atomic.c new file mode 100644 index 000000000..214452e54 --- /dev/null +++ b/src/spdk/dpdk/app/test/test_atomic.c @@ -0,0 +1,634 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2010-2014 Intel Corporation + * Copyright(c) 2019 Arm Limited + */ + +#include <stdio.h> +#include <stdint.h> +#include <unistd.h> +#include <inttypes.h> +#include <sys/queue.h> + +#include <rte_memory.h> +#include <rte_per_lcore.h> +#include <rte_launch.h> +#include <rte_atomic.h> +#include <rte_eal.h> +#include <rte_lcore.h> +#include <rte_random.h> +#include <rte_hash_crc.h> + +#include "test.h" + +/* + * Atomic Variables + * ================ + * + * - The main test function performs several subtests. The first + * checks that the usual inc/dec/add/sub functions are working + * correctly: + * + * - Initialize 16-bit, 32-bit and 64-bit atomic variables to specific + * values. + * + * - These variables are incremented and decremented on each core at + * the same time in ``test_atomic_usual()``. + * + * - The function checks that once all lcores finish their function, + * the value of the atomic variables are still the same. + * + * - Test "test and set" functions. + * + * - Initialize 16-bit, 32-bit and 64-bit atomic variables to zero. + * + * - Invoke ``test_atomic_tas()`` on each lcore: before doing anything + * else. The cores are waiting a synchro using ``while + * (rte_atomic32_read(&val) == 0)`` which is triggered by the main test + * function. Then all cores do a + * ``rte_atomicXX_test_and_set()`` at the same time. If it is successful, + * it increments another atomic counter. + * + * - The main function checks that the atomic counter was incremented + * twice only (one for 16-bit, one for 32-bit and one for 64-bit values). + * + * - Test "add/sub and return" functions + * + * - Initialize 16-bit, 32-bit and 64-bit atomic variables to zero. + * + * - Invoke ``test_atomic_addsub_return()`` on each lcore. Before doing + * anything else, the cores are waiting a synchro. Each lcore does + * this operation several times:: + * + * tmp = rte_atomicXX_add_return(&a, 1); + * atomic_add(&count, tmp); + * tmp = rte_atomicXX_sub_return(&a, 1); + * atomic_sub(&count, tmp+1); + * + * - At the end of the test, the *count* value must be 0. + * + * - Test "128-bit compare and swap" (aarch64 and x86_64 only) + * + * - Initialize 128-bit atomic variables to zero. + * + * - Invoke ``test_atomic128_cmp_exchange()`` on each lcore. Before doing + * anything else, the cores are waiting a synchro. Each lcore does + * these compare and swap (CAS) operations several times:: + * + * Acquired CAS update counter.val[0] + 2; counter.val[1] + 1; + * Released CAS update counter.val[0] + 2; counter.val[1] + 1; + * Acquired_Released CAS update counter.val[0] + 2; counter.val[1] + 1; + * Relaxed CAS update counter.val[0] + 2; counter.val[1] + 1; + * + * - At the end of the test, the *count128* first 64-bit value and + * second 64-bit value differ by the total iterations. + * + * - Test "atomic exchange" functions + * + * - Create a 64 bit token that can be tested for data integrity + * + * - Invoke ``test_atomic_exchange`` on each lcore. Before doing + * anything else, the cores wait for a synchronization event. + * Each core then does the follwoing for N iterations: + * + * Generate a new token with a data integrity check + * Exchange the new token for previously generated token + * Increment a counter if a corrupt token was received + * + * - At the end of the test, the number of corrupted tokens must be 0. + */ + +#define