// Formatting library for C++ - formatting library implementation tests // // Copyright (c) 2012 - present, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #define FMT_NOEXCEPT #undef FMT_SHARED #include "test-assert.h" // Include format.cc instead of format.h to test implementation. #include #include #include "../src/format.cc" #include "fmt/printf.h" #include "gmock.h" #include "gtest-extra.h" #include "util.h" #undef max using fmt::detail::bigint; using fmt::detail::fp; using fmt::detail::max_value; static_assert(!std::is_copy_constructible::value, ""); static_assert(!std::is_copy_assignable::value, ""); TEST(BigIntTest, Construct) { EXPECT_EQ("", fmt::format("{}", bigint())); EXPECT_EQ("42", fmt::format("{}", bigint(0x42))); EXPECT_EQ("123456789abcedf0", fmt::format("{}", bigint(0x123456789abcedf0))); } TEST(BigIntTest, Compare) { bigint n1(42); bigint n2(42); EXPECT_EQ(compare(n1, n2), 0); n2 <<= 32; EXPECT_LT(compare(n1, n2), 0); bigint n3(43); EXPECT_LT(compare(n1, n3), 0); EXPECT_GT(compare(n3, n1), 0); bigint n4(42 * 0x100000001); EXPECT_LT(compare(n2, n4), 0); EXPECT_GT(compare(n4, n2), 0); } TEST(BigIntTest, AddCompare) { EXPECT_LT( add_compare(bigint(0xffffffff), bigint(0xffffffff), bigint(1) <<= 64), 0); EXPECT_LT(add_compare(bigint(1) <<= 32, bigint(1), bigint(1) <<= 96), 0); EXPECT_GT(add_compare(bigint(1) <<= 32, bigint(0), bigint(0xffffffff)), 0); EXPECT_GT(add_compare(bigint(0), bigint(1) <<= 32, bigint(0xffffffff)), 0); EXPECT_GT(add_compare(bigint(42), bigint(1), bigint(42)), 0); EXPECT_GT(add_compare(bigint(0xffffffff), bigint(1), bigint(0xffffffff)), 0); EXPECT_LT(add_compare(bigint(10), bigint(10), bigint(22)), 0); EXPECT_LT(add_compare(bigint(0x100000010), bigint(0x100000010), bigint(0x300000010)), 0); EXPECT_GT(add_compare(bigint(0x1ffffffff), bigint(0x100000002), bigint(0x300000000)), 0); EXPECT_EQ(add_compare(bigint(0x1ffffffff), bigint(0x100000002), bigint(0x300000001)), 0); EXPECT_LT(add_compare(bigint(0x1ffffffff), bigint(0x100000002), bigint(0x300000002)), 0); EXPECT_LT(add_compare(bigint(0x1ffffffff), bigint(0x100000002), bigint(0x300000003)), 0); } TEST(BigIntTest, ShiftLeft) { bigint n(0x42); n <<= 0; EXPECT_EQ("42", fmt::format("{}", n)); n <<= 1; EXPECT_EQ("84", fmt::format("{}", n)); n <<= 25; EXPECT_EQ("108000000", fmt::format("{}", n)); } TEST(BigIntTest, Multiply) { bigint n(0x42); EXPECT_THROW(n *= 0, assertion_failure); n *= 1; EXPECT_EQ("42", fmt::format("{}", n)); n *= 2; EXPECT_EQ("84", fmt::format("{}", n)); n *= 0x12345678; EXPECT_EQ("962fc95e0", fmt::format("{}", n)); bigint bigmax(max_value()); bigmax *= max_value(); EXPECT_EQ("fffffffe00000001", fmt::format("{}", bigmax)); bigmax.assign(max_value()); bigmax *= max_value(); EXPECT_EQ("fffffffffffffffe0000000000000001", fmt::format("{}", bigmax)); } TEST(BigIntTest, Accumulator) { fmt::detail::accumulator acc; EXPECT_EQ(acc.lower, 0); EXPECT_EQ(acc.upper, 0); acc.upper = 12; acc.lower = 34; EXPECT_EQ(static_cast(acc), 34); acc += 56; EXPECT_EQ(acc.lower, 90); acc += fmt::detail::max_value(); EXPECT_EQ(acc.upper, 13); EXPECT_EQ(acc.lower, 89); acc >>= 32; EXPECT_EQ(acc.upper, 0); EXPECT_EQ(acc.lower, 13 * 0x100000000); } TEST(BigIntTest, Square) { bigint n0(0); n0.square(); EXPECT_EQ("0", fmt::format("{}", n0)); bigint n1(0x100); n1.square(); EXPECT_EQ("10000", fmt::format("{}", n1)); bigint