From 19fcec84d8d7d21e796c7624e521b60d28ee21ed Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 20:45:59 +0200 Subject: Adding upstream version 16.2.11+ds. Signed-off-by: Daniel Baumann --- src/rocksdb/cache/cache_test.cc | 773 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 773 insertions(+) create mode 100644 src/rocksdb/cache/cache_test.cc (limited to 'src/rocksdb/cache/cache_test.cc') diff --git a/src/rocksdb/cache/cache_test.cc b/src/rocksdb/cache/cache_test.cc new file mode 100644 index 000000000..ceafefe6f --- /dev/null +++ b/src/rocksdb/cache/cache_test.cc @@ -0,0 +1,773 @@ +// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. +// This source code is licensed under both the GPLv2 (found in the +// COPYING file in the root directory) and Apache 2.0 License +// (found in the LICENSE.Apache file in the root directory). +// +// Copyright (c) 2011 The LevelDB Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. See the AUTHORS file for names of contributors. + +#include "rocksdb/cache.h" + +#include +#include +#include +#include +#include +#include "cache/clock_cache.h" +#include "cache/lru_cache.h" +#include "test_util/testharness.h" +#include "util/coding.h" +#include "util/string_util.h" + +namespace ROCKSDB_NAMESPACE { + +// Conversions between numeric keys/values and the types expected by Cache. +static std::string EncodeKey(int k) { + std::string result; + PutFixed32(&result, k); + return result; +} +static int DecodeKey(const Slice& k) { + assert(k.size() == 4); + return DecodeFixed32(k.data()); +} +static void* EncodeValue(uintptr_t v) { return reinterpret_cast(v); } +static int DecodeValue(void* v) { + return static_cast(reinterpret_cast(v)); +} + +const std::string kLRU = "lru"; +const std::string kClock = "clock"; + +void dumbDeleter(const Slice& /*key*/, void* /*value*/) {} + +void eraseDeleter(const Slice& /*key*/, void* value) { + Cache* cache = reinterpret_cast(value); + cache->Erase("foo"); +} + +class CacheTest : public testing::TestWithParam { + public: + static CacheTest* current_; + + static void Deleter(const Slice& key, void* v) { + current_->deleted_keys_.push_back(DecodeKey(key)); + current_->deleted_values_.push_back(DecodeValue(v)); + } + + static const int kCacheSize = 1000; + static const int kNumShardBits = 4; + + static const int kCacheSize2 = 100; + static const int kNumShardBits2 = 2; + + std::vector deleted_keys_; + std::vector deleted_values_; + std::shared_ptr cache_; + std::shared_ptr cache2_; + + CacheTest() + : cache_(NewCache(kCacheSize, kNumShardBits, false)), + cache2_(NewCache(kCacheSize2, kNumShardBits2, false)) { + current_ = this; + } + + ~CacheTest() override {} + + std::shared_ptr NewCache(size_t capacity) { + auto type = GetParam(); + if (type == kLRU) { + return NewLRUCache(capacity); + } + if (type == kClock) { + return NewClockCache(capacity); + } + return nullptr; + } + + std::shared_ptr NewCache( + size_t capacity, int num_shard_bits, bool strict_capacity_limit, + CacheMetadataChargePolicy charge_policy = kDontChargeCacheMetadata) { + auto type = GetParam(); + if (type == kLRU) { + LRUCacheOptions co; + co.capacity = capacity; + co.num_shard_bits = num_shard_bits; + co.strict_capacity_limit = strict_capacity_limit; + co.high_pri_pool_ratio = 0; + co.metadata_charge_policy = charge_policy; + return NewLRUCache(co); + } + if (type == kClock) { + return NewClockCache(capacity, num_shard_bits, strict_capacity_limit, + charge_policy); + } + return nullptr; + } + + int Lookup(std::shared_ptr cache, int key) { + Cache::Handle* handle = cache->Lookup(EncodeKey(key)); + const int r = (handle == nullptr) ? -1 : DecodeValue(cache->Value(handle)); + if (handle != nullptr) { + cache->Release(handle); + } + return r; + } + + void Insert(std::shared_ptr cache, int key, int value, + int charge = 1) { + cache->Insert(EncodeKey(key), EncodeValue(value), charge, + &CacheTest::Deleter); + } + + void Erase(std::shared_ptr cache, int key) { + cache->Erase(EncodeKey(key)); + } + + int Lookup(int key) { + return Lookup(cache_, key); + } + + void Insert(int key, int value, int charge = 1) { + Insert(cache_, key, value, charge); + } + + void Erase(int key) { + Erase(cache_, key); + } + + int Lookup2(int key) { + return Lookup(cache2_, key); + } + + void Insert2(int key, int value, int charge = 1) { + Insert(cache2_, key, value, charge); + } + + void Erase2(int key) { + Erase(cache2_, key); + } +}; +CacheTest* CacheTest::current_; + +class LRUCacheTest : public CacheTest {}; + +TEST_P(CacheTest, UsageTest) { + // cache is std::shared_ptr and will be automatically cleaned up. + const uint64_t kCapacity = 100000; + auto cache = NewCache(kCapacity, 8, false, kDontChargeCacheMetadata); + auto precise_cache = NewCache(kCapacity, 0, false, kFullChargeCacheMetadata); + ASSERT_EQ(0, cache->GetUsage()); + ASSERT_EQ(0, precise_cache->GetUsage()); + + size_t usage = 0; + char value[10] = "abcdef"; + // make sure everything will be cached + for (int i = 1; i < 100; ++i) { + std::string key(i, 'a'); + auto kv_size = key.size() + 5; + cache->Insert(key, reinterpret_cast(value), kv_size, dumbDeleter); + precise_cache->Insert(key, reinterpret_cast(value), kv_size, + dumbDeleter); + usage += kv_size; + ASSERT_EQ(usage, cache->GetUsage()); + ASSERT_LT(usage, precise_cache->GetUsage()); + } + + cache->EraseUnRefEntries(); + precise_cache->EraseUnRefEntries(); + ASSERT_EQ(0, cache->GetUsage()); + ASSERT_EQ(0, precise_cache->GetUsage()); + + // make sure the cache will be overloaded + for (uint64_t i = 1; i < kCapacity; ++i) { + auto key = ToString(i); + cache->Insert(key, reinterpret_cast(value), key.size() + 5, + dumbDeleter); + precise_cache->Insert(key, reinterpret_cast(value), key.size() + 5, + dumbDeleter); + } + + // the usage should be close to the capacity + ASSERT_GT(kCapacity, cache->GetUsage()); + ASSERT_GT(kCapacity, precise_cache->GetUsage()); + ASSERT_LT(kCapacity * 0.95, cache->GetUsage()); + ASSERT_LT(kCapacity * 0.95, precise_cache->GetUsage()); +} + +TEST_P(CacheTest, PinnedUsageTest) { + // cache is std::shared_ptr and will be automatically cleaned up. + const uint64_t kCapacity = 200000; + auto cache = NewCache(kCapacity, 8, false, kDontChargeCacheMetadata); + auto precise_cache = NewCache(kCapacity, 8, false, kFullChargeCacheMetadata); + + size_t pinned_usage = 0; + char value[10] = "abcdef"; + + std::forward_list unreleased_handles; + std::forward_list unreleased_handles_in_precise_cache; + + // Add entries. Unpin some of them after insertion. Then, pin some of them + // again. Check GetPinnedUsage(). + for (int i = 1; i < 100; ++i) { + std::string