NUM_ATOMIC_TYPES 3 + +#define N 1000000 + +static rte_atomic16_t a16; +static rte_atomic32_t a32; +static rte_atomic64_t a64; +static rte_atomic64_t count; +static rte_atomic32_t synchro; + +static int +test_atomic_usual(__rte_unused void *arg) +{ + unsigned i; + + while (rte_atomic32_read(&synchro) == 0) + ; + + for (i = 0; i < N; i++) + rte_atomic16_inc(&a16); + for (i = 0; i < N; i++) + rte_atomic16_dec(&a16); + for (i = 0; i < (N / 5); i++) + rte_atomic16_add(&a16, 5); + for (i = 0; i < (N / 5); i++) + rte_atomic16_sub(&a16, 5); + + for (i = 0; i < N; i++) + rte_atomic32_inc(&a32); + for (i = 0; i < N; i++) + rte_atomic32_dec(&a32); + for (i = 0; i < (N / 5); i++) + rte_atomic32_add(&a32, 5); + for (i = 0; i < (N / 5); i++) + rte_atomic32_sub(&a32, 5); + + for (i = 0; i < N; i++) + rte_atomic64_inc(&a64); + for (i = 0; i < N; i++) + rte_atomic64_dec(&a64); + for (i = 0; i < (N / 5); i++) + rte_atomic64_add(&a64, 5); + for (i = 0; i < (N / 5); i++) + rte_atomic64_sub(&a64, 5); + + return 0; +} + +static int +test_atomic_tas(__rte_unused void *arg) +{ + while (rte_atomic32_read(&synchro) == 0) + ; + + if (rte_atomic16_test_and_set(&a16)) + rte_atomic64_inc(&count); + if (rte_atomic32_test_and_set(&a32)) + rte_atomic64_inc(&count); + if (rte_atomic64_test_and_set(&a64)) + rte_atomic64_inc(&count); + + return 0; +} + +static int +test_atomic_addsub_and_return(__rte_unused void *arg) +{ + uint32_t tmp16; + uint32_t tmp32; + uint64_t tmp64; + unsigned i; + + while (rte_atomic32_read(&synchro) == 0) + ; + + for (i = 0; i < N; i++) { + tmp16 = rte_atomic16_add_return(&a16, 1); + rte_atomic64_add(&count, tmp16); + + tmp16 = rte_atomic16_sub_return(&a16, 1); + rte_atomic64_sub(&count, tmp16+1); + + tmp32 = rte_atomic32_add_return(&a32, 1); + rte_atomic64_add(&count, tmp32); + + tmp32 = rte_atomic32_sub_return(&a32, 1); + rte_atomic64_sub(&count, tmp32+1); + + tmp64 = rte_atomic64_add_return(&a64, 1); + rte_atomic64_add(&count, tmp64); + + tmp64 = rte_atomic64_sub_return(&a64, 1); + rte_atomic64_sub(&count, tmp64+1); + } + + return 0; +} + +/* + * rte_atomic32_inc_and_test() would increase a 32 bits counter by one and then + * test if that counter is equal to 0. It would return true if the counter is 0 + * and false if the counter is not 0. rte_atomic64_inc_and_test() could do the + * same thing but for a 64 bits counter. + * Here checks that if the 32/64 bits counter is equal to 0 after being atomically + * increased by one. If it is, increase the variable of "count" by one which would + * be checked as the result later. + * + */ +static int +test_atomic_inc_and_test(__rte_unused void *arg) +{ + while (rte_atomic32_read(&synchro) == 0) + ; + + if (rte_atomic16_inc_and_test(&a16)) { + rte_atomic64_inc(&count); + } + if (rte_atomic32_inc_and_test(&a32)) { + rte_atomic64_inc(&count); + } + if (rte_atomic64_inc_and_test(&a64)) { + rte_atomic64_inc(&count); + } + + return 0; +} + +/* + * rte_atomicXX_dec_and_test() should decrease a 32 bits counter by one and then + * test if that counter is equal to 0. It should return true if the counter is 0 + * and false if the counter is not 0. + * This test checks if the counter is equal to 0 after being atomically + * decreased by one. If it is, increase the value of "count" by one which is to + * be checked as the result later. + */ +static int +test_atomic_dec_and_test(__rte_unused void *arg) +{ + while (rte_atomic32_read(&synchro) == 0) + ; + + if (rte_atomic16_dec_and_test(&a16)) + rte_atomic64_inc(&count); + + if (rte_atomic32_dec_and_test(&a32)) + rte_atomic64_inc(&count); + + if (rte_atomic64_dec_and_test(&a64)) + rte_atomic64_inc(&count); + + return 0; +} + +#if defined(RTE_ARCH_X86_64) || defined(RTE_ARCH_ARM64) +static rte_int128_t count128; + +/* + * rte_atomic128_cmp_exchange() should update a 128 bits counter's first 64 + * bits by 2 and the second 64 bits by 1 in this test. It should return true + * if the compare exchange operation is successful. + * This test repeats 128 bits compare and swap operations N rounds. In each + * iteration it runs compare and swap operation with different memory models. + */ +static int +test_atomic128_cmp_exchange(__rte_unused void *arg) +{ + rte_int128_t expected; + int success; + unsigned int i; + + while (rte_atomic32_read(&synchro) == 0) + ; + + expected = count128; + + for (i = 0; i < N; i++) { + do { + rte_int128_t desired; + + desired.val[0] = expected.val[0] + 2; + desired.val[1] = expected.val[1] + 1; + + success = rte_atomic128_cmp_exchange(&count128, + &expected, &desired, 1, + __ATOMIC_ACQUIRE, __ATOMIC_RELAXED); + } while (success == 0); + + do { + rte_int128_t desired; + + desired.val[0] = expected.val[0] + 2; + desired.val[1] = expected.val[1] + 1; + + success = rte_atomic128_cmp_exchange(&count128, + &expected, &desired, 1, + __ATOMIC_RELEASE, __ATOMIC_RELAXED); + } while (success == 0); + + do { + rte_int128_t desired; + + desired.val[0] = expected.val[0] + 2; + desired.val[1] = expected.val[1] + 1; + + success = rte_atomic128_cmp_exchange(&count128, + &expected, &desired, 1, + __ATOMIC_ACQ_REL, __ATOMIC_RELAXED); + } while (success == 0); + + do { + rte_int128_t desired; + + desired.val[0] = expected.val[0] + 2; + desired.val[1] = expected.val[1] + 1; + + success = rte_atomic128_cmp_exchange(&count128, + &expected, &desired, 1, + __ATOMIC_RELAXED, __ATOMIC_RELAXED); + } while (success == 0); + } + + return 0; +} +#endif + +/* + * Helper definitions/variables/functions for + * atomic exchange tests + */ +typedef union { + uint16_t u16; + uint8_t u8[2]; +} test16_t; + +typedef union { + uint32_t u32; + uint16_t u16[2]; + uint8_t u8[4]; +} test32_t; + +typedef union { + uint64_t u64; + uint32_t u32[2]; + uint16_t u16[4]; + uint8_t u8[8]; +} test64_t; + +const uint8_t CRC8_POLY = 0x91; +uint8_t crc8_table[256]; + +volatile uint16_t token16; +volatile uint32_t token32; +volatile uint64_t token64; + +static void +build_crc8_table(void) +{ + uint8_t val; + int i, j; + + for (i = 0; i < 256; i++) { + val = i; + for (j = 0; j < 8; j++) { + if (val & 1) + val ^= CRC8_POLY; + val >>= 1; + } + crc8_table[i] = val; + } +} + +static uint8_t +get_crc8(uint8_t *message, int length) +{ + uint8_t crc = 0; + int i; + + for (i = 0; i < length; i++) + crc = crc8_table[crc ^ message[i]]; + return crc; +} + +/* + * The atomic exchange test sets up a token in memory and + * then spins up multiple lcores whose job is to generate + * new tokens, exchange that new token for the old one held + * in memory, and then verify that the old token is still + * valid (i.e. the exchange did not corrupt the token). + * + * A token is made up of random data and 8 bits of crc + * covering that random data. The following is an example + * of a 64bit token. + * + * +------------+------------+ + * | 63 56 | 55 0 | + * +------------+------------+ + * | CRC8 | Data | + * +------------+------------+ + */ +static int +test_atomic_exchange(__rte_unused void *arg) +{ + int i; + test16_t nt16, ot16; /* new token, old token */ + test32_t nt32, ot32; + test64_t nt64, ot64; + + /* Wait until all of the