n2(0xfffffffff); n2.square(); EXPECT_EQ("ffffffffe000000001", fmt::format("{}", n2)); bigint n3(max_value()); n3.square(); EXPECT_EQ("fffffffffffffffe0000000000000001", fmt::format("{}", n3)); bigint n4; n4.assign_pow10(10); EXPECT_EQ("2540be400", fmt::format("{}", n4)); } TEST(BigIntTest, DivModAssignZeroDivisor) { bigint zero(0); EXPECT_THROW(bigint(0).divmod_assign(zero), assertion_failure); EXPECT_THROW(bigint(42).divmod_assign(zero), assertion_failure); } TEST(BigIntTest, DivModAssignSelf) { bigint n(100); EXPECT_THROW(n.divmod_assign(n), assertion_failure); } TEST(BigIntTest, DivModAssignUnaligned) { // (42 << 340) / pow(10, 100): bigint n1(42); n1 <<= 340; bigint n2; n2.assign_pow10(100); int result = n1.divmod_assign(n2); EXPECT_EQ(result, 9406); EXPECT_EQ("10f8353019583bfc29ffc8f564e1b9f9d819dbb4cf783e4507eca1539220p96", fmt::format("{}", n1)); } TEST(BigIntTest, DivModAssign) { // 100 / 10: bigint n1(100); int result = n1.divmod_assign(bigint(10)); EXPECT_EQ(result, 10); EXPECT_EQ("0", fmt::format("{}", n1)); // pow(10, 100) / (42 << 320): n1.assign_pow10(100); result = n1.divmod_assign(bigint(42) <<= 320); EXPECT_EQ(result, 111); EXPECT_EQ("13ad2594c37ceb0b2784c4ce0bf38ace408e211a7caab24308a82e8f10p96", fmt::format("{}", n1)); // 42 / 100: bigint n2(42); n1.assign_pow10(2); result = n2.divmod_assign(n1); EXPECT_EQ(result, 0); EXPECT_EQ("2a", fmt::format("{}", n2)); } template void run_double_tests() { fmt::print("warning: double is not IEC559, skipping FP tests\n"); } template <> void run_double_tests() { // Construct from double. EXPECT_EQ(fp(1.23), fp(0x13ae147ae147aeu, -52)); // Compute boundaries: fp value; // Normalized & not power of 2 - equidistant boundaries: auto b = value.assign_with_boundaries(1.23); EXPECT_EQ(value, fp(0x0013ae147ae147ae, -52)); EXPECT_EQ(b.lower, 0x9d70a3d70a3d6c00); EXPECT_EQ(b.upper, 0x9d70a3d70a3d7400); // Normalized power of 2 - lower boundary is closer: b = value.assign_with_boundaries(1.9807040628566084e+28); // 2**94 EXPECT_EQ(value, fp(0x0010000000000000, 42)); EXPECT_EQ(b.lower, 0x7ffffffffffffe00); EXPECT_EQ(b.upper, 0x8000000000000400); // Smallest normalized double - equidistant boundaries: b = value.assign_with_boundaries(2.2250738585072014e-308); EXPECT_EQ(value, fp(0x0010000000000000, -1074)); EXPECT_EQ(b.lower, 0x7ffffffffffffc00); EXPECT_EQ(b.upper, 0x8000000000000400); // Subnormal - equidistant boundaries: b = value.assign_with_boundaries(4.9406564584124654e-324); EXPECT_EQ(value, fp(0x0000000000000001, -1074)); EXPECT_EQ(b.lower, 0x4000000000000000); EXPECT_EQ(b.upper, 0xc000000000000000); } TEST(FPTest, DoubleTests) { run_double_tests::is_iec559>(); } TEST(FPTest, Normalize) { const auto v = fp(0xbeef, 42); auto normalized = normalize(v); EXPECT_EQ(0xbeef000000000000, normalized.f); EXPECT_EQ(-6, normalized.e); } TEST(FPTest, ComputeFloatBoundaries) { struct { double x, lower, upper; } tests[] = { // regular {1.5f, 1.4999999403953552, 1.5000000596046448}, // boundary {1.0f, 0.9999999701976776, 1.0000000596046448}, // min normal {1.1754944e-38f, 1.1754942807573643e-38, 1.1754944208872107e-38}, // max subnormal {1.1754942e-38f, 1.1754941406275179e-38, 1.1754942807573643e-38}, // min subnormal {1e-45f, 7.006492321624085e-46, 2.1019476964872256e-45}, }; for (auto test : tests) { fp vlower = normalize(fp(test.lower)); fp vupper = normalize(fp(test.upper)); vlower.f >>= vupper.e - vlower.e; vlower.e = vupper.e; fp