;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Copyright(c) 2011-2015 Intel Corporation All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions ; are met: ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in ; the documentation and/or other materials provided with the ; distribution. ; * Neither the name of Intel Corporation nor the names of its ; contributors may be used to endorse or promote products derived ; from this software without specific prior written permission. ; ; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; gf_4vect_dot_prod_avx(len, vec, *g_tbls, **buffs, **dests); ;;; %include "reg_sizes.asm" %ifidn __OUTPUT_FORMAT__, elf64 %define arg0 rdi %define arg1 rsi %define arg2 rdx %define arg3 rcx %define arg4 r8 %define arg5 r9 %define tmp r11 %define tmp2 r10 %define tmp3 r13 ; must be saved and restored %define tmp4 r12 ; must be saved and restored %define tmp5 r14 ; must be saved and restored %define tmp6 r15 ; must be saved and restored %define return rax %macro SLDR 2 %endmacro %define SSTR SLDR %define PS 8 %define LOG_PS 3 %define func(x) x: %macro FUNC_SAVE 0 push r12 push r13 push r14 push r15 %endmacro %macro FUNC_RESTORE 0 pop r15 pop r14 pop r13 pop r12 %endmacro %endif %ifidn __OUTPUT_FORMAT__, win64 %define arg0 rcx %define arg1 rdx %define arg2 r8 %define arg3 r9 %define arg4 r12 ; must be saved, loaded and restored %define arg5 r15 ; must be saved and restored %define tmp r11 %define tmp2 r10 %define tmp3 r13 ; must be saved and restored %define tmp4 r14 ; must be saved and restored %define tmp5 rdi ; must be saved and restored %define tmp6 rsi ; must be saved and restored %define return rax %macro SLDR 2 %endmacro %define SSTR SLDR %define PS 8 %define LOG_PS 3 %define stack_size 9*16 + 7*8 ; must be an odd multiple of 8 %define arg(x) [rsp + stack_size + PS + PS*x] %define func(x) proc_frame x %macro FUNC_SAVE 0 alloc_stack stack_size save_xmm128 xmm6, 0*16 save_xmm128 xmm7, 1*16 save_xmm128 xmm8, 2*16 save_xmm128 xmm9, 3*16 save_xmm128 xmm10, 4*16 save_xmm128 xmm11, 5*16 save_xmm128 xmm12, 6*16 save_xmm128 xmm13, 7*16 save_xmm128 xmm14, 8*16 save_reg r12, 9*16 + 0*8 save_reg r13, 9*16 + 1*8 save_reg r14, 9*16 + 2*8 save_reg r15, 9*16 + 3*8 save_reg rdi, 9*16 + 4*8 save_reg rsi, 9*16 + 5*8 end_prolog mov arg4, arg(4) %endmacro %macro FUNC_RESTORE 0 vmovdqa xmm6, [rsp + 0*16] vmovdqa xmm7, [rsp + 1*16] vmovdqa xmm8, [rsp + 2*16] vmovdqa xmm9, [rsp + 3*16] vmovdqa xmm10, [rsp + 4*16] vmovdqa xmm11, [rsp + 5*16] vmovdqa xmm12, [rsp + 6*16] vmovdqa xmm13, [rsp + 7*16] vmovdqa xmm14, [rsp + 8*16] mov r12, [rsp + 9*16 + 0*8] mov r13, [rsp + 9*16 + 1*8] mov r14, [rsp + 9*16 + 2*8] mov r15, [rsp + 9*16 + 3*8] mov rdi, [rsp + 9*16 + 4*8] mov rsi, [rsp + 9*16 + 5*8] add rsp, stack_size %endmacro %endif %ifidn __OUTPUT_FORMAT__, elf32 ;;;================== High Address; ;;; arg4 ;;; arg3 ;;; arg2 ;;; arg1 ;;; arg0 ;;; return ;;;<================= esp of caller ;;; ebp ;;;<================= ebp = esp ;;; var0 ;;; var1 ;;; var2 ;;; var3 ;;; esi ;;; edi ;;; ebx ;;;<================= esp of callee ;;; ;;;================== Low Address; %define PS 4 %define LOG_PS 2 %define func(x) x: %define