// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*- // vim: ts=8 sw=2 smarttab /* * Ceph - scalable distributed file system * * Copyright (C) 2011 New Dream Network * Copyright (C) 2013,2014 Cloudwatt * * Author: Loic Dachary * * This is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software * Foundation. See file COPYING. * */ #include #include #include #include #include #include #include #include #include #include "include/ceph_features.h" #include "include/encoding.h" #include "include/stringify.h" extern "C" { #include "crush/hash.h" } #include "common/Formatter.h" #include "common/StackStringStream.h" #include "OSDMap.h" #include "osd_types.h" #include "os/Transaction.h" using std::list; using std::make_pair; using std::map; using std::ostream; using std::pair; using std::set; using std::string; using std::unique_ptr; using std::vector; using ceph::bufferlist; using ceph::decode; using ceph::decode_nohead; using ceph::encode; using ceph::encode_nohead; using ceph::Formatter; using ceph::make_timespan; using ceph::JSONFormatter; using namespace std::literals; const char *ceph_osd_flag_name(unsigned flag) { switch (flag) { case CEPH_OSD_FLAG_ACK: return "ack"; case CEPH_OSD_FLAG_ONNVRAM: return "onnvram"; case CEPH_OSD_FLAG_ONDISK: return "ondisk"; case CEPH_OSD_FLAG_RETRY: return "retry"; case CEPH_OSD_FLAG_READ: return "read"; case CEPH_OSD_FLAG_WRITE: return "write"; case CEPH_OSD_FLAG_ORDERSNAP: return "ordersnap"; case CEPH_OSD_FLAG_PEERSTAT_OLD: return "peerstat_old"; case CEPH_OSD_FLAG_BALANCE_READS: return "balance_reads"; case CEPH_OSD_FLAG_PARALLELEXEC: return "parallelexec"; case CEPH_OSD_FLAG_PGOP: return "pgop"; case CEPH_OSD_FLAG_EXEC: return "exec"; case CEPH_OSD_FLAG_EXEC_PUBLIC: return "exec_public"; case CEPH_OSD_FLAG_LOCALIZE_READS: return "localize_reads"; case CEPH_OSD_FLAG_RWORDERED: return "rwordered"; case CEPH_OSD_FLAG_IGNORE_CACHE: return "ignore_cache"; case CEPH_OSD_FLAG_SKIPRWLOCKS: return "skiprwlocks"; case CEPH_OSD_FLAG_IGNORE_OVERLAY: return "ignore_overlay"; case CEPH_OSD_FLAG_FLUSH: return "flush"; case CEPH_OSD_FLAG_MAP_SNAP_CLONE: return "map_snap_clone"; case CEPH_OSD_FLAG_ENFORCE_SNAPC: return "enforce_snapc"; case CEPH_OSD_FLAG_REDIRECTED: return "redirected"; case CEPH_OSD_FLAG_KNOWN_REDIR: return "known_if_redirected"; case CEPH_OSD_FLAG_FULL_TRY: return "full_try"; case CEPH_OSD_FLAG_FULL_FORCE: return "full_force"; case CEPH_OSD_FLAG_IGNORE_REDIRECT: return "ignore_redirect"; case CEPH_OSD_FLAG_RETURNVEC: return "returnvec"; default: return "???"; } } string ceph_osd_flag_string(unsigned flags) { string s; for (unsigned i=0; i<32; ++i) { if (flags & (1u<dump_string("alert", s); } } } // -- osd_reqid_t -- void osd_reqid_t::dump(Formatter *f) const { f->dump_stream("name") << name; f->dump_int("inc", inc); f->dump_unsigned("tid", tid); } void osd_reqid_t::generate_test_instances(list& o) { o.push_back(new osd_reqid_t); o.push_back(new osd_reqid_t(entity_name_t::CLIENT(123), 1, 45678)); } // -- object_locator_t -- void object_locator_t::encode(ceph::buffer::list& bl) const { // verify that nobody's corrupted the locator ceph_assert(hash == -1 || key.empty()); __u8 encode_compat = 3; ENCODE_START(6, encode_compat, bl); encode(pool, bl); int32_t preferred = -1; // tell old code there is no preferred osd (-1). encode(preferred, bl); encode(key, bl); encode(nspace, bl); encode(hash, bl); if (hash != -1) encode_compat = std::max(encode_compat, 6); // need to interpret the hash ENCODE_FINISH_NEW_COMPAT(bl, encode_compat); } void object_locator_t::decode(ceph::buffer::list::const_iterator& p) { DECODE_START_LEGACY_COMPAT_LEN(6, 3, 3, p); if (struct_v < 2) { int32_t op; decode(op, p); pool = op; int16_t pref; decode(pref, p); } else { decode(pool, p); int32_t preferred; decode(preferred, p); } decode(key, p); if (struct_v >= 5) decode(nspace, p); if (struct_v >= 6) decode(hash, p); else hash = -1; DECODE_FINISH(p); // verify that nobody's corrupted the locator ceph_assert(hash == -1 || key.empty()); } void object_locator_t::dump(Formatter *f) const { f->dump_int("pool", pool); f->dump_string("key", key); f->dump_string("namespace", nspace); f->dump_int("hash", hash); } void object_locator_t::generate_test_instances(list& o) { o.push_back(new object_locator_t); o.push_back(new object_locator_t(123)); o.push_back(new object_locator_t(123, 876)); o.push_back(new object_locator_t(1, "n2")); o.push_back(new object_locator_t(1234, "", "key")); o.push_back(new object_locator_t(12, "n1", "key2")); } // -- request_redirect_t -- void request_redirect_t::encode(ceph::buffer::list& bl) const { ENCODE_START(1, 1, bl); encode(redirect_locator, bl); encode(redirect_object, bl); // legacy of the removed osd_instructions member encode((uint32_t)0, bl); ENCODE_FINISH(bl); } void request_redirect_t::decode(ceph::buffer::list::const_iterator& bl) { DECODE_START(1, bl); uint32_t legacy_osd_instructions_len; decode(redirect_locator, bl); decode(redirect_object, bl); decode(legacy_osd_instructions_len, bl); if (legacy_osd_instructions_len) { bl += legacy_osd_instructions_len; } DECODE_FINISH(bl); } void request_redirect_t::dump(Formatter *f) const { f->dump_string("object", redirect_object); f->open_object_section("locator"); redirect_locator.dump(f); f->close_section(); // locator } void request_redirect_t::generate_test_instances(list& o) { object_locator_t loc(1, "redir_obj"); o.push_back(new request_redirect_t()); o.push_back(new request_redirect_t(loc, 0)); o.push_back(new request_redirect_t(loc, "redir_obj")); o.push_back(new request_redirect_t(loc)); } void objectstore_perf_stat_t::dump(Formatter *f) const { // *_ms values just for compatibility. f->dump_float("commit_latency_ms", os_commit_latency_ns / 1000000.0); f->dump_float("apply_latency_ms", os_apply_latency_ns / 1000000.0); f->dump_unsigned("commit_latency_ns", os_commit_latency_ns); f->dump_unsigned("apply_latency_ns", os_apply_latency_ns); } void objectstore_perf_stat_t::encode(ceph::buffer::list &bl, uint64_t features) const { uint8_t target_v = 2; if (!HAVE_FEATURE(features, OS_PERF_STAT_NS)) { target_v = 1; } ENCODE_START(target_v, target_v, bl); if (target_v >= 2) { encode(os_commit_latency_ns, bl); encode(os_apply_latency_ns, bl); } else { constexpr auto NS_PER_MS = std::chrono::nanoseconds(1ms).count(); uint32_t commit_latency_ms = os_commit_latency_ns / NS_PER_MS; uint32_t apply_latency_ms = os_apply_latency_ns / NS_PER_MS; encode(commit_latency_ms, bl); // for compatibility with older monitor. encode(apply_latency_ms, bl); // for compatibility with older monitor. } ENCODE_FINISH(bl); } void objectstore_perf_stat_t::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START(2, bl); if (struct_v >= 2) { decode(os_commit_latency_ns, bl); decode(os_apply_latency_ns, bl); } else { uint32_t commit_latency_ms; uint32_t apply_latency_ms; decode(commit_latency_ms, bl); decode(apply_latency_ms, bl); constexpr auto NS_PER_MS = std::chrono::nanoseconds(1ms).count(); os_commit_latency_ns = commit_latency_ms * NS_PER_MS; os_apply_latency_ns = apply_latency_ms * NS_PER_MS; } DECODE_FINISH(bl); } void objectstore_perf_stat_t::generate_test_instances(std::list& o) { o.push_back(new objectstore_perf_stat_t()); o.push_back(new objectstore_perf_stat_t()); o.back()->os_commit_latency_ns = 20000000; o.back()->os_apply_latency_ns = 30000000; } // -- osd_stat_t -- void osd_stat_t::dump(Formatter *f, bool with_net) const { f->dump_unsigned("up_from", up_from); f->dump_unsigned("seq", seq); f->dump_unsigned("num_pgs", num_pgs); f->dump_unsigned("num_osds", num_osds); f->dump_unsigned("num_per_pool_osds", num_per_pool_osds); f->dump_unsigned("num_per_pool_omap_osds", num_per_pool_omap_osds); /// dump legacy stats fields to ensure backward compatibility. f->dump_unsigned("kb", statfs.kb()); f->dump_unsigned("kb_used", statfs.kb_used_raw()); f->dump_unsigned("kb_used_data", statfs.kb_used_data()); f->dump_unsigned("kb_used_omap", statfs.kb_used_omap()); f->dump_unsigned("kb_used_meta", statfs.kb_used_internal_metadata()); f->dump_unsigned("kb_avail", statfs.kb_avail()); //////////////////// f->open_object_section("statfs"); statfs.dump(f); f->close_section(); f->open_array_section("hb_peers"); for (auto p : hb_peers) f->dump_int("osd", p); f->close_section(); f->dump_int("snap_trim_queue_len", snap_trim_queue_len); f->dump_int("num_snap_trimming", num_snap_trimming); f->dump_int("num_shards_repaired", num_shards_repaired); f->open_object_section("op_queue_age_hist"); op_queue_age_hist.dump(f); f->close_section(); f->open_object_section("perf_stat"); os_perf_stat.dump(f); f->close_section(); f->open_array_section("alerts"); ::dump(f, os_alerts); f->close_section(); if (with_net) { dump_ping_time(f); } } void osd_stat_t::dump_ping_time(Formatter *f) const { f->open_array_section("network_ping_times"); for (auto &i : hb_pingtime) { f->open_object_section("entry"); f->dump_int("osd", i.first); const time_t lu(i.second.last_update); char buffer[26]; string lustr(ctime_r(&lu, buffer)); lustr.pop_back(); // Remove trailing \n f->dump_string("last