key(i, 'a'); + auto kv_size = key.size() + 5; + Cache::Handle* handle; + Cache::Handle* handle_in_precise_cache; + cache->Insert(key, reinterpret_cast(value), kv_size, dumbDeleter, + &handle); + assert(handle); + precise_cache->Insert(key, reinterpret_cast(value), kv_size, + dumbDeleter, &handle_in_precise_cache); + assert(handle_in_precise_cache); + pinned_usage += kv_size; + ASSERT_EQ(pinned_usage, cache->GetPinnedUsage()); + ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage()); + if (i % 2 == 0) { + cache->Release(handle); + precise_cache->Release(handle_in_precise_cache); + pinned_usage -= kv_size; + ASSERT_EQ(pinned_usage, cache->GetPinnedUsage()); + ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage()); + } else { + unreleased_handles.push_front(handle); + unreleased_handles_in_precise_cache.push_front(handle_in_precise_cache); + } + if (i % 3 == 0) { + unreleased_handles.push_front(cache->Lookup(key)); + auto x = precise_cache->Lookup(key); + assert(x); + unreleased_handles_in_precise_cache.push_front(x); + // If i % 2 == 0, then the entry was unpinned before Lookup, so pinned + // usage increased + if (i % 2 == 0) { + pinned_usage += kv_size; + } + ASSERT_EQ(pinned_usage, cache->GetPinnedUsage()); + ASSERT_LT(pinned_usage, precise_cache->GetPinnedUsage()); + } + } + auto precise_cache_pinned_usage = precise_cache->GetPinnedUsage(); + ASSERT_LT(pinned_usage, precise_cache_pinned_usage); + + // check that overloading the cache does not change the pinned usage + for (uint64_t i = 1; i < 2 * kCapacity; ++i) { + auto key = ToString(i); + cache->Insert(key, reinterpret_cast(value), key.size() + 5, + dumbDeleter); + precise_cache->Insert(key, reinterpret_cast(value), key.size() + 5, + dumbDeleter); + } + ASSERT_EQ(pinned_usage, cache->GetPinnedUsage()); + ASSERT_EQ(precise_cache_pinned_usage, precise_cache->GetPinnedUsage()); + + cache->EraseUnRefEntries(); + precise_cache->EraseUnRefEntries(); + ASSERT_EQ(pinned_usage, cache->GetPinnedUsage()); + ASSERT_EQ(precise_cache_pinned_usage, precise_cache->GetPinnedUsage()); + + // release handles for pinned entries to prevent memory leaks + for (auto handle : unreleased_handles) { + cache->Release(handle); + } + for (auto handle : unreleased_handles_in_precise_cache) { + precise_cache->Release(handle); + } + ASSERT_EQ(0, cache->GetPinnedUsage()); + ASSERT_EQ(0, precise_cache->GetPinnedUsage()); + cache->EraseUnRefEntries(); + precise_cache->EraseUnRefEntries(); + ASSERT_EQ(0, cache->GetUsage()); + ASSERT_EQ(0, precise_cache->GetUsage()); +} + +TEST_P(CacheTest, HitAndMiss) { + ASSERT_EQ(-1, Lookup(100)); + + Insert(100, 101); + ASSERT_EQ(101, Lookup(100)); + ASSERT_EQ(-1, Lookup(200)); + ASSERT_EQ(-1, Lookup(300)); + + Insert(200, 201); + ASSERT_EQ(101, Lookup(100)); + ASSERT_EQ(201, Lookup(200)); + ASSERT_EQ(-1, Lookup(300)); + + Insert(100, 102); + ASSERT_EQ(102, Lookup(100)); + ASSERT_EQ(201, Lookup(200)); + ASSERT_EQ(-1, Lookup(300)); + + ASSERT_EQ(1U, deleted_keys_.size()); + ASSERT_EQ(100, deleted_keys_[0]); + ASSERT_EQ(101, deleted_values_[0]); +} + +TEST_P(CacheTest, InsertSameKey) { + Insert(1, 1); + Insert(1, 2); + ASSERT_EQ(2, Lookup(1)); +} + +TEST_P(CacheTest, Erase) { + Erase(200); + ASSERT_EQ(0U, deleted_keys_.size()); + + Insert(100, 101); + Insert(200, 