/********************************************************************** Copyright(c) 2011-2015 Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **********************************************************************/ #include #include #include // for memset, memcmp #include "erasure_code.h" #include "types.h" #define TEST_LEN 8192 #define TEST_SIZE (TEST_LEN/2) #ifndef TEST_SOURCES # define TEST_SOURCES 127 #endif #ifndef RANDOMS # define RANDOMS 200 #endif #define MMAX TEST_SOURCES #define KMAX TEST_SOURCES #define EFENCE_TEST_MIN_SIZE 16 #define EFENCE_TEST_MAX_SIZE EFENCE_TEST_MIN_SIZE + 0x100 #ifdef EC_ALIGNED_ADDR // Define power of 2 range to check ptr, len alignment # define PTR_ALIGN_CHK_B 0 # define LEN_ALIGN_CHK_B 0 // 0 for aligned only #else // Define power of 2 range to check ptr, len alignment # define PTR_ALIGN_CHK_B 32 # define LEN_ALIGN_CHK_B 32 // 0 for aligned only #endif #ifndef TEST_SEED #define TEST_SEED 11 #endif typedef unsigned char u8; void dump(unsigned char *buf, int len) { int i; for (i = 0; i < len;) { printf(" %2x", 0xff & buf[i++]); if (i % 32 == 0) printf("\n"); } printf("\n"); } void dump_matrix(unsigned char **s, int k, int m) { int i, j; for (i = 0; i < k; i++) { for (j = 0; j < m; j++) { printf(" %2x", s[i][j]); } printf("\n"); } printf("\n"); } void dump_u8xu8(unsigned char *s, int k, int m) { int i, j; for (i = 0; i < k; i++) { for (j = 0; j < m; j++) { printf(" %2x", 0xff & s[j + (i * m)]); } printf("\n"); } printf("\n"); } // Generate Random errors static void gen_err_list(unsigned char *src_err_list, unsigned char *src_in_err, int *pnerrs, int *pnsrcerrs, int k, int m) { int i, err; int nerrs = 0, nsrcerrs = 0; for (i = 0, nerrs = 0, nsrcerrs = 0; i < m && nerrs < m - k; i++) { err = 1 & rand(); src_in_err[i] = err; if (err) { src_err_list[nerrs++] = i; if (i < k) { nsrcerrs++; } } } if (nerrs == 0) { // should have at least one error while ((err = (rand() % KMAX)) >= m) ; src_err_list[nerrs++] = err; src_in_err[err] = 1; if (err < k) nsrcerrs = 1; } *pnerrs = nerrs; *pnsrcerrs = nsrcerrs; return; } #define NO_INVERT_MATRIX -2 // Generate decode matrix from encode matrix static int gf_gen_decode_matrix(unsigned char *encode_matrix, unsigned char *decode_matrix, unsigned char *invert_matrix, unsigned int *decode_index, unsigned char *src_err_list, unsigned char *src_in_err, int nerrs, int nsrcerrs, int k, int m) { int i, j, p; int r; unsigned char *backup, *b, s; int incr = 0; b = malloc(MMAX * KMAX); backup = malloc(MMAX * KMAX); if (b == NULL || backup == NULL) { printf("Test failure! Error with malloc\n"); free(b); free(backup); return -1; } // Construct matrix b by removing error rows for (i = 0, r = 0; i < k; i++, r++) { while (src_in_err[r]) r++; for (j = 0; j < k; j++) { b[k * i + j] = encode_matrix[k * r + j]; backup[k * i + j] = encode_matrix[k * r + j]; } decode_index[i] = r; } incr = 0; while (gf_invert_matrix(b, invert_matrix, k) < 0) { if (nerrs == (m - k)) { free(b); free(backup); printf("BAD MATRIX\n"); return NO_INVERT_MATRIX; } incr++; memcpy(b, backup, MMAX * KMAX); for (i = nsrcerrs; i < nerrs - nsrcerrs; i++) { if (src_err_list[i] == (decode_index[k - 1] + incr)) { // skip the erased parity line incr++; continue; } } if (decode_index[k - 1] + incr >= m) { free(b); free(backup); printf("BAD MATRIX\n"); return NO_INVERT_MATRIX; } decode_index[k - 1] += incr; for (j = 0; j < k; j++) b[k * (k - 1) + j] = encode_matrix[k * decode_index[k - 1] + j]; }; for (i = 0; i < nsrcerrs; i++) { for (j = 0; j < k; j++) { decode_matrix[k * i + j] = invert_matrix[k * src_err_list[i] + j]; } } /* src_err_list from encode_matrix * invert of b for parity decoding */ for (p = nsrcerrs; p < nerrs; p++) { for (i = 0; i < k; i++) { s = 0; for (j = 0; j < k; j++) s ^= gf_mul(invert_matrix[j * k + i], encode_matrix[k * src_err_list[p] + j]); decode_matrix[k * p + i] = s; } } free(b); free(backup); return 0; } int main(int argc, char *argv[]) { int re = 0; int i, j, p, rtest, m, k; int nerrs, nsrcerrs; void *buf; unsigned int decode_index[MMAX]; unsigned char *temp_buffs[TEST_SOURCES], *buffs[TEST_SOURCES]; unsigned char *encode_matrix, *decode_matrix, *invert_matrix, *g_tbls; unsigned char src_in_err[TEST_SOURCES], src_err_list[TEST_SOURCES]; unsigned char *recov[TEST_SOURCES]; int rows, align, size; unsigned char *efence_buffs[TEST_SOURCES]; unsigned int offset; u8 *ubuffs[TEST_SOURCES]; u8 *temp_ubuffs[TEST_SOURCES]; printf("erasure_code_test: %dx%d ", TEST_SOURCES, TEST_LEN); srand(TEST_SEED); // Allocate the arrays for (i = 0; i < TEST_SOURCES; i++) { if (posix_memalign(&buf, 64, TEST_LEN)) { printf("alloc error: Fail"); return -1; } buffs[i] = buf; } for (i = 0; i < TEST_SOURCES; i++) { if (posix_memalign(&buf, 64, TEST_LEN)) { printf("alloc error: Fail"); return -1; } temp_buffs[i] = buf; } // Test erasure code by encode and recovery encode_matrix = malloc(MMAX * KMAX); decode_matrix = malloc(MMAX * KMAX); invert_matrix = malloc(MMAX * KMAX); g_tbls = malloc(KMAX * TEST_SOURCES * 32); if (encode_matrix == NULL || decode_matrix == NULL || invert_matrix == NULL || g_tbls == NULL) { printf("Test failure! Error with malloc\n"); return -1; } // Pick a first test m = 9; k = 5; if (m > MMAX || k > KMAX) return -1; // Make random data for (i = 0; i < k; i++) for (j = 0; j < TEST_LEN; j++) buffs[i][j] = rand(); // Generate encode matrix encode_matrix // The matrix generated by gf_gen_rs_matrix // is not always invertable. gf_gen_rs_matrix(encode_matrix, m, k); // Generate g_tbls from encode matrix encode_matrix ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls); // Perform matrix dot_prod for EC encoding // using g_tbls from encode matrix encode_matrix ec_encode_data(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]); // Choose random buffers to be in erasure memset(src_in_err, 0, TEST_SOURCES); gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m); // Generate decode matrix re = gf_gen_decode_matrix(encode_matrix, decode_matrix, invert_matrix, decode_index, src_err_list, src_in_err, nerrs, nsrcerrs, k, m); if (re != 0) { printf("Fail to gf_gen_decode_matrix\n"); return -1; } // Pack recovery array as list of valid sources // Its order must be the same as the order // to generate matrix b in gf_gen_decode_matrix for (i = 0; i < k; i++) { recov[i] = buffs[decode_index[i]]; } // Recover data ec_init_tables(k, nerrs, decode_matrix, g_tbls); ec_encode_data(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]); for (i = 0; i < nerrs; i++) { if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], TEST_LEN)) { printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs); printf(" - erase list = "); for (j = 0; j < nerrs; j++) printf(" %d", src_err_list[j]); printf(" - Index = "); for (p = 0; p < k; p++) printf(" %d", decode_index[p]); printf("\nencode_matrix:\n"); dump_u8xu8((u8 *) encode_matrix, m, k); printf("inv b:\n"); dump_u8xu8((u8 *) invert_matrix, k, k); printf("\ndecode_matrix:\n"); dump_u8xu8((u8 *) decode_matrix, m, k); printf("recov %d:", src_err_list[i]); dump(temp_buffs[k + i], 25); printf("orig :"); dump(buffs[src_err_list[i]], 25); return -1; } } // Pick a first test m = 9; k = 5; if (m > MMAX || k > KMAX) return -1; // Make random data for (i = 0; i < k; i++) for (j = 0; j < TEST_LEN; j++) buffs[i][j] = rand(); // The matrix generated by gf_gen_cauchy1_matrix // is always invertable. gf_gen_cauchy1_matrix(encode_matrix, m, k); // Generate g_tbls from encode matrix encode_matrix ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls); // Perform