value; auto b = value.assign_float_with_boundaries(test.x); EXPECT_EQ(vlower.f, b.lower); EXPECT_EQ(vupper.f, b.upper); } } TEST(FPTest, Multiply) { auto v = fp(123ULL << 32, 4) * fp(56ULL << 32, 7); EXPECT_EQ(v.f, 123u * 56u); EXPECT_EQ(v.e, 4 + 7 + 64); v = fp(123ULL << 32, 4) * fp(567ULL << 31, 8); EXPECT_EQ(v.f, (123 * 567 + 1u) / 2); EXPECT_EQ(v.e, 4 + 8 + 64); } TEST(FPTest, GetCachedPower) { typedef std::numeric_limits limits; for (auto exp = limits::min_exponent; exp <= limits::max_exponent; ++exp) { int dec_exp = 0; auto fp = fmt::detail::get_cached_power(exp, dec_exp); EXPECT_LE(exp, fp.e); int dec_exp_step = 8; EXPECT_LE(fp.e, exp + dec_exp_step * log2(10)); EXPECT_DOUBLE_EQ(pow(10, dec_exp), ldexp(static_cast(fp.f), fp.e)); } } TEST(FPTest, GetRoundDirection) { using fmt::detail::get_round_direction; using fmt::detail::round_direction; EXPECT_EQ(round_direction::down, get_round_direction(100, 50, 0)); EXPECT_EQ(round_direction::up, get_round_direction(100, 51, 0)); EXPECT_EQ(round_direction::down, get_round_direction(100, 40, 10)); EXPECT_EQ(round_direction::up, get_round_direction(100, 60, 10)); for (size_t i = 41; i < 60; ++i) EXPECT_EQ(round_direction::unknown, get_round_direction(100, i, 10)); uint64_t max = max_value(); EXPECT_THROW(get_round_direction(100, 100, 0), assertion_failure); EXPECT_THROW(get_round_direction(100, 0, 100), assertion_failure); EXPECT_THROW(get_round_direction(100, 0, 50), assertion_failure); // Check that remainder + error doesn't overflow. EXPECT_EQ(round_direction::up, get_round_direction(max, max - 1, 2)); // Check that 2 * (remainder + error) doesn't overflow. EXPECT_EQ(round_direction::unknown, get_round_direction(max, max / 2 + 1, max / 2)); // Check that remainder - error doesn't overflow. EXPECT_EQ(round_direction::unknown, get_round_direction(100, 40, 41)); // Check that 2 * (remainder - error) doesn't overflow. EXPECT_EQ(round_direction::up, get_round_direction(max, max - 1, 1)); } TEST(FPTest, FixedHandler) { struct handler : fmt::detail::fixed_handler { char buffer[10]; handler(int prec = 0) : fmt::detail::fixed_handler() { buf = buffer; precision = prec; } }; int exp = 0; handler().on_digit('0', 100, 99, 0, exp, false); EXPECT_THROW(handler().on_digit('0', 100, 100, 0, exp, false), assertion_failure); namespace digits = fmt::detail::digits; EXPECT_EQ(handler(1).on_digit('0', 100, 10, 10, exp, false), digits::done); // Check that divisor - error doesn't overflow. EXPECT_EQ(handler(1).on_digit('0', 100, 10, 101, exp, false), digits::error); // Check that 2 * error doesn't overflow. uint64_t max = max_value(); EXPECT_EQ(handler(1).on_digit('0', max, 10, max - 1, exp, false), digits::error); } TEST(FPTest, GrisuFormatCompilesWithNonIEEEDouble) { fmt::memory_buffer buf; format_float(0.42, -1, fmt::detail::float_specs(), buf); } template struct value_extractor { T operator()(T value) { return value; } template FMT_NORETURN T operator()(U) { throw std::runtime_error(fmt::format("invalid type {}", typeid(U).name())); } #if FMT_USE_INT128 // Apple Clang does not define typeid for __int128_t and __uint128_t. FMT_NORETURN T operator()(fmt::detail::int128_t) { throw std::runtime_error("invalid type __int128_t"); } FMT_NORETURN T operator()(fmt::detail::uint128_t) { throw std::runtime_error("invalid type __uint128_t"); } #endif }; TEST(FormatTest, ArgConverter) { long long value = max_value(); auto arg = fmt::detail::make_arg(value); fmt::visit_format_arg( fmt::detail::arg_converter(arg, 'd'), arg); EXPECT_EQ(value, fmt::visit_format_arg(value_extractor(), arg)); } TEST(FormatTest, FormatNegativeNaN) { double nan = std::numeric_limits::quiet_NaN(); if (std::signbit(-nan)) EXPECT_EQ("-nan", fmt::format("{}", -nan)); else fmt::print("Warning: compiler doesn't handle negative NaN correctly"); } TEST(FormatTest, StrError) { char* message = nullptr; char buffer[BUFFER_SIZE]; EXPECT_ASSERT(fmt::detail::safe_strerror(EDOM, message = nullptr, 0), "invalid buffer"); EXPECT_ASSERT(fmt::detail::safe_strerror(EDOM, message = buffer, 0), "invalid buffer"); buffer[0] = 'x'; #if defined(_GNU_SOURCE) && !defined(__COVERITY__) // Use invalid error code to make sure that safe_strerror returns an error // message in the buffer rather than a pointer to a static string. int error_code = -1; #else int error_code = EDOM; #endif int result = fmt::detail::safe_strerror(error_code, message = buffer, BUFFER_SIZE); EXPECT_EQ(result, 0); size_t message_size = std::strlen(message); EXPECT_GE(BUFFER_SIZE - 1u, message_size); EXPECT_EQ(get_system_error(error_code), message); // safe_strerror never uses buffer on MinGW. #if !defined(__MINGW32__) && !defined(__sun) result = fmt::detail::safe_strerror(error_code, message = buffer, message_size); EXPECT_EQ(ERANGE, result); result = fmt::detail::safe_strerror(error_code, message = buffer, 1); EXPECT_EQ(buffer, message); // Message should point to buffer. EXPECT_EQ(ERANGE, result); EXPECT_STREQ("", message); #endif } TEST(FormatTest, FormatErrorCode) { std::string msg = "error 42", sep = ": "; { fmt::memory_buffer buffer; format_to(buffer, "garbage"); fmt::detail::format_error_code(buffer, 42, "test"); EXPECT_EQ("test: " + msg, to_string(buffer)); } { fmt::memory_buffer buffer; std::string prefix(fmt::inline_buffer_size - msg.size() - sep.size() + 1, 'x'); fmt::detail::format_error_code(buffer, 42, prefix); EXPECT_EQ(msg, to_string(buffer)); } int codes[] = {42, -1}; for (size_t i = 0, n = sizeof(codes) / sizeof(*codes); i < n; ++i) { // Test maximum buffer size. msg = fmt::format("error {}", codes[i]); fmt::memory_buffer buffer; std::string prefix(fmt::inline_buffer_size - msg.size() - sep.size(), 'x'); fmt::detail::format_error_code(buffer, codes[i], prefix); EXPECT_EQ(prefix + sep + msg, to_string(buffer)); size_t size = fmt::inline_buffer_size; EXPECT_EQ(size, buffer.size()); buffer.resize(0); // Test with a message that doesn't fit into the buffer. prefix += 'x'; fmt::detail::format_error_code(buffer, codes[i], prefix); EXPECT_EQ(msg, to_string(buffer)); } } TEST(FormatTest, CountCodePoints) { EXPECT_EQ(4, fmt::detail::count_code_points( fmt::basic_string_view( reinterpret_cast("ёжик")))); } // Tests fmt::detail::count_digits for integer type Int. template void test_count_digits() { for (Int i = 0; i < 10; ++i) EXPECT_EQ(1u, fmt::detail::count_digits(i)); for (Int i = 1, n = 1, end = max_value() / 10; n <= end; ++i) { n *= 10; EXPECT_EQ(i, fmt::detail::count_digits(n - 1)); EXPECT_EQ(i + 1, fmt::detail::count_digits(n)); } } TEST(UtilTest, CountDigits) { test_count_digits(); test_count_digits(); } TEST(UtilTest, WriteFallbackUIntPtr) { std::string s; fmt::detail::write_ptr( std::back_inserter(s), fmt::detail::fallback_uintptr(reinterpret_cast(0xface)), nullptr); EXPECT_EQ(s, "0xface"); }