201); + Erase(100); + ASSERT_EQ(-1, Lookup(100)); + ASSERT_EQ(201, Lookup(200)); + ASSERT_EQ(1U, deleted_keys_.size()); + ASSERT_EQ(100, deleted_keys_[0]); + ASSERT_EQ(101, deleted_values_[0]); + + Erase(100); + ASSERT_EQ(-1, Lookup(100)); + ASSERT_EQ(201, Lookup(200)); + ASSERT_EQ(1U, deleted_keys_.size()); +} + +TEST_P(CacheTest, EntriesArePinned) { + Insert(100, 101); + Cache::Handle* h1 = cache_->Lookup(EncodeKey(100)); + ASSERT_EQ(101, DecodeValue(cache_->Value(h1))); + ASSERT_EQ(1U, cache_->GetUsage()); + + Insert(100, 102); + Cache::Handle* h2 = cache_->Lookup(EncodeKey(100)); + ASSERT_EQ(102, DecodeValue(cache_->Value(h2))); + ASSERT_EQ(0U, deleted_keys_.size()); + ASSERT_EQ(2U, cache_->GetUsage()); + + cache_->Release(h1); + ASSERT_EQ(1U, deleted_keys_.size()); + ASSERT_EQ(100, deleted_keys_[0]); + ASSERT_EQ(101, deleted_values_[0]); + ASSERT_EQ(1U, cache_->GetUsage()); + + Erase(100); + ASSERT_EQ(-1, Lookup(100)); + ASSERT_EQ(1U, deleted_keys_.size()); + ASSERT_EQ(1U, cache_->GetUsage()); + + cache_->Release(h2); + ASSERT_EQ(2U, deleted_keys_.size()); + ASSERT_EQ(100, deleted_keys_[1]); + ASSERT_EQ(102, deleted_values_[1]); + ASSERT_EQ(0U, cache_->GetUsage()); +} + +TEST_P(CacheTest, EvictionPolicy) { + Insert(100, 101); + Insert(200, 201); + + // Frequently used entry must be kept around + for (int i = 0; i < kCacheSize * 2; i++) { + Insert(1000+i, 2000+i); + ASSERT_EQ(101, Lookup(100)); + } + ASSERT_EQ(101, Lookup(100)); + ASSERT_EQ(-1, Lookup(200)); +} + +TEST_P(CacheTest, ExternalRefPinsEntries) { + Insert(100, 101); + Cache::Handle* h = cache_->Lookup(EncodeKey(100)); + ASSERT_TRUE(cache_->Ref(h)); + ASSERT_EQ(101, DecodeValue(cache_->Value(h))); + ASSERT_EQ(1U, cache_->GetUsage()); + + for (int i = 0; i < 3; ++i) { + if (i > 0) { + // First release (i == 1) corresponds to Ref(), second release (i == 2) + // corresponds to Lookup(). Then, since all external refs are released, + // the below insertions should push out the cache entry. + cache_->Release(h); + } + // double cache size because the usage bit in block cache prevents 100 from + // being evicted in the first kCacheSize iterations + for (int j = 0; j < 2 * kCacheSize + 100; j++) { + Insert(1000 + j, 2000 + j); + } + if (i < 2) { + ASSERT_EQ(101, Lookup(100)); + } + } + ASSERT_EQ(-1, Lookup(100)); +} + +TEST_P(CacheTest, EvictionPolicyRef) { + Insert(100, 101); + Insert(101, 102); + Insert(102, 103); + Insert(103, 104); + Insert(200, 101); + Insert(201, 102); + Insert(202, 103); + Insert(203, 104); + Cache::Handle* h201 = cache_->Lookup(EncodeKey(200)); + Cache::Handle* h202 = cache_->Lookup(EncodeKey(201)); + Cache::Handle* h203 = cache_->Lookup(EncodeKey(202)); + Cache::Handle* h204 = cache_->Lookup(EncodeKey(203)); + Insert(300, 101); + Insert(301, 102); + Insert(302, 103); + Insert(303, 104); + + // Insert entries much more than Cache capacity + for (int i = 0; i < kCacheSize * 2; i++) { + Insert(1000 + i, 2000 + i); + } + + // Check whether the entries inserted in the beginning + // are evicted. Ones without extra ref are evicted and + // those with are not. + ASSERT_EQ(-1, Lookup(100)); + ASSERT_EQ(-1, Lookup(101)); + ASSERT_EQ(-1, Lookup(102)); + ASSERT_EQ(-1, Lookup(103)); + + ASSERT_EQ(-1, Lookup(300)); + ASSERT_EQ(-1, Lookup(301)); + ASSERT_EQ(-1, Lookup(302)); + ASSERT_EQ(-1, Lookup(303)); + + ASSERT_EQ(101, Lookup(200)); + ASSERT_EQ(102, Lookup(201)); + ASSERT_EQ(103, Lookup(202)); + ASSERT_EQ(104, Lookup(203)); + + // Cleaning