other threads have been dispatched */ + while (rte_atomic32_read(&synchro) == 0) + ; + + /* + * Let the battle begin! Every thread attempts to steal the current + * token with an atomic exchange operation and install its own newly + * generated token. If the old token is valid (i.e. it has the + * appropriate crc32 hash for the data) then the test iteration has + * passed. If the token is invalid, increment the counter. + */ + for (i = 0; i < N; i++) { + + /* Test 64bit Atomic Exchange */ + nt64.u64 = rte_rand(); + nt64.u8[7] = get_crc8(&nt64.u8[0], sizeof(nt64) - 1); + ot64.u64 = rte_atomic64_exchange(&token64, nt64.u64); + if (ot64.u8[7] != get_crc8(&ot64.u8[0], sizeof(ot64) - 1)) + rte_atomic64_inc(&count); + + /* Test 32bit Atomic Exchange */ + nt32.u32 = (uint32_t)rte_rand(); + nt32.u8[3] = get_crc8(&nt32.u8[0], sizeof(nt32) - 1); + ot32.u32 = rte_atomic32_exchange(&token32, nt32.u32); + if (ot32.u8[3] != get_crc8(&ot32.u8[0], sizeof(ot32) - 1)) + rte_atomic64_inc(&count); + + /* Test 16bit Atomic Exchange */ + nt16.u16 = (uint16_t)rte_rand(); + nt16.u8[1] = get_crc8(&nt16.u8[0], sizeof(nt16) - 1); + ot16.u16 = rte_atomic16_exchange(&token16, nt16.u16); + if (ot16.u8[1] != get_crc8(&ot16.u8[0], sizeof(ot16) - 1)) + rte_atomic64_inc(&count); + } + + return 0; +} +static int +test_atomic(void) +{ + rte_atomic16_init(&a16); + rte_atomic32_init(&a32); + rte_atomic64_init(&a64); + rte_atomic64_init(&count); + rte_atomic32_init(&synchro); + + rte_atomic16_set(&a16, 1UL << 10); + rte_atomic32_set(&a32, 1UL << 10); + rte_atomic64_set(&a64, 1ULL << 33); + + printf("usual inc/dec/add/sub functions\n"); + + rte_eal_mp_remote_launch(test_atomic_usual, NULL, SKIP_MASTER); + rte_atomic32_set(&synchro, 1); + rte_eal_mp_wait_lcore(); + rte_atomic32_set(&synchro, 0); + + if (rte_atomic16_read(&a16) != 1UL << 10) { + printf("Atomic16 usual functions failed\n"); + return -1; + } + + if (rte_atomic32_read(&a32) != 1UL << 10) { + printf("Atomic32 usual functions failed\n"); + return -1; + } + + if (rte_atomic64_read(&a64) != 1ULL << 33) { + printf("Atomic64 usual functions failed\n"); + return -1; + } + + printf("test and set\n"); + + rte_atomic64_set(&a64, 0); + rte_atomic32_set(&a32, 0); + rte_atomic16_set(&a16, 0); + rte_atomic64_set(&count, 0); + rte_eal_mp_remote_launch(test_atomic_tas, NULL, SKIP_MASTER); + rte_atomic32_set(&synchro, 1); + rte_eal_mp_wait_lcore(); + rte_atomic32_set(&synchro, 0); + + if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) { + printf("Atomic test and set failed\n"); + return -1; + } + + printf("add/sub and return\n"); + + rte_atomic64_set(&a64, 0); + rte_atomic32_set(&a32, 0); + rte_atomic16_set(&a16, 0); + rte_atomic64_set(&count, 0); + rte_eal_mp_remote_launch(test_atomic_addsub_and_return, NULL, + SKIP_MASTER); + rte_atomic32_set(&synchro, 1); + rte_eal_mp_wait_lcore(); + rte_atomic32_set(&synchro, 0); + + if (rte_atomic64_read(&count) != 0) { + printf("Atomic add/sub+return failed\n"); + return -1; + } + + /* + * Set a64, a32 and a16 with the same value of minus "number of slave + * lcores", launch all slave lcores to atomically increase by one and + * test them respectively. + * Each lcore should have only one chance to increase a64 by one and + * then check if it is equal to 0, but there should be only one lcore + * that finds that it is 0. It is similar for a32 and a16. + * Then a variable of "count", initialized to zero, is increased by + * one if a64, a32 or a16 is 0 after being increased and tested + * atomically. + * We can check if "count" is