// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*- // vim: ts=8 sw=2 smarttab /* * Ceph - scalable distributed file system * * This is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software * Foundation. See file COPYING. */ // install the librados-dev and librbd package to get this #include #include #include #include #include int main(int argc, const char **argv) { int ret = 0; // we will use all of these below const char *pool_name = "hello_world_pool"; std::string hello("hello world!"); std::string object_name("hello_object"); librados::IoCtx io_ctx; // first, we create a Rados object and initialize it librados::Rados rados; { ret = rados.init("admin"); // just use the client.admin keyring if (ret < 0) { // let's handle any error that might have come back std::cerr << "couldn't initialize rados! error " << ret << std::endl; ret = EXIT_FAILURE; goto out; } else { std::cout << "we just set up a rados cluster object" << std::endl; } } /* * Now we need to get the rados object its config info. It can * parse argv for us to find the id, monitors, etc, so let's just * use that. */ { ret = rados.conf_parse_argv(argc, argv); if (ret < 0) { // This really can't happen, but we need to check to be a good citizen. std::cerr << "failed to parse config options! error " << ret << std::endl; ret = EXIT_FAILURE; goto out; } else { std::cout << "we just parsed our config options" << std::endl; // We also want to apply the config file if the user specified // one, and conf_parse_argv won't do that for us. for (int i = 0; i < argc; ++i) { if ((strcmp(argv[i], "-c") == 0) || (strcmp(argv[i], "--conf") == 0)) { ret = rados.conf_read_file(argv[i+1]); if (ret < 0) { // This could fail if the config file is malformed, but it'd be hard. std::cerr << "failed to parse config file " << argv[i+1] << "! error" << ret << std::endl; ret = EXIT_FAILURE; goto out; } break; } } } } /* * next, we actually connect to the cluster */ { ret = rados.connect(); if (ret < 0) { std::cerr << "couldn't connect to cluster! error " << ret << std::endl; ret = EXIT_FAILURE; goto out; } else { std::cout << "we just connected to the rados cluster" << std::endl; } } /* * let's create our own pool instead of scribbling over real data. * Note that this command creates pools with default PG counts specified * by the monitors, which may not be appropriate for real use -- it's fine * for testing, though. */ { ret = rados.pool_create(pool_name); if (ret < 0) { std::cerr << "couldn't create pool! error " << ret << std::endl; return EXIT_FAILURE; } else { std::cout << "we just created a new pool named " << pool_name << std::endl; } } /* * create an "IoCtx" which is used to do IO to a pool */ { ret = rados.ioctx_create(pool_name, io_ctx); if (ret < 0) { std::cerr << "couldn't set up ioctx! error " << ret << std::endl; ret = EXIT_FAILURE; goto out; } else { std::cout << "we just created an ioctx for our pool" << std::endl; } } /* * create an rbd image and write data to it */ { std::string name = "librbd_test"; uint64_t size = 2 << 20; int order = 0; librbd::RBD rbd; librbd::Image image; ret = rbd.create(io_ctx, name.c_str(), size, &order); if (ret < 0) { std::cerr << "couldn't create an rbd image! error " << ret << std::endl; ret = EXIT_FAILURE; goto out; } else { std::cout << "we just created an rbd image" << std::endl; } ret = rbd.open(io_ctx, image, name.c_str(), NULL); if (ret < 0) { std::cerr << "couldn't open the rbd image! error " << ret << std::endl; ret = EXIT_FAILURE; goto out; } else { std::cout << "we just opened the rbd image" << std::endl; } int TEST_IO_SIZE = 512; char test_data[TEST_IO_SIZE + 1]; int i; for (i = 0; i < TEST_IO_SIZE; ++i) { test_data[i] = (char) (rand() % (126 - 33) + 33); } test_data[TEST_IO_SIZE] = '\0'; size_t len = strlen(test_data); ceph::bufferlist bl; bl.append(test_data, len); ret = image.write(0, len, bl); if (ret < 0) { std::cerr << "couldn't write to the rbd image! error " << ret << std::endl; ret = EXIT_FAILURE; goto out; } else { std::cout << "we just wrote data to our rbd image " << std::endl; } /* * let's read the image and compare it to the data we wrote */ ceph::bufferlist bl_r; int read; read = image.read(0, TEST_IO_SIZE, bl_r); if (read < 0) { std::cerr << "we couldn't read data from the image! error" << std::endl; ret = EXIT_FAILURE; goto out; } std::string bl_res(bl_r.c_str(), read); int res = memcmp(bl_res.c_str(), test_data, TEST_IO_SIZE); if (res != 0) { std::cerr << "what we read didn't match expected! error" << std::endl; } else { std::cout << "we read our data on the image successfully" << std::endl; } image.close(); /* *let's now delete the image */ ret = rbd.remove(io_ctx, name.c_str()); if (ret < 0) { std::cerr << "failed to delete rbd image! error " << ret << std::endl; ret = EXIT_FAILURE; goto out; } else { std::cout << "we just deleted our rbd image " << std::endl; } } ret = EXIT_SUCCESS; out: /* * And now we're done, so let's remove our pool and then * shut down the connection gracefully. */ int delete_ret = rados.pool_delete(pool_name); if (delete_ret < 0) { // be careful not to std::cerr << "We failed to delete our test pool!" << std::endl; ret = EXIT_FAILURE; } rados.shutdown(); return ret; }