up all the handles + cache_->Release(h201); + cache_->Release(h202); + cache_->Release(h203); + cache_->Release(h204); +} + +TEST_P(CacheTest, EvictEmptyCache) { + // Insert item large than capacity to trigger eviction on empty cache. + auto cache = NewCache(1, 0, false); + ASSERT_OK(cache->Insert("foo", nullptr, 10, dumbDeleter)); +} + +TEST_P(CacheTest, EraseFromDeleter) { + // Have deleter which will erase item from cache, which will re-enter + // the cache at that point. + std::shared_ptr cache = NewCache(10, 0, false); + ASSERT_OK(cache->Insert("foo", nullptr, 1, dumbDeleter)); + ASSERT_OK(cache->Insert("bar", cache.get(), 1, eraseDeleter)); + cache->Erase("bar"); + ASSERT_EQ(nullptr, cache->Lookup("foo")); + ASSERT_EQ(nullptr, cache->Lookup("bar")); +} + +TEST_P(CacheTest, ErasedHandleState) { + // insert a key and get two handles + Insert(100, 1000); + Cache::Handle* h1 = cache_->Lookup(EncodeKey(100)); + Cache::Handle* h2 = cache_->Lookup(EncodeKey(100)); + ASSERT_EQ(h1, h2); + ASSERT_EQ(DecodeValue(cache_->Value(h1)), 1000); + ASSERT_EQ(DecodeValue(cache_->Value(h2)), 1000); + + // delete the key from the cache + Erase(100); + // can no longer find in the cache + ASSERT_EQ(-1, Lookup(100)); + + // release one handle + cache_->Release(h1); + // still can't find in cache + ASSERT_EQ(-1, Lookup(100)); + + cache_->Release(h2); +} + +TEST_P(CacheTest, HeavyEntries) { + // Add a bunch of light and heavy entries and then count the combined + // size of items still in the cache, which must be approximately the + // same as the total capacity. + const int kLight = 1; + const int kHeavy = 10; + int added = 0; + int index = 0; + while (added < 2*kCacheSize) { + const int weight = (index & 1) ? kLight : kHeavy; + Insert(index, 1000+index, weight); + added += weight; + index++; + } + + int cached_weight = 0; + for (int i = 0; i < index; i++) { + const int weight = (i & 1 ? kLight : kHeavy); + int r = Lookup(i); + if (r >= 0) { + cached_weight += weight; + ASSERT_EQ(1000+i, r); + } + } + ASSERT_LE(cached_weight, kCacheSize + kCacheSize/10); +} + +TEST_P(CacheTest, NewId) { + uint64_t a = cache_->NewId(); + uint64_t b = cache_->NewId(); + ASSERT_NE(a, b); +} + + +class Value { + public: + explicit Value(size_t v) : v_(v) { } + + size_t v_; +}; + +namespace { +void deleter(const Slice& /*key*/, void* value) { + delete static_cast(value); +} +} // namespace + +TEST_P(CacheTest, ReleaseAndErase) { + std::shared_ptr cache = NewCache(5, 0, false); + Cache::Handle* handle; + Status s = cache->Insert(EncodeKey(100), EncodeValue(100), 1, + &CacheTest::Deleter, &handle); + ASSERT_TRUE(s.ok()); + ASSERT_EQ(5U, cache->GetCapacity()); + ASSERT_EQ(1U, cache->GetUsage()); + ASSERT_EQ(0U, deleted_keys_.size()); + auto erased = cache->Release(handle, true); + ASSERT_TRUE(erased); + // This tests that deleter has been called + ASSERT_EQ(1U, deleted_keys_.size()); +} + +TEST_P(CacheTest, ReleaseWithoutErase) { + std::shared_ptr cache = NewCache(5, 0, false); + Cache::Handle* handle; + Status s = cache->Insert(EncodeKey(100), EncodeValue(100), 