//======================================================================= // Copyright (c) 2005 Aaron Windsor // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // //======================================================================= #include #include #include #include #include using namespace boost; typedef adjacency_list< vecS, vecS, undirectedS > my_graph; int main() { // Create the following graph: (it'll look better when output // to the terminal in a fixed width font...) const int n_vertices = 18; std::vector< std::string > ascii_graph; ascii_graph.push_back(" 0 1---2 3 "); ascii_graph.push_back(" \\ / \\ / "); ascii_graph.push_back(" 4---5 6---7 "); ascii_graph.push_back(" | | | | "); ascii_graph.push_back(" 8---9 10---11 "); ascii_graph.push_back(" / \\ / \\ "); ascii_graph.push_back(" 12 13 14---15 16 17 "); // It has a perfect matching of size 8. There are two isolated // vertices that we'll use later... my_graph g(n_vertices); // our vertices are stored in a vector, so we can refer to vertices // by integers in the range 0..15 add_edge(1, 2, g); add_edge(0, 4, g); add_edge(1, 5, g); add_edge(2, 6, g); add_edge(3, 7, g); add_edge(4, 5, g); add_edge(6, 7, g); add_edge(4, 8, g); add_edge(5, 9, g); add_edge(6, 10, g); add_edge(7, 11, g); add_edge(8, 9, g); add_edge(10, 11, g); add_edge(8, 13, g); add_edge(9, 14, g); add_edge(10, 15, g); add_edge(11, 16, g); add_edge(14, 15, g); std::vector< graph_traits< my_graph >::vertex_descriptor > mate(n_vertices); // find the maximum cardinality matching. we'll use a checked version // of the algorithm, which takes a little longer than the unchecked // version, but has the advantage that it will return "false" if the // matching returned is not actually a maximum cardinality matching // in the graph. bool success = checked_edmonds_maximum_cardinality_matching(g, &mate[0]); assert(success); std::cout << "In the following graph:" << std::endl << std::endl; for (std::vector< std::string >::iterator itr = ascii_graph.begin(); itr != ascii_graph.end(); ++itr) std::cout << *itr << std::endl; std::cout << std::endl << "Found a matching of size " << matching_size(g, &mate[0]) << std::endl; std::cout << "The matching is:" << std::endl; graph_traits< my_graph >::vertex_iterator vi, vi_end; for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) if (mate[*vi] != graph_traits< my_graph >::null_vertex() && *vi < mate[*vi]) std::cout << "{" << *vi << ", " << mate[*vi] << "}" << std::endl; std::cout << std::endl; // now we'll add two edges, and the perfect matching has size 9 ascii_graph.pop_back(); ascii_graph.push_back(" 12---13 14---15 16---17 "); add_edge(12, 13, g); add_edge(16, 17, g); success = checked_edmonds_maximum_cardinality_matching(g, &mate[0]); assert(success); std::cout << "In the following graph:" << std::endl << std::endl; for (std::vector< std::string >::iterator itr = ascii_graph.begin(); itr != ascii_graph.end(); ++itr) std::cout << *itr << std::endl; std::cout << std::endl << "Found a matching of size " << matching_size(g, &mate[0]) << std::endl; std::cout << "The matching is:" << std::endl; for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) if (mate[*vi] != graph_traits< my_graph >::null_vertex() && *vi < mate[*vi]) std::cout << "{" << *vi << ", " << mate[*vi] << "}" << std::endl; return 0; }