/********************************************************************** Copyright(c) 2011-2016 Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **********************************************************************/ #include #include #include #include "igzip_lib.h" #include "unaligned.h" #if __x86_64__ || __i386__ || _M_X64 || _M_IX86 #ifdef _MSC_VER # include # define inline __inline #else # include #endif #else # define inline __inline #endif //__x86_64__ || __i386__ || _M_X64 || _M_IX86 /** * @brief Calculate the bit offset of the msb. * @param val 32-bit unsigned integer input * * @returns bit offset of msb starting at 1 for first bit */ static inline uint32_t bsr(uint32_t val) { uint32_t msb; #if defined(_MSC_VER) unsigned long ret = 0; if (val != 0) { _BitScanReverse(&ret, val); msb = ret + 1; } else msb = 0; #elif defined( __LZCNT__) msb = 32 - __lzcnt32(val); #elif defined(__x86_64__) || defined(__aarch64__) msb = (val == 0)? 0 : 32 - __builtin_clz(val); #else for(msb = 0; val > 0; val >>= 1) msb++; #endif return msb; } static inline uint32_t tzbytecnt(uint64_t val) { uint32_t cnt; #ifdef __BMI__ cnt = __tzcnt_u64(val); cnt = cnt / 8; #elif defined(__x86_64__) || defined(__aarch64__) cnt = (val == 0)? 64 : __builtin_ctzll(val); cnt = cnt / 8; #else for(cnt = 8; val > 0; val <<= 8) cnt -= 1; #endif return cnt; } static void compute_dist_code(struct isal_hufftables *hufftables, uint16_t dist, uint64_t *p_code, uint64_t *p_len) { assert(dist > IGZIP_DIST_TABLE_SIZE); dist -= 1; uint32_t msb; uint32_t num_extra_bits; uint32_t extra_bits; uint32_t sym; uint32_t len; uint32_t code; msb = bsr(dist); assert(msb >= 1); num_extra_bits = msb - 2; extra_bits = dist & ((1 << num_extra_bits) - 1); dist >>= num_extra_bits; sym = dist + 2 * num_extra_bits; assert(sym < 30); code = hufftables->dcodes[sym - IGZIP_DECODE_OFFSET]; len = hufftables->dcodes_sizes[sym - IGZIP_DECODE_OFFSET]; *p_code = code | (extra_bits << len); *p_len = len + num_extra_bits; } static inline void get_dist_code(struct isal_hufftables *hufftables, uint32_t dist, uint64_t *code, uint64_t *len) { if (dist < 1) dist = 0; assert(dist >= 1); assert(dist <= 32768); if (dist <= IGZIP_DIST_TABLE_SIZE) { uint64_t code_len; code_len = hufftables->dist_table[dist - 1]; *code = code_len >> 5; *len = code_len & 0x1F; } else { compute_dist_code(hufftables, dist, code, len); } } static inline void get_len_code(struct isal_hufftables *hufftables, uint32_t length, uint64_t *code, uint64_t *len) { assert(length >= 3); assert(length <= 258); uint64_t code_len; code_len = hufftables->len_table[length - 3]; *code = code_len >> 5; *len = code_len & 0x1F; } static inline void get_lit_code(struct isal_hufftables *hufftables, uint32_t lit, uint64_t *code, uint64_t *len) { assert(lit <= 256); *code = hufftables->lit_table[lit]; *len = hufftables->lit_table_sizes[lit]; } static void compute_dist_icf_code(uint32_t dist, uint32_t *code, uint32_t *extra_bits) { uint32_t msb; uint32_t num_extra_bits; dist -= 1; msb = bsr(dist); assert(msb >= 1); num_extra_bits = msb - 2; *extra_bits = dist & ((1 << num_extra_bits) - 1); dist >>= num_extra_bits; *code = dist + 2 * num_extra_bits; assert(*code < 30); } static inline void get_dist_icf_code(uint32_t dist, uint32_t *code, uint32_t *extra_bits) { assert(dist >= 1); assert(dist <= 32768); if (dist <= 2) { *code = dist - 1; *extra_bits = 0; } else { compute_dist_icf_code(dist, code, extra_bits); } } static inline void get_len_icf_code(uint32_t length, uint32_t *code) { assert(length >= 3); assert(length <= 258); *code = length + 254; } static inline void get_lit_icf_code(uint32_t lit, uint32_t *code) { assert(lit <= 256); *code = lit; } /** * @brief Returns a hash of the first 3 bytes of input data. */ static inline uint32_t compute_hash(uint32_t data) { #ifdef __SSE4_2__ return _mm_crc32_u32(0, data); #else uint64_t hash; /* Use multiplication to create a hash, 0xBDD06057 is a prime number */ hash = data; hash *= 0xB2D06057; hash >>= 16; hash *= 0xB2D06057; hash >>= 16; return hash; #endif /* __SSE4_2__ */ } #define PROD1 0xFFFFE84B #define PROD2 0xFFFF97B1 static inline uint32_t compute_hash_mad(uint32_t data) { int16_t data_low; int16_t data_high; data_low = data; data_high = data >> 16; data = PROD1 * data_low + PROD2 * data_high; data_low = data; data_high = data >> 16; data = PROD1 * data_low + PROD2 * data_high; return data; } static inline uint32_t compute_long_hash(uint64_t data) { return compute_hash(data >> 32)^compute_hash(data); } /** * @brief Returns how long str1 and str2 have the same symbols. * @param str1: First input string. * @param str2: Second input string. * @param max_length: length of the smaller string. */ static inline int compare258(uint8_t * str1, uint8_t * str2, uint32_t max_length) { uint32_t count; uint64_t test; uint64_t loop_length; if(max_length > 258) max_length = 258; loop_length = max_length & ~0x7; for(count = 0; count < loop_length; count += 8){ test = load_u64(str1); test ^= load_u64(str2); if(test != 0) return count + tzbytecnt(test); str1 += 8; str2 += 8; } switch(max_length % 8){ case 7: if(*str1++ != *str2++) return count; count++; case 6: if(*str1++ != *str2++) return count; count++; case 5: if(*str1++ != *str2++) return count; count++; case 4: if(*str1++ != *str2++) return count; count++; case 3: if(*str1++ != *str2++) return count; count++; case 2: if(*str1++ != *str2++) return count; count++; case 1: if(*str1 != *str2) return count; count++; } return count; } /** * @brief Returns how long str1 and str2 have the same symbols. * @param str1: First input string. * @param str2: Second input string. * @param max_length: length of the smaller string. */ static inline int compare(uint8_t * str1, uint8_t * str2, uint32_t max_length) { uint32_t count; uint64_t test; uint64_t loop_length; loop_length = max_length & ~0x7; for(count = 0; count < loop_length; count += 8){ test = load_u64(str1); test ^= load_u64(str2); if(test != 0) return count + tzbytecnt(test); str1 += 8; str2 += 8; } switch(max_length % 8){ case 7: if(*str1++ != *str2++) return count; count++; case 6: if(*str1++ != *str2++) return count; count++; case 5: if(*str1++ != *str2++) return count; count++; case 4: if(*str1++ != *str2++) return count; count++; case 3: if(*str1++ != *str2++) return count; count++; case 2: if(*str1++ != *str2++) return count; count++; case 1: if(*str1 != *str2) return count; count++; } return count; }