;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Copyright(c) 2011-2015 Intel Corporation All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions ; are met: ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in ; the documentation and/or other materials provided with the ; distribution. ; * Neither the name of Intel Corporation nor the names of its ; contributors may be used to endorse or promote products derived ; from this software without specific prior written permission. ; ; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Optimized pq of N source vectors using SSE3 ;;; int pq_gen_sse(int vects, int len, void **array) ;;; Generates P+Q parity vector from N (vects-2) sources in array of pointers ;;; (**array). Last two pointers are the P and Q destinations respectively. ;;; Vectors must be aligned to 16 bytes. Length must be 16 byte aligned. %include "reg_sizes.asm" %ifidn __OUTPUT_FORMAT__, elf64 %define arg0 rdi %define arg1 rsi %define arg2 rdx %define arg3 rcx %define arg4 r8 %define arg5 r9 %define tmp r11 %define return rax %define PS 8 %define func(x) x: %define FUNC_SAVE %define FUNC_RESTORE %elifidn __OUTPUT_FORMAT__, win64 %define arg0 rcx %define arg1 rdx %define arg2 r8 %define arg3 r9 %define return rax %define PS 8 %define tmp r11 %define stack_size 2*16 + 8 ; must be an odd multiple of 8 %define func(x) proc_frame x %macro FUNC_SAVE 0 alloc_stack stack_size save_xmm128 xmm6, 0*16 save_xmm128 xmm7, 1*16 end_prolog %endmacro %macro FUNC_RESTORE 0 movdqa xmm6, [rsp + 0*16] movdqa xmm7, [rsp + 1*16] add rsp, stack_size %endmacro %elifidn __OUTPUT_FORMAT__, elf32 %define arg0 edx %define arg1 ecx %define return eax %define PS 4 %define func(x) x: %define arg(x) [ebp+8+PS*x] %define arg2 edi ; must sav/restore %define arg3 esi %define tmp ebx %macro FUNC_SAVE 0 push ebp mov ebp, esp push esi push edi push ebx mov arg0, arg(0) mov arg1, arg(1) mov arg2, arg(2) %endmacro %macro FUNC_RESTORE 0 pop ebx pop edi pop esi mov esp, ebp ;if has frame pointer? pop ebp %endmacro %endif ; output formats %define vec arg0 %define len arg1 %define ptr arg3 %define pos return %define xp1 xmm0 %define xq1 xmm1 %define xtmp1 xmm2 %define xs1 xmm3 %define xp2 xmm4 %define xq2 xmm5 %define xtmp2 xmm6 %define xs2 xmm7 %ifidn PS,8 ; 64-bit code default rel [bits 64] %define xpoly xmm15 %elifidn PS,4 ; 32-bit code %define xpoly [poly] %endif ;;; Use Non-temporal load/stor %ifdef NO_NT_LDST %define XLDR movdqa %define XSTR movdqa %else %define XLDR movntdqa %define XSTR movntdq %endif section .text align 16 global pq_check_sse:ISAL_SYM_TYPE_FUNCTION func(pq_check_sse) FUNC_SAVE sub vec, 3 ;Keep as offset to last source jng return_fail ;Must have at least 2 sources cmp len, 0 je return_pass test len, (16-1) ;Check alignment of length jnz return_fail mov pos, 0 %ifidn PS,8 movdqa xpoly, [poly] ;For 64-bit, load poly into high xmm reg %endif cmp len, 32 jl loop16 len_aligned_32bytes: sub len, 32 ;Do end of vec first and run backward loop32: mov ptr, [arg2+PS+vec*PS] ;Get address of P parity vector mov tmp, [arg2+(2*PS)+vec*PS] ;Get address of Q parity vector XLDR xp1, [ptr+pos] ;Initialize