arg(x) [ebp + PS*2 + PS*x] %define var(x) [ebp - PS - PS*x] %define trans ecx %define trans2 esi %define arg0 trans ;trans and trans2 are for the variables in stack %define arg0_m arg(0) %define arg1 ebx %define arg2 arg2_m %define arg2_m arg(2) %define arg3 trans %define arg3_m arg(3) %define arg4 trans %define arg4_m arg(4) %define arg5 trans2 %define tmp edx %define tmp2 edi %define tmp3 trans2 %define tmp3_m var(0) %define tmp4 trans2 %define tmp4_m var(1) %define tmp5 trans2 %define tmp5_m var(2) %define tmp6 trans2 %define tmp6_m var(3) %define return eax %macro SLDR 2 ;stack load/restore mov %1, %2 %endmacro %define SSTR SLDR %macro FUNC_SAVE 0 push ebp mov ebp, esp sub esp, PS*4 ;4 local variables push esi push edi push ebx mov arg1, arg(1) %endmacro %macro FUNC_RESTORE 0 pop ebx pop edi pop esi add esp, PS*4 ;4 local variables pop ebp %endmacro %endif ; output formats %define len arg0 %define vec arg1 %define mul_array arg2 %define src arg3 %define dest1 arg4 %define ptr arg5 %define vec_i tmp2 %define dest2 tmp3 %define dest3 tmp4 %define dest4 tmp5 %define vskip3 tmp6 %define pos return %ifidn PS,4 ;32-bit code %define len_m arg0_m %define src_m arg3_m %define dest1_m arg4_m %define dest2_m tmp3_m %define dest3_m tmp4_m %define dest4_m tmp5_m %define vskip3_m tmp6_m %endif %ifndef EC_ALIGNED_ADDR ;;; Use Un-aligned load/store %define XLDR vmovdqu %define XSTR vmovdqu %else ;;; Use Non-temporal load/stor %ifdef NO_NT_LDST %define XLDR vmovdqa %define XSTR vmovdqa %else %define XLDR vmovntdqa %define XSTR vmovntdq %endif %endif %ifidn PS,8 ; 64-bit code default rel [bits 64] %endif section .text %ifidn PS,8 ;64-bit code %define xmask0f xmm14 %define xgft1_lo xmm13 %define xgft1_hi xmm12 %define xgft2_lo xmm11 %define xgft2_hi xmm10 %define xgft3_lo xmm9 %define xgft3_hi xmm8 %define xgft4_lo xmm7 %define xgft4_hi xmm6 %define x0 xmm0 %define xtmpa xmm1 %define xp1 xmm2 %define xp2 xmm3 %define xp3 xmm4 %define xp4 xmm5 %else %define xmm_trans xmm7 ;reuse xmask0f and xgft1_lo %define xmask0f xmm_trans %define xgft1_lo xmm_trans %define xgft1_hi xmm6 %define xgft2_lo xgft1_lo %define xgft2_hi xgft1_hi %define xgft3_lo xgft1_lo %define xgft3_hi xgft1_hi %define xgft4_lo xgft1_lo %define xgft4_hi xgft1_hi %define x0 xmm0 %define xtmpa xmm1 %define xp1 xmm2 %define xp2 xmm3 %define xp3 xmm4 %define xp4 xmm5 %endif align 16 global gf_4vect_dot_prod_avx:ISAL_SYM_TYPE_FUNCTION func(gf_4vect_dot_prod_avx) FUNC_SAVE SLDR len, len_m sub len, 16 SSTR len_m, len jl .return_fail xor pos, pos vmovdqa xmask0f, [mask0f] ;Load mask of lower nibble in each byte mov vskip3, vec imul vskip3, 96 SSTR vskip3_m, vskip3 sal vec, LOG_PS ;vec *= PS. Make vec_i count by PS SLDR dest1, dest1_m mov dest2, [dest1+PS] SSTR dest2_m, dest2 mov dest3, [dest1+2*PS] SSTR dest3_m, dest3 mov dest4, [dest1+3*PS] SSTR dest4_m, dest4 mov dest1, [dest1] SSTR dest1_m, dest1 .loop16: vpxor xp1, xp1 vpxor xp2, xp2 vpxor xp3, xp3 vpxor xp4, xp4 mov tmp, mul_array xor vec_i, vec_i .next_vect: SLDR src, src_m mov ptr, [src+vec_i] %ifidn PS,8 ;64-bit code vmovdqu xgft1_lo, [tmp] ;Load array Ax{00}, Ax{01}, ..., Ax{0f} vmovdqu xgft1_hi, [tmp+16] ; " Ax{00}, Ax{10}, ..., Ax{f0} vmovdqu