matrix dot_prod for EC encoding // using g_tbls from encode matrix encode_matrix ec_encode_data(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]); // Choose random buffers to be in erasure memset(src_in_err, 0, TEST_SOURCES); gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m); // Generate decode matrix re = gf_gen_decode_matrix(encode_matrix, decode_matrix, invert_matrix, decode_index, src_err_list, src_in_err, nerrs, nsrcerrs, k, m); if (re != 0) { printf("Fail to gf_gen_decode_matrix\n"); return -1; } // Pack recovery array as list of valid sources // Its order must be the same as the order // to generate matrix b in gf_gen_decode_matrix for (i = 0; i < k; i++) { recov[i] = buffs[decode_index[i]]; } // Recover data ec_init_tables(k, nerrs, decode_matrix, g_tbls); ec_encode_data(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]); for (i = 0; i < nerrs; i++) { if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], TEST_LEN)) { printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs); printf(" - erase list = "); for (j = 0; j < nerrs; j++) printf(" %d", src_err_list[j]); printf(" - Index = "); for (p = 0; p < k; p++) printf(" %d", decode_index[p]); printf("\nencode_matrix:\n"); dump_u8xu8((u8 *) encode_matrix, m, k); printf("inv b:\n"); dump_u8xu8((u8 *) invert_matrix, k, k); printf("\ndecode_matrix:\n"); dump_u8xu8((u8 *) decode_matrix, m, k); printf("recov %d:", src_err_list[i]); dump(temp_buffs[k + i], 25); printf("orig :"); dump(buffs[src_err_list[i]], 25); return -1; } } // Do more random tests for (rtest = 0; rtest < RANDOMS; rtest++) { while ((m = (rand() % MMAX)) < 2) ; while ((k = (rand() % KMAX)) >= m || k < 1) ; if (m > MMAX || k > KMAX) continue; // Make random data for (i = 0; i < k; i++) for (j = 0; j < TEST_LEN; j++) buffs[i][j] = rand(); // The matrix generated by gf_gen_cauchy1_matrix // is always invertable. gf_gen_cauchy1_matrix(encode_matrix, m, k); // Make parity vects // Generate g_tbls from encode matrix a ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls); // Perform matrix dot_prod for EC encoding // using g_tbls from encode matrix a ec_encode_data(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]); // Random errors memset(src_in_err, 0, TEST_SOURCES); gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m); // Generate decode matrix re = gf_gen_decode_matrix(encode_matrix, decode_matrix, invert_matrix, decode_index, src_err_list, src_in_err, nerrs, nsrcerrs, k, m); if (re != 0) { printf("Fail to gf_gen_decode_matrix\n"); return -1; } // Pack recovery array as list of valid sources // Its order must be the same as the order // to generate matrix b in gf_gen_decode_matrix for (i = 0; i < k; i++) { recov[i] = buffs[decode_index[i]]; } // Recover data ec_init_tables(k, nerrs, decode_matrix, g_tbls); ec_encode_data(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]); for (i = 0; i < nerrs; i++) { if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], TEST_LEN)) { printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs); printf(" - erase list = "); for (j = 0; j < nerrs; j++) printf(" %d", src_err_list[j]); printf(" - Index = "); for (p = 0; p < k; p++) printf(" %d", decode_index[p]); printf("\nencode_matrix:\n"); dump_u8xu8((u8 *) encode_matrix, m, k); printf("inv b:\n"); dump_u8xu8((u8 *) invert_matrix, k, k); printf("\ndecode_matrix:\n"); dump_u8xu8((u8 *) decode_matrix, m, k); printf("orig data:\n"); dump_matrix(buffs, m, 25); printf("orig :"); dump(buffs[src_err_list[i]], 25); printf("recov %d:", src_err_list[i]); dump(temp_buffs[k + i], 25); return -1; } } putchar('.'); } // Run tests at end of buffer for Electric Fence k = 16; align = (LEN_ALIGN_CHK_B != 0) ? 