1, + &CacheTest::Deleter, &handle); + ASSERT_TRUE(s.ok()); + ASSERT_EQ(5U, cache->GetCapacity()); + ASSERT_EQ(1U, cache->GetUsage()); + ASSERT_EQ(0U, deleted_keys_.size()); + auto erased = cache->Release(handle); + ASSERT_FALSE(erased); + // This tests that deleter is not called. When cache has free capacity it is + // not expected to immediately erase the released items. + ASSERT_EQ(0U, deleted_keys_.size()); +} + +TEST_P(CacheTest, SetCapacity) { + // test1: increase capacity + // lets create a cache with capacity 5, + // then, insert 5 elements, then increase capacity + // to 10, returned capacity should be 10, usage=5 + std::shared_ptr cache = NewCache(5, 0, false); + std::vector handles(10); + // Insert 5 entries, but not releasing. + for (size_t i = 0; i < 5; i++) { + std::string key = ToString(i+1); + Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]); + ASSERT_TRUE(s.ok()); + } + ASSERT_EQ(5U, cache->GetCapacity()); + ASSERT_EQ(5U, cache->GetUsage()); + cache->SetCapacity(10); + ASSERT_EQ(10U, cache->GetCapacity()); + ASSERT_EQ(5U, cache->GetUsage()); + + // test2: decrease capacity + // insert 5 more elements to cache, then release 5, + // then decrease capacity to 7, final capacity should be 7 + // and usage should be 7 + for (size_t i = 5; i < 10; i++) { + std::string key = ToString(i+1); + Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]); + ASSERT_TRUE(s.ok()); + } + ASSERT_EQ(10U, cache->GetCapacity()); + ASSERT_EQ(10U, cache->GetUsage()); + for (size_t i = 0; i < 5; i++) { + cache->Release(handles[i]); + } + ASSERT_EQ(10U, cache->GetCapacity()); + ASSERT_EQ(10U, cache->GetUsage()); + cache->SetCapacity(7); + ASSERT_EQ(7, cache->GetCapacity()); + ASSERT_EQ(7, cache->GetUsage()); + + // release remaining 5 to keep valgrind happy + for (size_t i = 5; i < 10; i++) { + cache->Release(handles[i]); + } +} + +TEST_P(LRUCacheTest, SetStrictCapacityLimit) { + // test1: set the flag to false. Insert more keys than capacity. See if they + // all go through. + std::shared_ptr cache = NewCache(5, 0, false); + std::vector handles(10); + Status s; + for (size_t i = 0; i < 10; i++) { + std::string key = ToString(i + 1); + s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]); + ASSERT_OK(s); + ASSERT_NE(nullptr, handles[i]); + } + ASSERT_EQ(10, cache->GetUsage()); + + // test2: set the flag to true. Insert and check if it fails. + std::string extra_key = "extra"; + Value* extra_value = new Value(0); + cache->SetStrictCapacityLimit(true); + Cache::Handle* handle; + s = cache->Insert(extra_key, extra_value, 1, &deleter, &handle); + ASSERT_TRUE(s.IsIncomplete()); + ASSERT_EQ(nullptr, handle); + ASSERT_EQ(10, cache->GetUsage()); + + for (size_t i = 0; i < 10; i++) { + cache->Release(handles[i]); + } + + // test3: init with flag being true. + std::shared_ptr cache2 = NewCache(5, 0, true); + for (size_t i = 0; i < 5; i++) { + std::string key = ToString(i + 1); + s = cache2->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]); + ASSERT_OK(s); + ASSERT_NE(nullptr, handles[i]); + } + s = cache2->Insert(extra_key, extra_value, 1, &deleter, &handle); + ASSERT_TRUE(s.IsIncomplete()); + ASSERT_EQ(nullptr, handle); + // test insert without handle + s = cache2->Insert(extra_key, extra_value, 1, &deleter); + // AS if the key have been inserted into cache but get evicted immediately. + ASSERT_OK(s); + ASSERT_EQ(5, cache2->GetUsage()); + ASSERT_EQ(nullptr, cache2->Lookup(extra_key)); + + for (size_t i = 0; i < 5; i++) { + cache2->Release(handles[i]); + } +} + +TEST_P(CacheTest, OverCapacity) { + size_t n = 10; + + // a LRUCache with n entries and one shard only + std::shared_ptr cache = NewCache(n, 0, false); + + std::vector handles(n+1); + + // Insert n+1 entries, but not releasing. + for (size_t i = 0; i < n + 1; i++) { + std::string key = ToString(i+1); + Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]); + ASSERT_TRUE(s.ok()); + } + + // Guess what's in the cache now? + for (size_t i = 0; i < n + 1; i++) { + std::string key = ToString(i+1); + auto h = cache->Lookup(key); + ASSERT_TRUE(h != nullptr); + if (h) cache->Release(h); + } + + // the cache is over capacity since nothing could be evicted + ASSERT_EQ(n + 1U, cache->GetUsage()); + for (size_t i = 0; i < n + 1; i++) { + cache->Release(handles[i]); + } + // Make sure eviction is triggered. + cache->SetCapacity(n); + + // cache is under capacity now since elements were released + ASSERT_EQ(n, cache->GetUsage()); + + // element 0 is evicted and the rest is there + // This is consistent with the LRU policy since the element 0 + // was released first + for (size_t i = 0; i < n + 1; i++) { + std::string key = ToString(i+1); + auto h = cache->Lookup(key); + if (h) { + ASSERT_NE(i, 0U); + cache->Release(h); + } else { + ASSERT_EQ(i, 0U); + } + } +} + +namespace { +std::vector> callback_state; +void callback(void* entry, size_t charge) { + callback_state.push_back({DecodeValue(entry), static_cast(charge)}); +} +}; + +TEST_P(CacheTest, ApplyToAllCacheEntiresTest) { + std::vector> inserted; + callback_state.clear(); + + for (int i = 0; i < 10; ++i) { + Insert(i, i * 2, i + 1); + inserted.push_back({i * 2, i + 1}); + } + cache_->ApplyToAllCacheEntries(callback, true); + + std::sort(inserted.begin(), inserted.end()); + std::sort(callback_state.begin(), callback_state.end()); + ASSERT_TRUE(inserted == callback_state); +} + +TEST_P(CacheTest, DefaultShardBits) { + // test1: set the flag to false. Insert more keys than capacity. See if they + // all go through. + std::shared_ptr cache = NewCache(16 * 1024L * 1024L); + ShardedCache* sc = dynamic_cast(cache.get()); + ASSERT_EQ(5, sc->GetNumShardBits()); + + cache = NewLRUCache(511 * 1024L, -1, true); + sc = dynamic_cast(cache.get()); + ASSERT_EQ(0, sc->GetNumShardBits()); + + cache = NewLRUCache(1024L * 1024L * 1024L, -1, true); + sc = dynamic_cast(cache.get()); + ASSERT_EQ(6, sc->GetNumShardBits()); +} + +TEST_P(CacheTest, GetCharge) { + Insert(1, 2); + Cache::Handle* h1 = cache_->Lookup(EncodeKey(1)); + ASSERT_EQ(2, DecodeValue(cache_->Value(h1))); + ASSERT_EQ(1, cache_->GetCharge(h1)); + cache_->Release(h1); +} + +#ifdef SUPPORT_CLOCK_CACHE +std::shared_ptr (*new_clock_cache_func)( + size_t, int, bool, CacheMetadataChargePolicy) = NewClockCache; +INSTANTIATE_TEST_CASE_P(CacheTestInstance, CacheTest, + testing::Values(kLRU, kClock)); +#else +INSTANTIATE_TEST_CASE_P(CacheTestInstance, CacheTest, testing::Values(kLRU)); +#endif // SUPPORT_CLOCK_CACHE +INSTANTIATE_TEST_CASE_P(CacheTestInstance, LRUCacheTest, testing::Values(kLRU)); + +} // namespace ROCKSDB_NAMESPACE + +int main(int argc, char** argv) { + ::testing::InitGoogleTest(&argc, argv); + return RUN_ALL_TESTS(); +} -- cgit v1.2.3