xgft2_lo, [tmp+vec*(32/PS)] ;Load array Bx{00}, Bx{01}, ..., Bx{0f} vmovdqu xgft2_hi, [tmp+vec*(32/PS)+16] ; " Bx{00}, Bx{10}, ..., Bx{f0} vmovdqu xgft3_lo, [tmp+vec*(64/PS)] ;Load array Cx{00}, Cx{01}, ..., Cx{0f} vmovdqu xgft3_hi, [tmp+vec*(64/PS)+16] ; " Cx{00}, Cx{10}, ..., Cx{f0} vmovdqu xgft4_lo, [tmp+vskip3] ;Load array Dx{00}, Dx{01}, ..., Dx{0f} vmovdqu xgft4_hi, [tmp+vskip3+16] ; " Dx{00}, Dx{10}, ..., Dx{f0} XLDR x0, [ptr+pos] ;Get next source vector add tmp, 32 add vec_i, PS vpand xtmpa, x0, xmask0f ;Mask low src nibble in bits 4-0 vpsraw x0, x0, 4 ;Shift to put high nibble into bits 4-0 vpand x0, x0, xmask0f ;Mask high src nibble in bits 4-0 %else ;32-bit code XLDR x0, [ptr+pos] ;Get next source vector vmovdqa xmask0f, [mask0f] ;Load mask of lower nibble in each byte vpand xtmpa, x0, xmask0f ;Mask low src nibble in bits 4-0 vpsraw x0, x0, 4 ;Shift to put high nibble into bits 4-0 vpand x0, x0, xmask0f ;Mask high src nibble in bits 4-0 vmovdqu xgft1_lo, [tmp] ;Load array Ax{00}, Ax{01}, ..., Ax{0f} vmovdqu xgft1_hi, [tmp+16] ; " Ax{00}, Ax{10}, ..., Ax{f0} %endif vpshufb xgft1_hi, x0 ;Lookup mul table of high nibble vpshufb xgft1_lo, xtmpa ;Lookup mul table of low nibble vpxor xgft1_hi, xgft1_lo ;GF add high and low partials vpxor xp1, xgft1_hi ;xp1 += partial %ifidn PS,4 ;32-bit code vmovdqu xgft2_lo, [tmp+vec*(32/PS)] ;Load array Bx{00}, Bx{01}, ..., Bx{0f} vmovdqu xgft2_hi, [tmp+vec*(32/PS)+16] ; " Bx{00}, Bx{10}, ..., Bx{f0} %endif vpshufb xgft2_hi, x0 ;Lookup mul table of high nibble vpshufb xgft2_lo, xtmpa ;Lookup mul table of low nibble vpxor xgft2_hi, xgft2_lo ;GF add high and low partials vpxor xp2, xgft2_hi ;xp2 += partial %ifidn PS,4 ;32-bit code sal vec, 1 vmovdqu xgft3_lo, [tmp+vec*(32/PS)] ;Load array Cx{00}, Cx{01}, ..., Cx{0f} vmovdqu xgft3_hi, [tmp+vec*(32/PS)+16] ; " Cx{00}, Cx{10}, ..., Cx{f0} sar vec, 1 %endif vpshufb xgft3_hi, x0 ;Lookup mul table of high nibble vpshufb xgft3_lo, xtmpa ;Lookup mul table of low nibble vpxor xgft3_hi, xgft3_lo ;GF add high and low partials vpxor xp3, xgft3_hi ;xp3 += partial %ifidn PS,4 ;32-bit code SLDR vskip3, vskip3_m vmovdqu xgft4_lo, [tmp+vskip3] ;Load array Dx{00}, Dx{01}, ..., Dx{0f} vmovdqu xgft4_hi, [tmp+vskip3+16] ; " Dx{00}, Dx{10}, ..., Dx{f0} add tmp, 32 add vec_i, PS %endif vpshufb xgft4_hi, x0 ;Lookup mul table of high nibble vpshufb xgft4_lo, xtmpa ;Lookup mul table of low nibble vpxor xgft4_hi, xgft4_lo ;GF add high and low partials vpxor xp4, xgft4_hi ;xp4 += partial cmp vec_i, vec jl .next_vect SLDR dest1, dest1_m SLDR dest2, dest2_m XSTR [dest1+pos], xp1 XSTR [dest2+pos], xp2 SLDR dest3, dest3_m XSTR [dest3+pos], xp3 SLDR dest4, dest4_m XSTR [dest4+pos], xp4 SLDR len, len_m add pos, 16 ;Loop on 16 bytes at a time cmp pos, len jle .loop16 lea tmp, [len + 16] cmp pos, tmp je .return_pass ;; Tail len mov pos, len ;Overlapped offset length-16 jmp .loop16 ;Do one more overlap pass .return_pass: mov return, 0 FUNC_RESTORE ret .return_fail: mov return, 1 FUNC_RESTORE ret endproc_frame section .data align 16 mask0f: dq 0x0f0f0f0f0f0f0f0f, 0x0f0f0f0f0f0f0f0f ;;; func core, ver, snum slversion gf_4vect_dot_prod_avx, 02, 05, 0193