1 : 16; if (k > KMAX) return -1; for (rows = 1; rows <= 16; rows++) { m = k + rows; if (m > MMAX) return -1; // Make random data for (i = 0; i < k; i++) for (j = 0; j < TEST_LEN; j++) buffs[i][j] = rand(); for (size = EFENCE_TEST_MIN_SIZE; size <= EFENCE_TEST_MAX_SIZE; size += align) { for (i = 0; i < m; i++) { // Line up TEST_SIZE from end efence_buffs[i] = buffs[i] + TEST_LEN - size; } // The matrix generated by gf_gen_cauchy1_matrix // is always invertable. gf_gen_cauchy1_matrix(encode_matrix, m, k); // Make parity vects // Generate g_tbls from encode matrix a ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls); // Perform matrix dot_prod for EC encoding // using g_tbls from encode matrix a ec_encode_data(size, k, m - k, g_tbls, efence_buffs, &efence_buffs[k]); // Random errors memset(src_in_err, 0, TEST_SOURCES); gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m); // Generate decode matrix re = gf_gen_decode_matrix(encode_matrix, decode_matrix, invert_matrix, decode_index, src_err_list, src_in_err, nerrs, nsrcerrs, k, m); if (re != 0) { printf("Fail to gf_gen_decode_matrix\n"); return -1; } // Pack recovery array as list of valid sources // Its order must be the same as the order // to generate matrix b in gf_gen_decode_matrix for (i = 0; i < k; i++) { recov[i] = efence_buffs[decode_index[i]]; } // Recover data ec_init_tables(k, nerrs, decode_matrix, g_tbls); ec_encode_data(size, k, nerrs, g_tbls, recov, &temp_buffs[k]); for (i = 0; i < nerrs; i++) { if (0 != memcmp(temp_buffs[k + i], efence_buffs[src_err_list[i]], size)) { printf("Efence: Fail error recovery (%d, %d, %d)\n", m, k, nerrs); printf("size = %d\n", size); printf("Test erase list = "); for (j = 0; j < nerrs; j++) printf(" %d", src_err_list[j]); printf(" - Index = "); for (p = 0; p < k; p++) printf(" %d", decode_index[p]); printf("\nencode_matrix:\n"); dump_u8xu8((u8 *) encode_matrix, m, k); printf("inv b:\n"); dump_u8xu8((u8 *) invert_matrix, k, k); printf("\ndecode_matrix:\n"); dump_u8xu8((u8 *) decode_matrix, m, k); printf("recov %d:", src_err_list[i]); dump(temp_buffs[k + i], align); printf("orig :"); dump(efence_buffs[src_err_list[i]], align); return -1; } } } } // Test rand ptr alignment if available for (rtest = 0; rtest < RANDOMS; rtest++) { while ((m = (rand() % MMAX)) < 2) ; while ((k = (rand() % KMAX)) >= m || k < 1) ; if (m > MMAX || k > KMAX) continue; size = (TEST_LEN - PTR_ALIGN_CHK_B) & ~15; offset = (PTR_ALIGN_CHK_B != 0) ? 1 : PTR_ALIGN_CHK_B; // Add random offsets for (i = 0; i < m; i++) { memset(buffs[i], 0, TEST_LEN); // zero pad to check write-over memset(temp_buffs[i], 0, TEST_LEN); // zero pad to check write-over ubuffs[i] = buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset)); temp_ubuffs[i] = temp_buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset)); } for (i = 0; i < k; i++) for (j = 0; j < size; j++) ubuffs[i][j] = rand(); // The matrix generated by gf_gen_cauchy1_matrix // is always invertable. gf_gen_cauchy1_matrix(encode_matrix, m, k); // Make parity vects // Generate g_tbls from encode matrix a ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls); // Perform matrix dot_prod for EC encoding // using g_tbls from encode matrix a ec_encode_data(size, k, m - k, g_tbls, ubuffs, &ubuffs[k]); // Random errors memset(src_in_err, 0, TEST_SOURCES); gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m); // Generate decode matrix re = gf_gen_decode_matrix(encode_matrix, decode_matrix, invert_matrix, decode_index, src_err_list, src_in_err, nerrs, nsrcerrs, k, m); if (re != 0) { printf("Fail to gf_gen_decode_matrix\n"); return -1; } // Pack recovery array as list of valid sources // Its order must be the same as the order // to generate matrix b in gf_gen_decode_matrix for (i = 0; i < k; i++) { recov[i] = ubuffs[decode_index[i]]; } // Recover data