finally equal to 3 to see if all slave + * lcores performed "atomic inc and test" right. + */ + printf("inc and test\n"); + + rte_atomic64_clear(&a64); + rte_atomic32_clear(&a32); + rte_atomic16_clear(&a16); + rte_atomic32_clear(&synchro); + rte_atomic64_clear(&count); + + rte_atomic64_set(&a64, (int64_t)(1 - (int64_t)rte_lcore_count())); + rte_atomic32_set(&a32, (int32_t)(1 - (int32_t)rte_lcore_count())); + rte_atomic16_set(&a16, (int16_t)(1 - (int16_t)rte_lcore_count())); + rte_eal_mp_remote_launch(test_atomic_inc_and_test, NULL, SKIP_MASTER); + rte_atomic32_set(&synchro, 1); + rte_eal_mp_wait_lcore(); + rte_atomic32_clear(&synchro); + + if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) { + printf("Atomic inc and test failed %d\n", (int)count.cnt); + return -1; + } + + /* + * Same as above, but this time we set the values to "number of slave + * lcores", and decrement instead of increment. + */ + printf("dec and test\n"); + + rte_atomic32_clear(&synchro); + rte_atomic64_clear(&count); + + rte_atomic64_set(&a64, (int64_t)(rte_lcore_count() - 1)); + rte_atomic32_set(&a32, (int32_t)(rte_lcore_count() - 1)); + rte_atomic16_set(&a16, (int16_t)(rte_lcore_count() - 1)); + rte_eal_mp_remote_launch(test_atomic_dec_and_test, NULL, SKIP_MASTER); + rte_atomic32_set(&synchro, 1); + rte_eal_mp_wait_lcore(); + rte_atomic32_clear(&synchro); + + if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) { + printf("Atomic dec and test failed\n"); + return -1; + } + +#if defined(RTE_ARCH_X86_64) || defined(RTE_ARCH_ARM64) + /* + * This case tests the functionality of rte_atomic128_cmp_exchange + * API. It calls rte_atomic128_cmp_exchange with four kinds of memory + * models successively on each slave core. Once each 128-bit atomic + * compare and swap operation is successful, it updates the global + * 128-bit counter by 2 for the first 64-bit and 1 for the second + * 64-bit. Each slave core iterates this test N times. + * At the end of test, verify whether the first 64-bits of the 128-bit + * counter and the second 64bits is differ by the total iterations. If + * it is, the test passes. + */ + printf("128-bit compare and swap test\n"); + uint64_t iterations = 0; + + rte_atomic32_clear(&synchro); + count128.val[0] = 0; + count128.val[1] = 0; + + rte_eal_mp_remote_launch(test_atomic128_cmp_exchange, NULL, + SKIP_MASTER); + rte_atomic32_set(&synchro, 1); + rte_eal_mp_wait_lcore(); + rte_atomic32_clear(&synchro); + + iterations = count128.val[0] - count128.val[1]; + if (iterations != 4*N*(rte_lcore_count()-1)) { + printf("128-bit compare and swap failed\n"); + return -1; + } +#endif + + /* + * Test 16/32/64bit atomic exchange. + */ + test64_t t; + + printf("exchange test\n"); + + rte_atomic32_clear(&synchro); + rte_atomic64_clear(&count); + + /* Generate the CRC8 lookup table */ + build_crc8_table(); + + /* Create the initial tokens used by the test */ + t.u64 = rte_rand(); + token16 = (get_crc8(&t.u8[0], sizeof(token16) - 1) << 8) + | (t.u16[0] & 0x00ff); + token32 = ((uint32_t)get_crc8(&t.u8[0], sizeof(token32) - 1) << 24) + | (t.u32[0] & 0x00ffffff); + token64 = ((uint64_t)get_crc8(&t.u8[0], sizeof(token64) - 1) << 56) + | (t.u64 & 0x00ffffffffffffff); + + rte_eal_mp_remote_launch(test_atomic_exchange, NULL, SKIP_MASTER); + rte_atomic32_set(&synchro, 1); + rte_eal_mp_wait_lcore(); + rte_atomic32_clear(&synchro); + + if (rte_atomic64_read(&count) > 0) { + printf("Atomic exchange test failed\n"); + return -1; + } + + return 0; +} +REGISTER_TEST_COMMAND(atomic_autotest, test_atomic); |