update", lustr); f->open_array_section("interfaces"); f->open_object_section("interface"); f->dump_string("interface", "back"); f->open_object_section("average"); f->dump_float("1min", i.second.back_pingtime[0]/1000.0); f->dump_float("5min", i.second.back_pingtime[1]/1000.0); f->dump_float("15min", i.second.back_pingtime[2]/1000.0); f->close_section(); // average f->open_object_section("min"); f->dump_float("1min", i.second.back_min[0]/1000.0); f->dump_float("5min", i.second.back_min[1]/1000.0); f->dump_float("15min", i.second.back_min[2]/1000.0); f->close_section(); // min f->open_object_section("max"); f->dump_float("1min", i.second.back_max[0]/1000.0); f->dump_float("5min", i.second.back_max[1]/1000.0); f->dump_float("15min", i.second.back_max[2]/1000.0); f->close_section(); // max f->dump_float("last", i.second.back_last/1000.0); f->close_section(); // interface if (i.second.front_pingtime[0] != 0) { f->open_object_section("interface"); f->dump_string("interface", "front"); f->open_object_section("average"); f->dump_float("1min", i.second.front_pingtime[0]/1000.0); f->dump_float("5min", i.second.front_pingtime[1]/1000.0); f->dump_float("15min", i.second.front_pingtime[2]/1000.0); f->close_section(); // average f->open_object_section("min"); f->dump_float("1min", i.second.front_min[0]/1000.0); f->dump_float("5min", i.second.front_min[1]/1000.0); f->dump_float("15min", i.second.front_min[2]/1000.0); f->close_section(); // min f->open_object_section("max"); f->dump_float("1min", i.second.front_max[0]/1000.0); f->dump_float("5min", i.second.front_max[1]/1000.0); f->dump_float("15min", i.second.front_max[2]/1000.0); f->close_section(); // max f->dump_float("last", i.second.front_last/1000.0); f->close_section(); // interface } f->close_section(); // interfaces f->close_section(); // entry } f->close_section(); // network_ping_time } void osd_stat_t::encode(ceph::buffer::list &bl, uint64_t features) const { ENCODE_START(14, 2, bl); //////// for compatibility //////// int64_t kb = statfs.kb(); int64_t kb_used = statfs.kb_used_raw(); int64_t kb_avail = statfs.kb_avail(); encode(kb, bl); encode(kb_used, bl); encode(kb_avail, bl); /////////////////////////////////// encode(snap_trim_queue_len, bl); encode(num_snap_trimming, bl); encode(hb_peers, bl); encode((uint32_t)0, bl); encode(op_queue_age_hist, bl); encode(os_perf_stat, bl, features); encode(up_from, bl); encode(seq, bl); encode(num_pgs, bl); //////// for compatibility //////// int64_t kb_used_data = statfs.kb_used_data(); int64_t kb_used_omap = statfs.kb_used_omap(); int64_t kb_used_meta = statfs.kb_used_internal_metadata(); encode(kb_used_data, bl); encode(kb_used_omap, bl); encode(kb_used_meta, bl); encode(statfs, bl); /////////////////////////////////// encode(os_alerts, bl); encode(num_shards_repaired, bl); encode(num_osds, bl); encode(num_per_pool_osds, bl); encode(num_per_pool_omap_osds, bl); // hb_pingtime map encode((int)hb_pingtime.size(), bl); for (auto i : hb_pingtime) { encode(i.first, bl); // osd encode(i.second.last_update, bl); encode(i.second.back_pingtime[0], bl); encode(i.second.back_pingtime[1], bl); encode(i.second.back_pingtime[2], bl); encode(i.second.back_min[0], bl); encode(i.second.back_min[1], bl); encode(i.second.back_min[2], bl); encode(i.second.back_max[0], bl); encode(i.second.back_max[1], bl); encode(i.second.back_max[2], bl); encode(i.second.back_last, bl); encode(i.second.front_pingtime[0], bl); encode(i.second.front_pingtime[1], bl); encode(i.second.front_pingtime[2], bl); encode(i.second.front_min[0], bl); encode(i.second.front_min[1], bl); encode(i.second.front_min[2], bl); encode(i.second.front_max[0], bl); encode(i.second.front_max[1], bl); encode(i.second.front_max[2], bl); encode(i.second.front_last, bl); } ENCODE_FINISH(bl); } void osd_stat_t::decode(ceph::buffer::list::const_iterator &bl) { int64_t kb, kb_used,kb_avail; int64_t kb_used_data, kb_used_omap, kb_used_meta; DECODE_START_LEGACY_COMPAT_LEN(14, 2, 2, bl); decode(kb, bl); decode(kb_used, bl); decode(kb_avail, bl); decode(snap_trim_queue_len, bl); decode(num_snap_trimming, bl); decode(hb_peers, bl); vector num_hb_out; decode(num_hb_out, bl); if (struct_v >= 3) decode(op_queue_age_hist, bl); if (struct_v >= 4) decode(os_perf_stat, bl); if (struct_v >= 6) { decode(up_from, bl); decode(seq, bl); } if (struct_v >= 7) { decode(num_pgs, bl); } if (struct_v >= 8) { decode(kb_used_data, bl); decode(kb_used_omap, bl); decode(kb_used_meta, bl); } else { kb_used_data = kb_used; kb_used_omap = 0; kb_used_meta = 0; } if (struct_v >= 9) { decode(statfs, bl); } else { statfs.reset(); statfs.total = kb << 10; statfs.available = kb_avail << 10; // actually it's totally unexpected to have ststfs.total < statfs.available // here but unfortunately legacy generate_test_instances produced such a // case hence inserting some handling rather than assert statfs.internally_reserved = statfs.total > statfs.available ? statfs.total - statfs.available : 0; kb_used <<= 10; if ((int64_t)statfs.internally_reserved > kb_used) { statfs.internally_reserved -= kb_used; } else { statfs.internally_reserved = 0; } statfs.allocated = kb_used_data << 10; statfs.omap_allocated = kb_used_omap << 10; statfs.internal_metadata = kb_used_meta << 10; } if (struct_v >= 10) { decode(os_alerts, bl); } else { os_alerts.clear(); } if (struct_v >= 11) { decode(num_shards_repaired, bl); } else { num_shards_repaired = 0; } if (struct_v >= 12) { decode(num_osds, bl); decode(num_per_pool_osds, bl); } else { num_osds = 0; num_per_pool_osds = 0; } if (struct_v >= 13) { decode(num_per_pool_omap_osds, bl); } else { num_per_pool_omap_osds = 0; } hb_pingtime.clear(); if (struct_v >= 14) { int count; decode(count, bl); for (int i = 0 ; i < count ; i++) { int osd; decode(osd, bl); struct Interfaces ifs; decode(ifs.last_update, bl); decode(ifs.back_pingtime[0],bl); decode(ifs.back_pingtime[1], bl); decode(ifs.back_pingtime[2], bl); decode(ifs.back_min[0],bl); decode(ifs.back_min[1], bl); decode(ifs.back_min[2], bl); decode(ifs.back_max[0],bl); decode(ifs.back_max[1], bl); decode(ifs.back_max[2], bl); decode(ifs.back_last, bl); decode(ifs.front_pingtime[0], bl); decode(ifs.front_pingtime[1], bl); decode(ifs.front_pingtime[2], bl); decode(ifs.front_min[0], bl); decode(ifs.front_min[1], bl); decode(ifs.front_min[2], bl); decode(ifs.front_max[0], bl); decode(ifs.front_max[1], bl); decode(ifs.front_max[2], bl); decode(ifs.front_last, bl); hb_pingtime[osd] = ifs; } } DECODE_FINISH(bl); } void osd_stat_t::generate_test_instances(std::list& o) { o.push_back(new osd_stat_t); o.push_back(new osd_stat_t); list ll; store_statfs_t::generate_test_instances(ll); o.back()->statfs = *ll.back(); o.back()->hb_peers.push_back(7); o.back()->snap_trim_queue_len = 8; o.back()->num_snap_trimming = 99; o.back()->num_shards_repaired = 101; o.back()->os_alerts[0].emplace( "some alert", "some alert details"); o.back()->os_alerts[1].emplace( "some alert2", "some alert2 details"); struct Interfaces gen_interfaces = { 123456789, { 1000, 900, 800 }, { 990, 890, 790 }, { 1010, 910, 810 }, 1001, { 1100, 1000, 900 }, { 1090, 990, 890 }, { 1110, 1010, 910 }, 1101 }; o.back()->hb_pingtime[20] = gen_interfaces; gen_interfaces = { 987654321, { 100, 200, 300 }, { 90, 190, 290 }, { 110, 210, 310 }, 101 }; o.back()->hb_pingtime[30] = gen_interfaces; } // -- pg_t -- int pg_t::print(char *o, int maxlen) const { return snprintf(o, maxlen, "%llu.%x", (unsigned long long)pool(), ps()); } bool pg_t::parse(const char *s) { uint64_t ppool; uint32_t pseed; int r = sscanf(s, "%llu.%x", (long long unsigned *)&ppool, &pseed); if (r < 2) return false; m_pool = ppool; m_seed = pseed; return true; } bool spg_t::parse(const char *s) { shard = shard_id_t::NO_SHARD; uint64_t ppool; uint32_t pseed; uint32_t pshard; int r = sscanf(s, "%llu.%x", (long long unsigned *)&ppool, &pseed); if (r < 2) return false; pgid.set_pool(ppool); pgid.set_ps(pseed); const char *p = strchr(s, 's'); if (p) { r = sscanf(p, "s%u", &pshard); if (r == 1) { shard = shard_id_t(pshard); } else { return false; } } return true; } char *spg_t::calc_name(char *buf, const char *suffix_backwords) const { while (*suffix_backwords) *--buf = *suffix_backwords++; if (!is_no_shard()) { buf = ritoa((uint8_t)shard.id, buf); *--buf = 's'; } return pgid.calc_name(buf, ""); } ostream& operator<<(ostream& out, const spg_t &pg) { char buf[spg_t::calc_name_buf_size]; buf[spg_t::calc_name_buf_size - 1] = '\0'; out << pg.calc_name(buf + spg_t::calc_name_buf_size - 1, ""); return out; } pg_t pg_t::get_ancestor(unsigned old_pg_num) const { int old_bits = cbits(old_pg_num); int old_mask = (1 << old_bits) - 1; pg_t ret = *this; ret.m_seed = ceph_stable_mod(m_seed, old_pg_num, old_mask); return ret; } bool pg_t::is_split(unsigned old_pg_num, unsigned new_pg_num, set *children) const { //ceph_assert(m_seed < old_pg_num); if (m_seed >= old_pg_num) { // degenerate case return false; } if (new_pg_num <= old_pg_num) return false; bool split = false; if (true) { unsigned old_bits = cbits(old_pg_num); unsigned old_mask = (1 << old_bits) - 1; for (unsigned n = 1; ; n++) { unsigned next_bit = (n << (old_bits-1)); unsigned s = next_bit | m_seed; if (s < old_pg_num || s == m_seed) continue; if (s >= new_pg_num) break; if ((unsigned)ceph_stable_mod(s, old_pg_num, old_mask) == m_seed) { split = true; if (children) children->insert(pg_t(s, m_pool)); } } } if (false) { // brute force int old_bits = cbits(old_pg_num); int old_mask = (1 << old_bits) - 1; for (unsigned x = old_pg_num; x < new_pg_num; ++x) { unsigned o = ceph_stable_mod(x, old_pg_num, old_mask); if (o == m_seed) { split = true; children->insert(pg_t(x, m_pool)); } } } return split; } unsigned pg_t::get_split_bits(unsigned pg_num) const { if (pg_num == 1) return 0; ceph_assert(pg_num > 1); // Find unique p such that pg_num \in [2^(p-1), 2^p) unsigned p = cbits(pg_num); ceph_assert(p); // silence coverity #751330 if ((m_seed % (1<<(p-1))) < (pg_num % (1<<(p-1)))) return p; else return p - 1; } bool pg_t::is_merge_source( unsigned old_pg_num, unsigned new_pg_num, pg_t *parent) const { if (m_seed < old_pg_num && m_seed >= new_pg_num) { if (parent) { pg_t t = *this; while (t.m_seed >= new_pg_num) { t = t.get_parent(); } *parent = t; } return true; } return false; } pg_t pg_t::get_parent() const { unsigned bits = cbits(m_seed); ceph_assert(bits); pg_t retval = *this; retval.m_seed &= ~((~0)<<(bits - 1)); return retval; } hobject_t pg_t::get_hobj_start() const { return hobject_t(object_t(), string(), 0, m_seed, m_pool, string()); } hobject_t pg_t::get_hobj_end(unsigned pg_num) const { // note: this assumes a bitwise sort; with the legacy nibblewise // sort a PG did not always cover a single contiguous range of the // (bit-reversed) hash range. unsigned bits = get_split_bits(pg_num); uint64_t rev_start = hobject_t::_reverse_bits(m_seed); uint64_t rev_end = (rev_start | (0xffffffff >> bits)) + 1; if (rev_end >= 0x100000000) { ceph_assert(rev_end == 0x100000000); return hobject_t::get_max(); } else { return hobject_t(object_t(), string(), CEPH_NOSNAP, hobject_t::_reverse_bits(rev_end), m_pool, string()); } } void pg_t::dump(Formatter *f) const { f->dump_unsigned("pool", m_pool); f->dump_unsigned("seed", m_seed); } void pg_t::generate_test_instances(list& o) { o.push_back(new pg_t); o.push_back(new pg_t(1, 2)); o.push_back(new pg_t(13123, 3)); o.push_back(new pg_t(131223, 4)); } char *pg_t::calc_name(char *buf, const char *suffix_backwords) const { while (*suffix_backwords) *--buf = *suffix_backwords++; buf = ritoa(m_seed, buf); *--buf = '.'; return ritoa(m_pool, buf); } ostream& operator<<(ostream& out, const pg_t &pg) { char buf[pg_t::calc_name_buf_size]; buf[pg_t::calc_name_buf_size - 1] = '\0'; out << pg.calc_name(buf + pg_t::calc_name_buf_size - 1, ""); return out; } // -- coll_t -- void coll_t::calc_str() { switch (type) { case TYPE_META: strcpy(_str_buff, "meta"); _str = _str_buff; break; case TYPE_PG: _str_buff[spg_t::calc_name_buf_size - 1] = '\0'; _str = pgid.calc_name(_str_buff + spg_t::calc_name_buf_size - 1, "daeh_"); break; case TYPE_PG_TEMP: _str_buff[spg_t::calc_name_buf_size - 1] = '\0'; _str = pgid.calc_name(_str_buff + spg_t::calc_name_buf_size - 1, "PMET_"); break; default: ceph_abort_msg("unknown collection type"); } } bool coll_t::parse(const std::string& s) { if (s == "meta") { type = TYPE_META; pgid = spg_t(); removal_seq = 0; calc_str(); ceph_assert(s == _str); return true; } if (s.find("_head") == s.length() - 5 && pgid.parse(s.substr(0, s.length() - 5))) { type = TYPE_PG; removal_seq = 0; calc_str(); ceph_assert(s == _str); return true; } if (s.find("_TEMP") == s.length() - 5 && pgid.parse(s.substr(0, s.length() - 5))) { type = TYPE_PG_TEMP; removal_seq = 0; calc_str(); ceph_assert(s == _str); return true; } return false; } void coll_t::encode(ceph::buffer::list& bl) const { using ceph::encode; // when changing this, remember to update encoded_size() too. if (is_temp()) { // can't express this as v2... __u8 struct_v = 3; encode(struct_v, bl); encode(to_str(), bl); } else { __u8 struct_v = 2; encode(struct_v, bl); encode((__u8)type, bl); encode(pgid, bl); snapid_t snap = CEPH_NOSNAP; encode(snap, bl); } } size_t coll_t::encoded_size() const { size_t r = sizeof(__u8); if (is_temp()) { // v3 r += sizeof(__u32); if (_str) { r += strlen(_str); } } else { // v2 // 1. type r += sizeof(__u8); // 2. pgid // - encoding header r += sizeof(ceph_le32) + 2 * sizeof(__u8); // - pg_t r += sizeof(__u8) + sizeof(uint64_t) + 2 * sizeof(uint32_t); // - shard_id_t r += sizeof(int8_t); // 3. snapid_t r += sizeof(uint64_t); } return r; } void coll_t::decode(ceph::buffer::list::const_iterator& bl) { using ceph::decode; __u8 struct_v; decode(struct_v, bl); switch (struct_v) { case 1: { snapid_t snap; decode(pgid, bl); decode(snap, bl); // infer the type if (pgid == spg_t() && snap == 0) { type = TYPE_META; } else { type = TYPE_PG; } removal_seq = 0; } break; case 2: { __u8 _type; snapid_t snap; decode(_type, bl); decode(pgid, bl); decode(snap, bl); type = (type_t)_type; removal_seq = 0; } break; case 3: { string str; decode(str, bl); bool ok = parse(str); if (!ok) throw std::domain_error(std::string("unable to parse pg ") + str); } break; default: { CachedStackStringStream css; *css << "coll_t::decode(): don't know how to decode version " << struct_v; throw std::domain_error(css->str()); } } } void coll_t::dump(Formatter *f) const { f->dump_unsigned("type_id", (unsigned)type); if (type != TYPE_META) f->dump_stream("pgid") << pgid; f->dump_string("name", to_str()); } void coll_t::generate_test_instances(list& o) { o.push_back(new coll_t()); o.push_back(new coll_t(spg_t(pg_t(1, 0), shard_id_t::NO_SHARD))); o.push_back(new coll_t(o.back()->get_temp())); o.push_back(new coll_t(spg_t(pg_t(3, 2), shard_id_t(12)))); o.push_back(new coll_t(o.back()->get_temp())); o.push_back(new coll_t()); } // --- std::string pg_vector_string(const vector &a) { CachedStackStringStream css; *css << "["; for (auto i = a.cbegin(); i != a.cend(); ++i) { if (i != a.begin()) *css << ","; if (*i != CRUSH_ITEM_NONE) *css << *i; else *css << "NONE"; } *css << "]"; return css->str(); } std::string pg_state_string(uint64_t state) { CachedStackStringStream css; if (state & PG_STATE_STALE) *css << "stale+"; if (state & PG_STATE_CREATING) *css << "creating+"; if (state & PG_STATE_ACTIVE) *css << "active+"; if (state & PG_STATE_ACTIVATING) *css << "activating+"; if (state & PG_STATE_CLEAN) *css << "clean+"; if (state & PG_STATE_RECOVERY_WAIT) *css << "recovery_wait+"; if (state & PG_STATE_RECOVERY_TOOFULL) *css << "recovery_toofull+"; if (state & PG_STATE_RECOVERING) *css << "recovering+"; if (state & PG_STATE_FORCED_RECOVERY) *css << "forced_recovery+"; if (state & PG_STATE_DOWN) *css << "down+"; if (state & PG_STATE_RECOVERY_UNFOUND) *css << "recovery_unfound+"; if (state & PG_STATE_BACKFILL_UNFOUND) *css << "backfill_unfound+"; if (state & PG_STATE_UNDERSIZED) *css << "undersized+"; if (state & PG_STATE_DEGRADED) *css << "degraded+"; if (state & PG_STATE_REMAPPED) *css << "remapped+"; if (state & PG_STATE_PREMERGE) *css << "premerge+"; if (state & PG_STATE_SCRUBBING) *css << "scrubbing+"; if (state & PG_STATE_DEEP_SCRUB) *css << "deep+"; if (state & PG_STATE_INCONSISTENT) *css << "inconsistent+"; if (state & PG_STATE_PEERING) *css << "peering+"; if (state & PG_STATE_REPAIR) *css << "repair+"; if (state & PG_STATE_BACKFILL_WAIT) *css << "backfill_wait+"; if (state & PG_STATE_BACKFILLING) *css << "backfilling+"; if (state & PG_STATE_FORCED_BACKFILL) *css << "forced_backfill+"; if (state & PG_STATE_BACKFILL_TOOFULL) *css << "backfill_toofull+"; if (state & PG_STATE_INCOMPLETE) *css << "incomplete+"; if (state & PG_STATE_PEERED) *css << "peered+"; if (state & PG_STATE_SNAPTRIM) *css << "snaptrim+"; if (state & PG_STATE_SNAPTRIM_WAIT) *css << "snaptrim_wait+"; if (state & PG_STATE_SNAPTRIM_ERROR) *css << "snaptrim_error+"; if (state & PG_STATE_FAILED_REPAIR) *css << "failed_repair+"; if (state & PG_STATE_LAGGY) *css << "laggy+"; if (state & PG_STATE_WAIT) *css << "wait+"; auto ret = css->str(); if (ret.length() > 0) ret.resize(ret.length() - 1); else ret = "unknown"; return ret; } std::optional pg_string_state(const std::string& state) { std::optional type; if (state == "active") type = PG_STATE_ACTIVE; else if (state == "clean") type = PG_STATE_CLEAN; else if (state == "down") type = PG_STATE_DOWN; else if (state == "recovery_unfound") type = PG_STATE_RECOVERY_UNFOUND; else if (state == "backfill_unfound") type = PG_STATE_BACKFILL_UNFOUND; else if (state == "premerge") type = PG_STATE_PREMERGE; else if (state == "scrubbing") type = PG_STATE_SCRUBBING; else if (state == "degraded") type = PG_STATE_DEGRADED; else if (state == "inconsistent") type = PG_STATE_INCONSISTENT; else if (state == "peering") type = PG_STATE_PEERING; else if (state == "repair") type = PG_STATE_REPAIR; else if (state == "recovering") type = PG_STATE_RECOVERING; else if (state == "forced_recovery") type = PG_STATE_FORCED_RECOVERY; else if (state == "backfill_wait") type = PG_STATE_BACKFILL_WAIT; else if (state == "incomplete") type = PG_STATE_INCOMPLETE; else if (state == "stale") type = PG_STATE_STALE; else if (state == "remapped") type = PG_STATE_REMAPPED; else if (state == "deep") type = PG_STATE_DEEP_SCRUB; else if (state == "backfilling") type = PG_STATE_BACKFILLING; else if (state == "forced_backfill") type = PG_STATE_FORCED_BACKFILL; else if (state == "backfill_toofull") type = PG_STATE_BACKFILL_TOOFULL; else if (state == "recovery_wait") type = PG_STATE_RECOVERY_WAIT; else if (state == "recovery_toofull") type = PG_STATE_RECOVERY_TOOFULL; else if (state == "undersized") type = PG_STATE_UNDERSIZED; else if (state == "activating") type = PG_STATE_ACTIVATING; else if (state == "peered") type = PG_STATE_PEERED; else if (state == "snaptrim") type = PG_STATE_SNAPTRIM; else if (state == "snaptrim_wait") type = PG_STATE_SNAPTRIM_WAIT; else if (state == "snaptrim_error") type = PG_STATE_SNAPTRIM_ERROR; else if (state == "creating") type = PG_STATE_CREATING; else if (state == "failed_repair") type = PG_STATE_FAILED_REPAIR; else if (state == "laggy") type = PG_STATE_LAGGY; else if (state == "wait") type = PG_STATE_WAIT; else if (state == "unknown") type = 0; else type = std::nullopt; return type; } // -- eversion_t -- string eversion_t::get_key_name() const { std::string key(32, ' '); get_key_name(&key[0]); key.resize(31); // remove the null terminator return key; } // -- pool_snap_info_t -- void pool_snap_info_t::dump(Formatter *f) const { f->dump_unsigned("snapid", snapid); f->dump_stream("stamp") << stamp; f->dump_string("name", name); } void pool_snap_info_t::encode(ceph::buffer::list& bl, uint64_t features) const { using ceph::encode; if ((features & CEPH_FEATURE_PGPOOL3) == 0) { __u8 struct_v = 1; encode(struct_v, bl); encode(snapid, bl); encode(stamp, bl); encode(name, bl); return; } ENCODE_START(2, 2, bl); encode(snapid, bl); encode(stamp, bl); encode(name, bl); ENCODE_FINISH(bl); } void pool_snap_info_t::decode(ceph::buffer::list::const_iterator& bl) { DECODE_START_LEGACY_COMPAT_LEN(2, 2, 2, bl); decode(snapid, bl); decode(stamp, bl); decode(name, bl); DECODE_FINISH(bl); } void pool_snap_info_t::generate_test_instances(list& o) { o.push_back(new pool_snap_info_t); o.push_back(new pool_snap_info_t); o.back()->snapid = 1; o.back()->stamp = utime_t(1, 2); o.back()->name = "foo"; } // -- pool_opts_t -- // The order of items in the list is important, therefore, // you should always add to the end of the list when adding new options. typedef std::map opt_mapping_t; static opt_mapping_t opt_mapping = boost::assign::map_list_of ("scrub_min_interval", pool_opts_t::opt_desc_t( pool_opts_t::SCRUB_MIN_INTERVAL, pool_opts_t::DOUBLE)) ("scrub_max_interval", pool_opts_t::opt_desc_t( pool_opts_t::SCRUB_MAX_INTERVAL, pool_opts_t::DOUBLE)) ("deep_scrub_interval", pool_opts_t::opt_desc_t( pool_opts_t::DEEP_SCRUB_INTERVAL, pool_opts_t::DOUBLE)) ("recovery_priority", pool_opts_t::opt_desc_t( pool_opts_t::RECOVERY_PRIORITY, pool_opts_t::INT)) ("recovery_op_priority", pool_opts_t::opt_desc_t( pool_opts_t::RECOVERY_OP_PRIORITY, pool_opts_t::INT)) ("scrub_priority", pool_opts_t::opt_desc_t( pool_opts_t::SCRUB_PRIORITY, pool_opts_t::INT)) ("compression_mode", pool_opts_t::opt_desc_t( pool_opts_t::COMPRESSION_MODE, pool_opts_t::STR)) ("compression_algorithm", pool_opts_t::opt_desc_t( pool_opts_t::COMPRESSION_ALGORITHM, pool_opts_t::STR)) ("compression_required_ratio", pool_opts_t::opt_desc_t( pool_opts_t::COMPRESSION_REQUIRED_RATIO, pool_opts_t::DOUBLE)) ("compression_max_blob_size", pool_opts_t::opt_desc_t( pool_opts_t::COMPRESSION_MAX_BLOB_SIZE, pool_opts_t::INT)) ("compression_min_blob_size", pool_opts_t::opt_desc_t( pool_opts_t::COMPRESSION_MIN_BLOB_SIZE, pool_opts_t::INT)) ("csum_type", pool_opts_t::opt_desc_t( pool_opts_t::CSUM_TYPE, pool_opts_t::INT)) ("csum_max_block", pool_opts_t::opt_desc_t( pool_opts_t::CSUM_MAX_BLOCK, pool_opts_t::INT)) ("csum_min_block", pool_opts_t::opt_desc_t( pool_opts_t::CSUM_MIN_BLOCK, pool_opts_t::INT)) ("fingerprint_algorithm", pool_opts_t::opt_desc_t( pool_opts_t::FINGERPRINT_ALGORITHM, pool_opts_t::STR)) ("pg_num_min", pool_opts_t::opt_desc_t( pool_opts_t::PG_NUM_MIN, pool_opts_t::INT)) ("target_size_bytes", pool_opts_t::opt_desc_t( pool_opts_t::TARGET_SIZE_BYTES, pool_opts_t::INT)) ("target_size_ratio", pool_opts_t::opt_desc_t( pool_opts_t::TARGET_SIZE_RATIO, pool_opts_t::DOUBLE)) ("pg_autoscale_bias", pool_opts_t::opt_desc_t( pool_opts_t::PG_AUTOSCALE_BIAS, pool_opts_t::DOUBLE)) ("read_lease_interval", pool_opts_t::opt_desc_t( pool_opts_t::READ_LEASE_INTERVAL, pool_opts_t::DOUBLE)) ("dedup_tier", pool_opts_t::opt_desc_t( pool_opts_t::DEDUP_TIER, pool_opts_t::INT)) ("dedup_chunk_algorithm", pool_opts_t::opt_desc_t( pool_opts_t::DEDUP_CHUNK_ALGORITHM, pool_opts_t::STR)) ("dedup_cdc_chunk_size", pool_opts_t::opt_desc_t( pool_opts_t::DEDUP_CDC_CHUNK_SIZE, pool_opts_t::INT)) ("pg_num_max", pool_opts_t::opt_desc_t( pool_opts_t::PG_NUM_MAX, pool_opts_t::INT)); bool pool_opts_t::is_opt_name(const std::string& name) { return opt_mapping.count(name); } pool_opts_t::opt_desc_t pool_opts_t::get_opt_desc(const std::string& name) { auto i = opt_mapping.find(name); ceph_assert(i != opt_mapping.end()); return i->second; } bool pool_opts_t::is_set(pool_opts_t::key_t key) const { return opts.count(key); } const pool_opts_t::value_t& pool_opts_t::get(pool_opts_t::key_t key) const { auto i = opts.find(key); ceph_assert(i != opts.end()); return i->second; } bool pool_opts_t::unset(pool_opts_t::key_t key) { return opts.erase(key) > 0; } class pool_opts_dumper_t : public boost::static_visitor<> { public: pool_opts_dumper_t(const std::string& name_, Formatter* f_) : name(name_.c_str()), f(f_) {} void operator()(std::string s) const { f->dump_string(name, s); } void operator()(int64_t i) const { f->dump_int(name, i); } void operator()(double d) const { f->dump_float(name, d); } private: const char* name; Formatter* f; }; void pool_opts_t::dump(const std::string& name, Formatter* f) const { const opt_desc_t& desc = get_opt_desc(name); auto i = opts.find(desc.key); if (i == opts.end()) { return; } boost::apply_visitor(pool_opts_dumper_t(name, f), i->second); } void pool_opts_t::dump(Formatter* f) const { for (auto i = opt_mapping.cbegin(); i != opt_mapping.cend(); ++i) { const std::string& name = i->first; const opt_desc_t& desc = i->second; auto j = opts.find(desc.key); if (j == opts.end()) { continue; } boost::apply_visitor(pool_opts_dumper_t(name, f), j->second); } } class pool_opts_encoder_t : public boost::static_visitor<> { public: explicit pool_opts_encoder_t(ceph::buffer::list& bl_, uint64_t features) : bl(bl_), features(features) {} void operator()(const std::string &s) const { encode(static_cast(pool_opts_t::STR), bl); encode(s, bl); } void operator()(int64_t i) const { encode(static_cast(pool_opts_t::INT), bl); if (HAVE_FEATURE(features, SERVER_NAUTILUS)) { encode(i, bl); } else { encode(static_cast(i), bl); } } void operator()(double d) const { encode(static_cast(pool_opts_t::DOUBLE), bl); encode(d, bl); } private: ceph::buffer::list& bl; uint64_t features; }; void pool_opts_t::encode(ceph::buffer::list& bl, uint64_t features) const { unsigned v = 2; if (!HAVE_FEATURE(features, SERVER_NAUTILUS)) { v = 1; } ENCODE_START(v, 1, bl); uint32_t n = static_cast(opts.size()); encode(n, bl); for (auto i = opts.cbegin(); i != opts.cend(); ++i) { encode(static_cast(i->first), bl); boost::apply_visitor(pool_opts_encoder_t(bl, features), i->second); } ENCODE_FINISH(bl); } void pool_opts_t::decode(ceph::buffer::list::const_iterator& bl) { DECODE_START(1, bl); __u32 n; decode(n, bl); opts.clear(); while (n--) { int32_t k, t; decode(k, bl); decode(t, bl); if (t == STR) { std::string s; decode(s, bl); opts[static_cast(k)] = s; } else if (t == INT) { int64_t i; if (struct_v >= 2) { decode(i, bl); } else { int ii; decode(ii, bl); i = ii; } opts[static_cast(k)] = i; } else if (t == DOUBLE) { double d; decode(d, bl); opts[static_cast(k)] = d; } else { ceph_assert(!"invalid type"); } } DECODE_FINISH(bl); } ostream& operator<<(ostream& out, const pool_opts_t& opts) { for (auto i = opt_mapping.begin(); i != opt_mapping.end(); ++i) { const std::string& name = i->first; const pool_opts_t::opt_desc_t& desc = i->second; auto j = opts.opts.find(desc.key); if (j == opts.opts.end()) { continue; } out << " " << name << " " << j->second; } return out; } // -- pg_pool_t -- const char *pg_pool_t::APPLICATION_NAME_CEPHFS("cephfs"); const char *pg_pool_t::APPLICATION_NAME_RBD("rbd"); const char *pg_pool_t::APPLICATION_NAME_RGW("rgw"); void pg_pool_t::dump(Formatter *f) const { f->dump_stream("create_time") << get_create_time(); f->dump_unsigned("flags", get_flags()); f->dump_string("flags_names", get_flags_string()); f->dump_int("type", get_type()); f->dump_int("size", get_size()); f->dump_int("min_size", get_min_size()); f->dump_int("crush_rule", get_crush_rule()); f->dump_int("peering_crush_bucket_count", peering_crush_bucket_count); f->dump_int("peering_crush_bucket_target", peering_crush_bucket_target); f->dump_int("peering_crush_bucket_barrier", peering_crush_bucket_barrier); f->dump_int("peering_crush_bucket_mandatory_member", peering_crush_mandatory_member); f->dump_int("object_hash", get_object_hash()); f->dump_string("pg_autoscale_mode", get_pg_autoscale_mode_name(pg_autoscale_mode)); f->dump_unsigned("pg_num", get_pg_num()); f->dump_unsigned("pg_placement_num", get_pgp_num()); f->dump_unsigned("pg_placement_num_target", get_pgp_num_target()); f->dump_unsigned("pg_num_target", get_pg_num_target()); f->dump_unsigned("pg_num_pending", get_pg_num_pending()); f->dump_object("last_pg_merge_meta", last_pg_merge_meta); f->dump_stream("last_change") << get_last_change(); f->dump_stream("last_force_op_resend") << get_last_force_op_resend(); f->dump_stream("last_force_op_resend_prenautilus") << get_last_force_op_resend_prenautilus(); f->dump_stream("last_force_op_resend_preluminous") << get_last_force_op_resend_preluminous(); f->dump_unsigned("auid", get_auid()); f->dump_string("snap_mode", is_pool_snaps_mode() ? "pool" : "selfmanaged"); f->dump_unsigned("snap_seq", get_snap_seq()); f->dump_unsigned("snap_epoch", get_snap_epoch()); f->open_array_section("pool_snaps"); for (auto p = snaps.cbegin(); p != snaps.cend(); ++p) { f->open_object_section("pool_snap_info"); p->second.dump(f); f->close_section(); } f->close_section(); f->dump_stream("removed_snaps") << removed_snaps; f->dump_unsigned("quota_max_bytes", quota_max_bytes); f->dump_unsigned("quota_max_objects", quota_max_objects); f->open_array_section("tiers"); for (auto p = tiers.cbegin(); p != tiers.cend(); ++p) f->dump_unsigned("pool_id", *p); f->close_section(); f->dump_int("tier_of", tier_of); f->dump_int("read_tier", read_tier); f->dump_int("write_tier", write_tier); f->dump_string("cache_mode", get_cache_mode_name()); f->dump_unsigned("target_max_bytes", target_max_bytes); f->dump_unsigned("target_max_objects", target_max_objects); f->dump_unsigned("cache_target_dirty_ratio_micro", cache_target_dirty_ratio_micro); f->dump_unsigned("cache_target_dirty_high_ratio_micro", cache_target_dirty_high_ratio_micro); f->dump_unsigned("cache_target_full_ratio_micro", cache_target_full_ratio_micro); f->dump_unsigned("cache_min_flush_age", cache_min_flush_age); f->dump_unsigned("cache_min_evict_age", cache_min_evict_age); f->dump_string("erasure_code_profile", erasure_code_profile); f->open_object_section("hit_set_params"); hit_set_params.dump(f); f->close_section(); // hit_set_params f->dump_unsigned("hit_set_period", hit_set_period); f->dump_unsigned("hit_set_count", hit_set_count); f->dump_bool("use_gmt_hitset", use_gmt_hitset); f->dump_unsigned("min_read_recency_for_promote", min_read_recency_for_promote); f->dump_unsigned("min_write_recency_for_promote", min_write_recency_for_promote); f->dump_unsigned("hit_set_grade_decay_rate", hit_set_grade_decay_rate); f->dump_unsigned("hit_set_search_last_n", hit_set_search_last_n); f->open_array_section("grade_table"); for (unsigned i = 0; i < hit_set_count; ++i) f->dump_unsigned("value", get_grade(i)); f->close_section(); f->dump_unsigned("stripe_width", get_stripe_width()); f->dump_unsigned("expected_num_objects", expected_num_objects); f->dump_bool("fast_read", fast_read); f->open_object_section("options"); opts.dump(f); f->close_section(); // options f->open_object_section("application_metadata"); for (auto &app_pair : application_metadata) { f->open_object_section(app_pair.first.c_str()); for (auto &kv_pair : app_pair.second) { f->dump_string(kv_pair.first.c_str(), kv_pair.second); } f->close_section(); // application } f->close_section(); // application_metadata } void pg_pool_t::convert_to_pg_shards(const vector &from, set* to) const { for (size_t i = 0; i < from.size(); ++i) { if (from[i] != CRUSH_ITEM_NONE) { to->insert( pg_shard_t( from[i], is_erasure() ? shard_id_t(i) : shard_id_t::NO_SHARD)); } } } void pg_pool_t::calc_pg_masks() { pg_num_mask = (1 << cbits(pg_num-1)) - 1; pgp_num_mask = (1 << cbits(pgp_num-1)) - 1; } unsigned pg_pool_t::get_pg_num_divisor(pg_t pgid) const { if (pg_num == pg_num_mask + 1) return pg_num; // power-of-2 split unsigned mask = pg_num_mask >> 1; if ((pgid.ps() & mask) < (pg_num & mask)) return pg_num_mask + 1; // smaller bin size (already split) else return (pg_num_mask + 1) >> 1; // bigger bin (not yet split) } bool pg_pool_t::is_pending_merge(pg_t pgid, bool *target) const { if (pg_num_pending >= pg_num) { return false; } if (pgid.ps() >= pg_num_pending && pgid.ps() < pg_num) { if (target) { *target = false; } return true; } for (unsigned ps = pg_num_pending; ps < pg_num; ++ps) { if (pg_t(ps, pgid.pool()).get_parent() == pgid) { if (target) { *target = true; } return true; } } return false; } /* * we have two snap modes: * - pool snaps * - snap existence/non-existence defined by snaps[] and snap_seq * - user managed snaps * - existence tracked by librados user */ bool pg_pool_t::is_pool_snaps_mode() const { return has_flag(FLAG_POOL_SNAPS); } bool pg_pool_t::is_unmanaged_snaps_mode() const { return has_flag(FLAG_SELFMANAGED_SNAPS); } bool pg_pool_t::is_removed_snap(snapid_t s) const { if (is_pool_snaps_mode()) return s <= get_snap_seq() && snaps.count(s) == 0; else return removed_snaps.contains(s); } snapid_t pg_pool_t::snap_exists(std::string_view s) const { for (auto p = snaps.cbegin(); p != snaps.cend(); ++p) if (p->second.name == s) return p->second.snapid; return 0; } void pg_pool_t::add_snap(const char *n, utime_t stamp) { ceph_assert(!is_unmanaged_snaps_mode()); flags |= FLAG_POOL_SNAPS; snapid_t s = get_snap_seq() + 1; snap_seq = s; snaps[s].snapid = s; snaps[s].name = n; snaps[s].stamp = stamp; } uint64_t pg_pool_t::add_unmanaged_snap(bool preoctopus_compat) { ceph_assert(!is_pool_snaps_mode()); if (snap_seq == 0) { if (preoctopus_compat) { // kludge for pre-mimic tracking of pool vs selfmanaged snaps. after // mimic this field is not decoded but our flag is set; pre-mimic, we // have a non-empty removed_snaps to signifiy a non-pool-snaps pool. removed_snaps.insert(snapid_t(1)); } snap_seq = 1; } flags |= FLAG_SELFMANAGED_SNAPS; snap_seq = snap_seq + 1; return snap_seq; } void pg_pool_t::remove_snap(snapid_t s) { ceph_assert(snaps.count(s)); snaps.erase(s); snap_seq = snap_seq + 1; } void pg_pool_t::remove_unmanaged_snap(snapid_t s, bool preoctopus_compat) { ceph_assert(is_unmanaged_snaps_mode()); ++snap_seq; if (preoctopus_compat) { removed_snaps.insert(s); // try to add in the new seq, just to try to keep the interval_set contiguous if (!removed_snaps.contains(get_snap_seq())) { removed_snaps.insert(get_snap_seq()); } } } SnapContext pg_pool_t::get_snap_context() const { vector s(snaps.size()); unsigned i = 0; for (auto p = snaps.crbegin(); p != snaps.crend(); ++p) s[i++] = p->first; return SnapContext(get_snap_seq(), s); } uint32_t pg_pool_t::hash_key(const string& key, const string& ns) const { if (ns.empty()) return ceph_str_hash(object_hash, key.data(), key.length()); int nsl = ns.length(); int len = key.length() + nsl + 1; char buf[len]; memcpy(&buf[0], ns.data(), nsl); buf[nsl] = '\037'; memcpy(&buf[nsl+1], key.data(), key.length()); return ceph_str_hash(object_hash, &buf[0], len); } uint32_t pg_pool_t::raw_hash_to_pg(uint32_t v) const { return ceph_stable_mod(v, pg_num, pg_num_mask); } /* * map a raw pg (with full precision ps) into an actual pg, for storage */ pg_t pg_pool_t::raw_pg_to_pg(pg_t pg) const { pg.set_ps(ceph_stable_mod(pg.ps(), pg_num, pg_num_mask)); return pg; } /* * map raw pg (full precision ps) into a placement seed. include * pool id in that value so that different pools don't use the same * seeds. */ ps_t pg_pool_t::raw_pg_to_pps(pg_t pg) const { if (flags & FLAG_HASHPSPOOL) { // Hash the pool id so that pool PGs do not overlap. return crush_hash32_2(CRUSH_HASH_RJENKINS1, ceph_stable_mod(pg.ps(), pgp_num, pgp_num_mask), pg.pool()); } else { // Legacy behavior; add ps and pool together. This is not a great // idea because the PGs from each pool will essentially overlap on // top of each other: 0.5 == 1.4 == 2.3 == ... return ceph_stable_mod(pg.ps(), pgp_num, pgp_num_mask) + pg.pool(); } } uint32_t pg_pool_t::get_random_pg_position(pg_t pg, uint32_t seed) const { uint32_t r = crush_hash32_2(CRUSH_HASH_RJENKINS1, seed, 123); if (pg_num == pg_num_mask + 1) { r &= ~pg_num_mask; } else { unsigned smaller_mask = pg_num_mask >> 1; if ((pg.ps() & smaller_mask) < (pg_num & smaller_mask)) { r &= ~pg_num_mask; } else { r &= ~smaller_mask; } } r |= pg.ps(); return r; } void pg_pool_t::encode(ceph::buffer::list& bl, uint64_t features) const { using ceph::encode; if ((features & CEPH_FEATURE_PGPOOL3) == 0) { // this encoding matches the old struct ceph_pg_pool __u8 struct_v = 2; encode(struct_v, bl); encode(type, bl); encode(size, bl); encode(crush_rule, bl); encode(object_hash, bl); encode(pg_num, bl); encode(pgp_num, bl); __u32 lpg_num = 0, lpgp_num = 0; // tell old code that there are no localized pgs. encode(lpg_num, bl); encode(lpgp_num, bl); encode(last_change, bl); encode(snap_seq, bl); encode(snap_epoch, bl); __u32 n = snaps.size(); encode(n, bl); n = removed_snaps.num_intervals(); encode(n, bl); encode(auid, bl); encode_nohead(snaps, bl, features); encode_nohead(removed_snaps, bl); return; } if ((features & CEPH_FEATURE_OSDENC) == 0) { __u8 struct_v = 4; encode(struct_v, bl); encode(type, bl); encode(size, bl); encode(crush_rule, bl); encode(object_hash, bl); encode(pg_num, bl); encode(pgp_num, bl); __u32 lpg_num = 0, lpgp_num = 0; // tell old code that there are no localized pgs. encode(lpg_num, bl); encode(lpgp_num, bl); encode(last_change, bl); encode(snap_seq, bl); encode(snap_epoch, bl); encode(snaps, bl, features); encode(removed_snaps, bl); encode(auid, bl); encode(flags, bl); encode((uint32_t)0, bl); // crash_replay_interval