ec_init_tables(k, nerrs, decode_matrix, g_tbls); ec_encode_data(size, k, nerrs, g_tbls, recov, &temp_ubuffs[k]); for (i = 0; i < nerrs; i++) { if (0 != memcmp(temp_ubuffs[k + i], ubuffs[src_err_list[i]], size)) { printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs); printf(" - erase list = "); for (j = 0; j < nerrs; j++) printf(" %d", src_err_list[j]); printf(" - Index = "); for (p = 0; p < k; p++) printf(" %d", decode_index[p]); printf("\nencode_matrix:\n"); dump_u8xu8((unsigned char *)encode_matrix, m, k); printf("inv b:\n"); dump_u8xu8((unsigned char *)invert_matrix, k, k); printf("\ndecode_matrix:\n"); dump_u8xu8((unsigned char *)decode_matrix, m, k); printf("orig data:\n"); dump_matrix(ubuffs, m, 25); printf("orig :"); dump(ubuffs[src_err_list[i]], 25); printf("recov %d:", src_err_list[i]); dump(temp_ubuffs[k + i], 25); return -1; } } // Confirm that padding around dests is unchanged memset(temp_buffs[0], 0, PTR_ALIGN_CHK_B); // Make reference zero buff for (i = 0; i < m; i++) { offset = ubuffs[i] - buffs[i]; if (memcmp(buffs[i], temp_buffs[0], offset)) { printf("Fail rand ualign encode pad start\n"); return -1; } if (memcmp (buffs[i] + offset + size, temp_buffs[0], PTR_ALIGN_CHK_B - offset)) { printf("Fail rand ualign encode pad end\n"); return -1; } } for (i = 0; i < nerrs; i++) { offset = temp_ubuffs[k + i] - temp_buffs[k + i]; if (memcmp(temp_buffs[k + i], temp_buffs[0], offset)) { printf("Fail rand ualign decode pad start\n"); return -1; } if (memcmp (temp_buffs[k + i] + offset + size, temp_buffs[0], PTR_ALIGN_CHK_B - offset)) { printf("Fail rand ualign decode pad end\n"); return -1; } } putchar('.'); } // Test size alignment align = (LEN_ALIGN_CHK_B != 0) ? 13 : 16; for (size = TEST_LEN; size > 0; size -= align) { while ((m = (rand() % MMAX)) < 2) ; while ((k = (rand() % KMAX)) >= m || k < 1) ; if (m > MMAX || k > KMAX) continue; for (i = 0; i < k; i++) for (j = 0; j < size; j++) buffs[i][j] = rand(); // The matrix generated by gf_gen_cauchy1_matrix // is always invertable. gf_gen_cauchy1_matrix(encode_matrix, m, k); // Make parity vects // Generate g_tbls from encode matrix a ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls); // Perform matrix dot_prod for EC encoding // using g_tbls from encode matrix a ec_encode_data(size, k, m - k, g_tbls, buffs, &buffs[k]); // Random errors memset(src_in_err, 0, TEST_SOURCES); gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m); // Generate decode matrix re = gf_gen_decode_matrix(encode_matrix, decode_matrix, invert_matrix, decode_index, src_err_list, src_in_err, nerrs, nsrcerrs, k, m); if (re != 0) { printf("Fail to gf_gen_decode_matrix\n"); return -1; } // Pack recovery array as list of valid sources // Its order must be the same as the order // to generate matrix b in gf_gen_decode_matrix for (i = 0; i < k; i++) { recov[i] = buffs[decode_index[i]]; } // Recover data ec_init_tables(k, nerrs, decode_matrix, g_tbls); ec_encode_data(size, k, nerrs, g_tbls, recov, &temp_buffs[k]); for (i = 0; i < nerrs; i++) { if (0 != memcmp(temp_buffs[k + i], buffs[src_err_list[i]], size)) { printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs); printf(" - erase list = "); for (j = 0; j < nerrs; j++) printf(" %d", src_err_list[j]); printf(" - Index = "); for (p = 0; p < k; p++) printf(" %d", decode_index[p]); printf("\nencode_matrix:\n"); dump_u8xu8((unsigned char *)encode_matrix, m, k); printf("inv b:\n"); dump_u8xu8((unsigned char *)invert_matrix, k, k); printf("\ndecode_matrix:\n"); dump_u8xu8((unsigned char *)decode_matrix, m, k); printf("orig data:\n"); dump_matrix(buffs, m, 25); printf("orig :"); dump(buffs[src_err_list[i]], 25); printf("recov %d:", src_err_list[i]); dump(temp_buffs[k + i], 25); return -1; } } } printf("done EC tests: Pass\n"); return 0; }