xp1 with P1 src XLDR xp2, [ptr+pos+16] ;Initialize xp2 with P2 src + 16B ahead pxor xq1, xq1 ;q1 = 0 pxor xq2, xq2 ;q2 = 0 mov ptr, [arg2+vec*PS] ;Fetch last source pointer mov tmp, vec ;Set tmp to point back to last vector XLDR xs1, [ptr+pos] ;Preload last vector (source) XLDR xs2, [ptr+pos+16] ;Preload last vector (source) next_vect: sub tmp, 1 ;Inner loop for each source vector mov ptr, [arg2+tmp*PS] ; get pointer to next vect pxor xp1, xs1 ; p1 ^= s1 pxor xp2, xs2 ; p2 ^= s2 pxor xq1, xs1 ; q1 ^= s1 pxor xq2, xs2 ; q2 ^= s2 pxor xtmp1, xtmp1 ; xtmp1 = 0 - for compare to 0 pxor xtmp2, xtmp2 ; xtmp2 = 0 pcmpgtb xtmp1, xq1 ; xtmp1 = mask 0xff or 0x00 if bit7 set pcmpgtb xtmp2, xq2 ; xtmp2 = mask 0xff or 0x00 if bit7 set pand xtmp1, xpoly ; xtmp1 = poly or 0x00 pand xtmp2, xpoly ; xtmp2 = poly or 0x00 XLDR xs1, [ptr+pos] ; Get next vector (source data1) XLDR xs2, [ptr+pos+16] ; Get next vector (source data2) paddb xq1, xq1 ; q1 = q1<<1 paddb xq2, xq2 ; q2 = q2<<1 pxor xq1, xtmp1 ; q1 = q1<<1 ^ poly_masked pxor xq2, xtmp2 ; q2 = q2<<1 ^ poly_masked jg next_vect ; Loop for each vect except 0 pxor xp1, xs1 ;p1 ^= s1[0] - last source is already loaded pxor xq1, xs1 ;q1 ^= 1 * s1[0] pxor xp2, xs2 ;p2 ^= s2[0] pxor xq2, xs2 ;q2 ^= 1 * s2[0] mov tmp, [arg2+(2*PS)+vec*PS] ;Get address of Q parity vector XLDR xtmp1, [tmp+pos] ;re-init xq1 with Q1 src XLDR xtmp2, [tmp+pos+16] ;re-init xq2 with Q2 src + 16B ahead pxor xq1, xtmp1 ;xq1 = q1 calculated ^ q1 saved pxor xq2, xtmp2 por xp1, xq1 ;Confirm that all P&Q parity are 0 por xp1, xp2 por xp1, xq2 ptest xp1, xp1 jnz return_fail add pos, 32 cmp pos, len jle loop32 ;; ------------------------------ ;; Do last 16 Bytes remaining add len, 32 cmp pos, len je return_pass loop16: mov ptr, [arg2+PS+vec*PS] ;Get address of P parity vector mov tmp, [arg2+(2*PS)+vec*PS] ;Get address of Q parity vector XLDR xp1, [ptr+pos] ;Initialize xp1 with P1 src pxor xq1, xq1 ;q = 0 mov ptr, [arg2+vec*PS] ;Fetch last source pointer mov tmp, vec ;Set tmp to point back to last vector XLDR xs1, [ptr+pos] ;Preload last vector (source) next_vect16: sub tmp, 1 ;Inner loop for each source vector mov ptr, [arg2+tmp*PS] ; get pointer to next vect pxor xq1, xs1 ; q ^= s pxor xtmp1, xtmp1 ; xtmp = 0 pcmpgtb xtmp1, xq1 ; xtmp = mask 0xff or 0x00 if bit7 set pand xtmp1, xpoly ; xtmp = poly or 0x00 pxor xp1, xs1 ; p ^= s paddb xq1, xq1 ; q = q<<1 pxor xq1, xtmp1 ; q = q<<1 ^ poly_masked XLDR xs1, [ptr+pos] ; Get next vector (source data) jg next_vect16 ; Loop for each vect except 0 pxor xp1, xs1 ;p ^= s[0] - last source is already loaded pxor xq1, xs1 ;q ^= 1 * s[0] mov tmp, [arg2+(2*PS)+vec*PS] ;Get address of Q parity vector XLDR xtmp1, [tmp+pos] ;re-init tmp with Q1 src pxor xq1, xtmp1 ;xq1 = q1 calculated ^ q1 saved por xp1, xq1 ;Confirm that all P&Q parity are = 0 ptest xp1, xp1 jnz return_fail add pos, 16 cmp pos, len jl loop16 return_pass: mov return, 0 FUNC_RESTORE ret return_fail: mov return, 1 FUNC_RESTORE ret endproc_frame section .data align 16 poly: dq 0x1d1d1d1d1d1d1d1d, 0x1d1d1d1d1d1d1d1d ;;; func core, ver, snum slversion pq_check_sse, 00, 06, 0033