return; } if ((features & CEPH_FEATURE_OSD_POOLRESEND) == 0) { // we simply added last_force_op_resend here, which is a fully // backward compatible change. however, encoding the same map // differently between monitors triggers scrub noise (even though // they are decodable without the feature), so let's be pendantic // about it. ENCODE_START(14, 5, bl); encode(type, bl); encode(size, bl); encode(crush_rule, bl); encode(object_hash, bl); encode(pg_num, bl); encode(pgp_num, bl); __u32 lpg_num = 0, lpgp_num = 0; // tell old code that there are no localized pgs. encode(lpg_num, bl); encode(lpgp_num, bl); encode(last_change, bl); encode(snap_seq, bl); encode(snap_epoch, bl); encode(snaps, bl, features); encode(removed_snaps, bl); encode(auid, bl); encode(flags, bl); encode((uint32_t)0, bl); // crash_replay_interval encode(min_size, bl); encode(quota_max_bytes, bl); encode(quota_max_objects, bl); encode(tiers, bl); encode(tier_of, bl); __u8 c = cache_mode; encode(c, bl); encode(read_tier, bl); encode(write_tier, bl); encode(properties, bl); encode(hit_set_params, bl); encode(hit_set_period, bl); encode(hit_set_count, bl); encode(stripe_width, bl); encode(target_max_bytes, bl); encode(target_max_objects, bl); encode(cache_target_dirty_ratio_micro, bl); encode(cache_target_full_ratio_micro, bl); encode(cache_min_flush_age, bl); encode(cache_min_evict_age, bl); encode(erasure_code_profile, bl); ENCODE_FINISH(bl); return; } uint8_t v = 30; // NOTE: any new encoding dependencies must be reflected by // SIGNIFICANT_FEATURES if (!(features & CEPH_FEATURE_NEW_OSDOP_ENCODING)) { // this was the first post-hammer thing we added; if it's missing, encode // like hammer. v = 21; } else if (!HAVE_FEATURE(features, SERVER_LUMINOUS)) { v = 24; } else if (!HAVE_FEATURE(features, SERVER_MIMIC)) { v = 26; } else if (!HAVE_FEATURE(features, SERVER_NAUTILUS)) { v = 27; } else if (!is_stretch_pool()) { v = 29; } ENCODE_START(v, 5, bl); encode(type, bl); encode(size, bl); encode(crush_rule, bl); encode(object_hash, bl); encode(pg_num, bl); encode(pgp_num, bl); __u32 lpg_num = 0, lpgp_num = 0; // tell old code that there are no localized pgs. encode(lpg_num, bl); encode(lpgp_num, bl); encode(last_change, bl); encode(snap_seq, bl); encode(snap_epoch, bl); encode(snaps, bl, features); encode(removed_snaps, bl); encode(auid, bl); if (v >= 27) { encode(flags, bl); } else { auto tmp = flags; tmp &= ~(FLAG_SELFMANAGED_SNAPS | FLAG_POOL_SNAPS | FLAG_CREATING); encode(tmp, bl); } encode((uint32_t)0, bl); // crash_replay_interval encode(min_size, bl); encode(quota_max_bytes, bl); encode(quota_max_objects, bl); encode(tiers, bl); encode(tier_of, bl); __u8 c = cache_mode; encode(c, bl); encode(read_tier, bl); encode(write_tier, bl); encode(properties, bl); encode(hit_set_params, bl); encode(hit_set_period, bl); encode(hit_set_count, bl); encode(stripe_width, bl); encode(target_max_bytes, bl); encode(target_max_objects, bl); encode(cache_target_dirty_ratio_micro, bl); encode(cache_target_full_ratio_micro, bl); encode(cache_min_flush_age, bl); encode(cache_min_evict_age, bl); encode(erasure_code_profile, bl); encode(last_force_op_resend_preluminous, bl); encode(min_read_recency_for_promote, bl); encode(expected_num_objects, bl); if (v >= 19) { encode(cache_target_dirty_high_ratio_micro, bl); } if (v >= 20) { encode(min_write_recency_for_promote, bl); } if (v >= 21) { encode(use_gmt_hitset, bl); } if (v >= 22) { encode(fast_read, bl); } if (v >= 23) { encode(hit_set_grade_decay_rate, bl); encode(hit_set_search_last_n, bl); } if (v >= 24) { encode(opts, bl, features); } if (v >= 25) { encode(last_force_op_resend_prenautilus, bl); } if (v >= 26) { encode(application_metadata, bl); } if (v >= 27) { encode(create_time, bl); } if (v >= 28) { encode(pg_num_target, bl); encode(pgp_num_target, bl); encode(pg_num_pending, bl); encode((epoch_t)0, bl); // pg_num_dec_last_epoch_started from 14.1.[01] encode((epoch_t)0, bl); // pg_num_dec_last_epoch_clean from 14.1.[01] encode(last_force_op_resend, bl); encode(pg_autoscale_mode, bl); } if (v >= 29) { encode(last_pg_merge_meta, bl); } if (v >= 30) { encode(peering_crush_bucket_count, bl); encode(peering_crush_bucket_target, bl); encode(peering_crush_bucket_barrier, bl); encode(peering_crush_mandatory_member, bl); } ENCODE_FINISH(bl); } void pg_pool_t::decode(ceph::buffer::list::const_iterator& bl) { DECODE_START_LEGACY_COMPAT_LEN(30, 5, 5, bl); decode(type, bl); decode(size, bl); decode(crush_rule, bl); decode(object_hash, bl); decode(pg_num, bl); decode(pgp_num, bl); { __u32 lpg_num, lpgp_num; decode(lpg_num, bl); decode(lpgp_num, bl); } decode(last_change, bl); decode(snap_seq, bl); decode(snap_epoch, bl); if (struct_v >= 3) { decode(snaps, bl); decode(removed_snaps, bl); decode(auid, bl); } else { __u32 n, m; decode(n, bl); decode(m, bl); decode(auid, bl); decode_nohead(n, snaps, bl); decode_nohead(m, removed_snaps, bl); } if (struct_v >= 4) { decode(flags, bl); uint32_t crash_replay_interval; decode(crash_replay_interval, bl); } else { flags = 0; } // upgrade path for selfmanaged vs pool snaps if (snap_seq > 0 && (flags & (FLAG_SELFMANAGED_SNAPS|FLAG_POOL_SNAPS)) == 0) { if (!removed_snaps.empty()) { flags |= FLAG_SELFMANAGED_SNAPS; } else { flags |= FLAG_POOL_SNAPS; } } if (struct_v >= 7) { decode(min_size, bl); } else { min_size = size - size/2; } if (struct_v >= 8) { decode(quota_max_bytes, bl); decode(quota_max_objects, bl); } if (struct_v >= 9) { decode(tiers, bl); decode(tier_of, bl); __u8 v; decode(v, bl); cache_mode = (cache_mode_t)v; decode(read_tier, bl); decode(write_tier, bl); } if (struct_v >= 10) { decode(properties, bl); } if (struct_v >= 11) { decode(hit_set_params, bl); decode(hit_set_period, bl); decode(hit_set_count, bl); } else { pg_pool_t def; hit_set_period = def.hit_set_period; hit_set_count = def.hit_set_count; } if (struct_v >= 12) { decode(stripe_width, bl); } else { set_stripe_width(0); } if (struct_v >= 13) { decode(target_max_bytes, bl); decode(target_max_objects, bl); decode(cache_target_dirty_ratio_micro, bl); decode(cache_target_full_ratio_micro, bl); decode(cache_min_flush_age, bl); decode(cache_min_evict_age, bl); } else { target_max_bytes = 0; target_max_objects = 0; cache_target_dirty_ratio_micro = 0; cache_target_full_ratio_micro = 0; cache_min_flush_age = 0; cache_min_evict_age = 0; } if (struct_v >= 14) { decode(erasure_code_profile, bl); } if (struct_v >= 15) { decode(last_force_op_resend_preluminous, bl); } else { last_force_op_resend_preluminous = 0; } if (struct_v >= 16) { decode(min_read_recency_for_promote, bl); } else { min_read_recency_for_promote = 1; } if (struct_v >= 17) { decode(expected_num_objects, bl); } else { expected_num_objects = 0; } if (struct_v >= 19) { decode(cache_target_dirty_high_ratio_micro, bl); } else { cache_target_dirty_high_ratio_micro = cache_target_dirty_ratio_micro; } if (struct_v >= 20) { decode(min_write_recency_for_promote, bl); } else { min_write_recency_for_promote = 1; } if (struct_v >= 21) { decode(use_gmt_hitset, bl); } else { use_gmt_hitset = false; } if (struct_v >= 22) { decode(fast_read, bl); } else { fast_read = false; } if (struct_v >= 23) { decode(hit_set_grade_decay_rate, bl); decode(hit_set_search_last_n, bl); } else { hit_set_grade_decay_rate = 0; hit_set_search_last_n = 1; } if (struct_v >= 24) { decode(opts, bl); } if (struct_v >= 25) { decode(last_force_op_resend_prenautilus, bl); } else { last_force_op_resend_prenautilus = last_force_op_resend_preluminous; } if (struct_v >= 26) { decode(application_metadata, bl); } if (struct_v >= 27) { decode(create_time, bl); } if (struct_v >= 28) { decode(pg_num_target, bl); decode(pgp_num_target, bl); decode(pg_num_pending, bl); epoch_t old_merge_last_epoch_clean, old_merge_last_epoch_started; decode(old_merge_last_epoch_started, bl); decode(old_merge_last_epoch_clean, bl); decode(last_force_op_resend, bl); decode(pg_autoscale_mode, bl); if (struct_v >= 29) { decode(last_pg_merge_meta, bl); } else { last_pg_merge_meta.last_epoch_clean = old_merge_last_epoch_clean; last_pg_merge_meta.last_epoch_started = old_merge_last_epoch_started; } } else { pg_num_target = pg_num; pgp_num_target = pgp_num; pg_num_pending = pg_num; last_force_op_resend = last_force_op_resend_prenautilus; pg_autoscale_mode = pg_autoscale_mode_t::WARN; // default to warn on upgrade } if (struct_v >= 30) { decode(peering_crush_bucket_count, bl); decode(peering_crush_bucket_target, bl); decode(peering_crush_bucket_barrier, bl); decode(peering_crush_mandatory_member, bl); } DECODE_FINISH(bl); calc_pg_masks(); calc_grade_table(); } bool pg_pool_t::stretch_set_can_peer(const set& want, const OSDMap& osdmap, std::ostream * out) const { if (!is_stretch_pool()) return true; const uint32_t barrier_id = peering_crush_bucket_barrier; const uint32_t barrier_count = peering_crush_bucket_count; set ancestors; const shared_ptr& crush = osdmap.crush; for (int osdid : want) { int ancestor = crush->get_parent_of_type(osdid, barrier_id, crush_rule); ancestors.insert(ancestor); } if (ancestors.size() < barrier_count) { if (out) { *out << __func__ << ": not enough crush buckets with OSDs in want set " << want; } return false; } else if (peering_crush_mandatory_member != CRUSH_ITEM_NONE && !ancestors.count(peering_crush_mandatory_member)) { if (out) { *out << __func__ << ": missing mandatory crush bucket member " << peering_crush_mandatory_member; } return false; } return true; } void pg_pool_t::generate_test_instances(list& o) { pg_pool_t a; o.push_back(new pg_pool_t(a)); a.create_time = utime_t(4,5); a.type = TYPE_REPLICATED; a.size = 2; a.crush_rule = 3; a.object_hash = 4; a.pg_num = 6; a.pgp_num = 4; a.pgp_num_target = 4; a.pg_num_target = 5; a.pg_num_pending = 5; a.last_pg_merge_meta.last_epoch_started = 2; a.last_pg_merge_meta.last_epoch_clean = 2; a.last_change = 9; a.last_force_op_resend = 123823; a.last_force_op_resend_preluminous = 123824; a.snap_seq = 10; a.snap_epoch = 11; a.flags = FLAG_POOL_SNAPS; a.auid = 12; a.quota_max_bytes = 473; a.quota_max_objects = 474; o.push_back(new pg_pool_t(a)); a.snaps[3].name = "asdf"; a.snaps[3].snapid = 3; a.snaps[3].stamp = utime_t(123, 4); a.snaps[6].name = "qwer"; a.snaps[6].snapid = 6; a.snaps[6].stamp = utime_t(23423, 4); o.push_back(new pg_pool_t(a)); a.flags = FLAG_SELFMANAGED_SNAPS; a.snaps.clear(); a.removed_snaps.insert(2); a.quota_max_bytes = 2473; a.quota_max_objects = 4374; a.tiers.insert(0); a.tiers.insert(1); a.tier_of = 2; a.cache_mode = CACHEMODE_WRITEBACK; a.read_tier = 1; a.write_tier = 1; a.hit_set_params = HitSet::Params(new BloomHitSet::Params); a.hit_set_period = 3600; a.hit_set_count = 8; a.min_read_recency_for_promote = 1; a.min_write_recency_for_promote = 1; a.hit_set_grade_decay_rate = 50; a.hit_set_search_last_n = 1; a.calc_grade_table(); a.set_stripe_width(12345); a.target_max_bytes = 1238132132; a.target_max_objects = 1232132; a.cache_target_dirty_ratio_micro = 187232; a.cache_target_dirty_high_ratio_micro = 309856; a.cache_target_full_ratio_micro = 987222; a.cache_min_flush_age = 231; a.cache_min_evict_age = 2321; a.erasure_code_profile = "profile in osdmap"; a.expected_num_objects = 123456; a.fast_read = false; a.application_metadata = {{"rbd", {{"key", "value"}}}}; o.push_back(new pg_pool_t(a)); } ostream& operator<<(ostream& out, const pg_pool_t& p) { out << p.get_type_name(); if (p.get_type_name() == "erasure") { out << " profile " << p.erasure_code_profile; } out << " size " << p.get_size() << " min_size " << p.get_min_size() << " crush_rule " << p.get_crush_rule() << " object_hash " << p.get_object_hash_name() << " pg_num " << p.get_pg_num() << " pgp_num " << p.get_pgp_num(); if (p.get_pg_num_target() != p.get_pg_num()) { out << " pg_num_target " << p.get_pg_num_target(); } if (p.get_pgp_num_target() != p.get_pgp_num()) { out << " pgp_num_target " << p.get_pgp_num_target(); } if (p.get_pg_num_pending() != p.get_pg_num()) { out << " pg_num_pending " << p.get_pg_num_pending(); } if (p.pg_autoscale_mode != pg_pool_t::pg_autoscale_mode_t::UNKNOWN) { out << " autoscale_mode " << p.get_pg_autoscale_mode_name(p.pg_autoscale_mode); } out << " last_change " << p.get_last_change(); if (p.get_last_force_op_resend() || p.get_last_force_op_resend_prenautilus() || p.get_last_force_op_resend_preluminous()) out << " lfor " << p.get_last_force_op_resend() << "/" << p.get_last_force_op_resend_prenautilus() << "/" << p.get_last_force_op_resend_preluminous(); if (p.get_auid()) out << " owner " << p.get_auid(); if (p.flags) out << " flags " << p.get_flags_string(); if (p.quota_max_bytes) out << " max_bytes " << p.quota_max_bytes; if (p.quota_max_objects) out << " max_objects " << p.quota_max_objects; if (!p.tiers.empty()) out << " tiers " << p.tiers; if (p.is_tier()) out << " tier_of " << p.tier_of; if (p.has_read_tier()) out << " read_tier " << p.read_tier; if (p.has_write_tier()) out << " write_tier " << p.write_tier; if (p.cache_mode) out << " cache_mode " << p.get_cache_mode_name(); if (p.target_max_bytes) out << " target_bytes " << p.target_max_bytes; if (p.target_max_objects) out << " target_objects " << p.target_max_objects; if (p.hit_set_params.get_type() != HitSet::TYPE_NONE) { out << " hit_set " << p.hit_set_params << " " << p.hit_set_period << "s" << " x" << p.hit_set_count << " decay_rate " << p.hit_set_grade_decay_rate << " search_last_n " << p.hit_set_search_last_n; } if (p.min_read_recency_for_promote) out << " min_read_recency_for_promote " << p.min_read_recency_for_promote; if (p.min_write_recency_for_promote) out << " min_write_recency_for_promote " << p.min_write_recency_for_promote; out << " stripe_width " << p.get_stripe_width(); if (p.expected_num_objects) out << " expected_num_objects " << p.expected_num_objects; if (p.fast_read) out << " fast_read " << p.fast_read; out << p.opts; if (!p.application_metadata.empty()) { out << " application "; for (auto it = p.application_metadata.begin(); it != p.application_metadata.end(); ++it) { if (it != p.application_metadata.begin()) out << ","; out << it->first; } } return out; } // -- object_stat_sum_t -- void object_stat_sum_t::dump(Formatter *f) const { f->dump_int("num_bytes", num_bytes); f->dump_int("num_objects", num_objects); f->dump_int("num_object_clones", num_object_clones); f->dump_int("num_object_copies", num_object_copies); f->dump_int("num_objects_missing_on_primary", num_objects_missing_on_primary); f->dump_int("num_objects_missing", num_objects_missing); f->dump_int("num_objects_degraded", num_objects_degraded); f->dump_int("num_objects_misplaced", num_objects_misplaced); f->dump_int("num_objects_unfound", num_objects_unfound); f->dump_int("num_objects_dirty", num_objects_dirty); f->dump_int("num_whiteouts", num_whiteouts); f->dump_int("num_read", num_rd); f->dump_int("num_read_kb", num_rd_kb); f->dump_int("num_write", num_wr); f->dump_int("num_write_kb", num_wr_kb); f->dump_int("num_scrub_errors", num_scrub_errors); f->dump_int("num_shallow_scrub_errors", num_shallow_scrub_errors); f->dump_int("num_deep_scrub_errors", num_deep_scrub_errors); f->dump_int("num_objects_recovered", num_objects_recovered); f->dump_int("num_bytes_recovered", num_bytes_recovered); f->dump_int("num_keys_recovered", num_keys_recovered); f->dump_int("num_objects_omap", num_objects_omap); f->dump_int("num_objects_hit_set_archive", num_objects_hit_set_archive); f->dump_int("num_bytes_hit_set_archive", num_bytes_hit_set_archive); f->dump_int("num_flush", num_flush); f->dump_int("num_flush_kb", num_flush_kb); f->dump_int("num_evict", num_evict); f->dump_int("num_evict_kb", num_evict_kb); f->dump_int("num_promote", num_promote); f->dump_int("num_flush_mode_high", num_flush_mode_high); f->dump_int("num_flush_mode_low", num_flush_mode_low); f->dump_int("num_evict_mode_some", num_evict_mode_some); f->dump_int("num_evict_mode_full", num_evict_mode_full); f->dump_int("num_objects_pinned", num_objects_pinned); f->dump_int("num_legacy_snapsets", num_legacy_snapsets); f->dump_int("num_large_omap_objects", num_large_omap_objects); f->dump_int("num_objects_manifest", num_objects_manifest); f->dump_int("num_omap_bytes", num_omap_bytes); f->dump_int("num_omap_keys", num_omap_keys); f->dump_int("num_objects_repaired", num_objects_repaired); } void object_stat_sum_t::encode(ceph::buffer::list& bl) const { ENCODE_START(20, 14, bl); #if defined(CEPH_LITTLE_ENDIAN) bl.append((char *)(&num_bytes), sizeof(object_stat_sum_t)); #else encode(num_bytes, bl); encode(num_objects, bl); encode(num_object_clones, bl); encode(num_object_copies, bl); encode(num_objects_missing_on_primary, bl); encode(num_objects_degraded, bl); encode(num_objects_unfound, bl); encode(num_rd, bl); encode(num_rd_kb, bl); encode(num_wr, bl); encode(num_wr_kb, bl); encode(num_scrub_errors, bl); encode(num_objects_recovered, bl); encode(num_bytes_recovered, bl); encode(num_keys_recovered, bl); encode(num_shallow_scrub_errors, bl); encode(num_deep_scrub_errors, bl); encode(num_objects_dirty, bl); encode(num_whiteouts, bl); encode(num_objects_omap, bl); encode(num_objects_hit_set_archive, bl); encode(num_objects_misplaced, bl); encode(num_bytes_hit_set_archive, bl); encode(num_flush, bl); encode(num_flush_kb, bl); encode(num_evict, bl); encode(num_evict_kb, bl); encode(num_promote, bl); encode(num_flush_mode_high, bl); encode(num_flush_mode_low, bl); encode(num_evict_mode_some, bl); encode(num_evict_mode_full, bl); encode(num_objects_pinned, bl); encode(num_objects_missing, bl); encode(num_legacy_snapsets, bl); encode(num_large_omap_objects, bl); encode(num_objects_manifest, bl); encode(num_omap_bytes, bl); encode(num_omap_keys, bl); encode(num_objects_repaired, bl); #endif ENCODE_FINISH(bl); } void object_stat_sum_t::decode(ceph::buffer::list::const_iterator& bl) { bool decode_finish = false; static const int STAT_SUM_DECODE_VERSION = 20; DECODE_START(STAT_SUM_DECODE_VERSION, bl); #if defined(CEPH_LITTLE_ENDIAN) if (struct_v == STAT_SUM_DECODE_VERSION) { bl.copy(sizeof(object_stat_sum_t), (char*)(&num_bytes)); decode_finish = true; } #endif if (!decode_finish) { decode(num_bytes, bl); decode(num_objects, bl); decode(num_object_clones, bl); decode(num_object_copies, bl); decode(num_objects_missing_on_primary, bl); decode(num_objects_degraded, bl); decode(num_objects_unfound, bl); decode(num_rd, bl); decode(num_rd_kb, bl); decode(num_wr, bl); decode(num_wr_kb, bl); decode(num_scrub_errors, bl); decode(num_objects_recovered, bl); decode(num_bytes_recovered, bl); decode(num_keys_recovered, bl); decode(num_shallow_scrub_errors, bl); decode(num_deep_scrub_errors, bl); decode(num_objects_dirty, bl); decode(num_whiteouts, bl); decode(num_objects_omap, bl); decode(num_objects_hit_set_archive, bl); decode(num_objects_misplaced, bl); decode(num_bytes_hit_set_archive, bl); decode(num_flush, bl); decode(num_flush_kb, bl); decode(num_evict, bl); decode(num_evict_kb, bl); decode(num_promote, bl); decode(num_flush_mode_high, bl); decode(num_flush_mode_low, bl); decode(num_evict_mode_some, bl); decode(num_evict_mode_full, bl); decode(num_objects_pinned, bl); decode(num_objects_missing, bl); if (struct_v >= 16) { decode(num_legacy_snapsets, bl); } else { num_legacy_snapsets = num_object_clones; // upper bound } if (struct_v >= 17) { decode(num_large_omap_objects, bl); } if (struct_v >= 18) { decode(num_objects_manifest, bl); } if (struct_v >= 19) { decode(num_omap_bytes, bl); decode(num_omap_keys, bl); } if (struct_v >= 20) { decode(num_objects_repaired, bl); } } DECODE_FINISH(bl); } void object_stat_sum_t::generate_test_instances(list& o) { object_stat_sum_t a; a.num_bytes = 1; a.num_objects = 3; a.num_object_clones = 4; a.num_object_copies = 5; a.num_objects_missing_on_primary = 6; a.num_objects_missing = 123; a.num_objects_degraded = 7; a.num_objects_unfound = 8; a.num_rd = 9; a.num_rd_kb = 10; a.num_wr = 11; a.num_wr_kb = 12; a.num_objects_recovered = 14; a.num_bytes_recovered = 15; a.num_keys_recovered = 16; a.num_deep_scrub_errors = 17; a.num_shallow_scrub_errors = 18; a.num_scrub_errors = a.num_deep_scrub_errors + a.num_shallow_scrub_errors; a.num_objects_dirty = 21; a.num_whiteouts = 22; a.num_objects_misplaced = 1232; a.num_objects_hit_set_archive = 2; a.num_bytes_hit_set_archive = 27; a.num_flush = 5; a.num_flush_kb = 6; a.num_evict = 7; a.num_evict_kb = 8; a.num_promote = 9; a.num_flush_mode_high = 0; a.num_flush_mode_low = 1; a.num_evict_mode_some = 1; a.num_evict_mode_full = 0; a.num_objects_pinned = 20; a.num_large_omap_objects = 5; a.num_objects_manifest = 2; a.num_omap_bytes = 20000; a.num_omap_keys = 200; a.num_objects_repaired = 300; o.push_back(new object_stat_sum_t(a)); } void object_stat_sum_t::add(const object_stat_sum_t& o) { num_bytes += o.num_bytes; num_objects += o.num_objects; num_object_clones += o.num_object_clones; num_object_copies += o.num_object_copies; num_objects_missing_on_primary += o.num_objects_missing_on_primary; num_objects_missing += o.num_objects_missing; num_objects_degraded += o.num_objects_degraded; num_objects_misplaced += o.num_objects_misplaced; num_rd += o.num_rd; num_rd_kb += o.num_rd_kb; num_wr += o.num_wr; num_wr_kb += o.num_wr_kb; num_objects_unfound += o.num_objects_unfound; num_scrub_errors += o.num_scrub_errors; num_shallow_scrub_errors += o.num_shallow_scrub_errors; num_deep_scrub_errors += o.num_deep_scrub_errors; num_objects_recovered += o.num_objects_recovered; num_bytes_recovered += o.num_bytes_recovered; num_keys_recovered += o.num_keys_recovered; num_objects_dirty += o.num_objects_dirty; num_whiteouts += o.num_whiteouts; num_objects_omap += o.num_objects_omap; num_objects_hit_set_archive += o.num_objects_hit_set_archive; num_bytes_hit_set_archive += o.num_bytes_hit_set_archive; num_flush += o.num_flush; num_flush_kb += o.num_flush_kb; num_evict += o.num_evict; num_evict_kb += o.num_evict_kb; num_promote += o.num_promote; num_flush_mode_high += o.num_flush_mode_high; num_flush_mode_low += o.num_flush_mode_low; num_evict_mode_some += o.num_evict_mode_some; num_evict_mode_full += o.num_evict_mode_full; num_objects_pinned += o.num_objects_pinned; num_legacy_snapsets += o.num_legacy_snapsets; num_large_omap_objects += o.num_large_omap_objects; num_objects_manifest += o.num_objects_manifest; num_omap_bytes += o.num_omap_bytes; num_omap_keys += o.num_omap_keys; num_objects_repaired += o.num_objects_repaired; } void object_stat_sum_t::sub(const object_stat_sum_t& o) { num_bytes -= o.num_bytes; num_objects -= o.num_objects; num_object_clones -= o.num_object_clones; num_object_copies -= o.num_object_copies; num_objects_missing_on_primary -= o.num_objects_missing_on_primary; num_objects_missing -= o.num_objects_missing; num_objects_degraded -= o.num_objects_degraded; num_objects_misplaced -= o.num_objects_misplaced; num_rd -= o.num_rd; num_rd_kb -= o.num_rd_kb; num_wr -= o.num_wr; num_wr_kb -= o.num_wr_kb; num_objects_unfound -= o.num_objects_unfound; num_scrub_errors -= o.num_scrub_errors; num_shallow_scrub_errors -= o.num_shallow_scrub_errors; num_deep_scrub_errors -= o.num_deep_scrub_errors; num_objects_recovered -= o.num_objects_recovered; num_bytes_recovered -= o.num_bytes_recovered; num_keys_recovered -= o.num_keys_recovered; num_objects_dirty -= o.num_objects_dirty; num_whiteouts -= o.num_whiteouts; num_objects_omap -= o.num_objects_omap; num_objects_hit_set_archive -= o.num_objects_hit_set_archive; num_bytes_hit_set_archive -= o.num_bytes_hit_set_archive; num_flush -= o.num_flush; num_flush_kb -= o.num_flush_kb; num_evict -= o.num_evict; num_evict_kb -= o.num_evict_kb; num_promote -= o.num_promote; num_flush_mode_high -= o.num_flush_mode_high; num_flush_mode_low -= o.num_flush_mode_low; num_evict_mode_some -= o.num_evict_mode_some; num_evict_mode_full -= o.num_evict_mode_full; num_objects_pinned -= o.num_objects_pinned; num_legacy_snapsets -= o.num_legacy_snapsets; num_large_omap_objects -= o.num_large_omap_objects; num_objects_manifest -= o.num_objects_manifest; num_omap_bytes -= o.num_omap_bytes; num_omap_keys -= o.num_omap_keys; num_objects_repaired -= o.num_objects_repaired; } bool operator==(const object_stat_sum_t& l, const object_stat_sum_t& r) { return l.num_bytes == r.num_bytes && l.num_objects == r.num_objects && l.num_object_clones == r.num_object_clones && l.num_object_copies == r.num_object_copies && l.num_objects_missing_on_primary == r.num_objects_missing_on_primary && l.num_objects_missing == r.num_objects_missing && l.num_objects_degraded == r.num_objects_degraded && l.num_objects_misplaced == r.num_objects_misplaced && l.num_objects_unfound == r.num_objects_unfound && l.num_rd == r.num_rd && l.num_rd_kb == r.num_rd_kb && l.num_wr == r.num_wr && l.num_wr_kb == r.num_wr_kb && l.num_scrub_errors == r.num_scrub_errors && l.num_shallow_scrub_errors == r.num_shallow_scrub_errors && l.num_deep_scrub_errors == r.num_deep_scrub_errors && l.num_objects_recovered == r.num_objects_recovered && l.num_bytes_recovered == r.num_bytes_recovered && l.num_keys_recovered == r.num_keys_recovered && l.num_objects_dirty == r.num_objects_dirty && l.num_whiteouts == r.num_whiteouts && l.num_objects_omap == r.num_objects_omap && l.num_objects_hit_set_archive == r.num_objects_hit_set_archive && l.num_bytes_hit_set_archive == r.num_bytes_hit_set_archive && l.num_flush == r.num_flush && l.num_flush_kb == r.num_flush_kb && l.num_evict == r.num_evict && l.num_evict_kb == r.num_evict_kb && l.num_promote == r.num_promote && l.num_flush_mode_high == r.num_flush_mode_high && l.num_flush_mode_low == r.num_flush_mode_low && l.num_evict_mode_some == r.num_evict_mode_some && l.num_evict_mode_full == r.num_evict_mode_full && l.num_objects_pinned == r.num_objects_pinned && l.num_legacy_snapsets == r.num_legacy_snapsets && l.num_large_omap_objects == r.num_large_omap_objects && l.num_objects_manifest == r.num_objects_manifest && l.num_omap_bytes == r.num_omap_bytes && l.num_omap_keys == r.num_omap_keys && l.num_objects_repaired == r.num_objects_repaired; } // -- object_stat_collection_t -- void object_stat_collection_t::dump(Formatter *f) const { f->open_object_section("stat_sum"); sum.dump(f); f->close_section(); } void object_stat_collection_t::encode(ceph::buffer::list& bl) const { ENCODE_START(2, 2, bl); encode(sum, bl); encode((__u32)0, bl); ENCODE_FINISH(bl); } void object_stat_collection_t::decode(ceph::buffer::list::const_iterator& bl) { DECODE_START_LEGACY_COMPAT_LEN(2, 2, 2, bl); decode(sum, bl); { map cat_sum; decode(cat_sum, bl); } DECODE_FINISH(bl); } void object_stat_collection_t::generate_test_instances(list& o) { object_stat_collection_t a; o.push_back(new object_stat_collection_t(a)); list l; object_stat_sum_t::generate_test_instances(l); for (auto p = l.begin(); p != l.end(); ++p) { a.add(**p); o.push_back(new object_stat_collection_t(a)); } } // -- pg_stat_t -- bool pg_stat_t::is_acting_osd(int32_t osd, bool primary) const { if (primary && osd == acting_primary) { return true; } else if (!primary) { for(auto it = acting.cbegin(); it != acting.cend(); ++it) { if (*it == osd) return true; } } return false; } void pg_stat_t::dump(Formatter *f) const { f->dump_stream("version") << version; f->dump_unsigned("reported_seq", reported_seq); f->dump_unsigned("reported_epoch", reported_epoch); f->dump_string("state", pg_state_string(state)); f->dump_stream("last_fresh") << last_fresh; f->dump_stream("last_change") << last_change; f->dump_stream("last_active") << last_active; f->dump_stream("last_peered") << last_peered; f->dump_stream("last_clean") << last_clean; f->dump_stream("last_became_active") << last_became_active; f->dump_stream("last_became_peered") << last_became_peered; f->dump_stream("last_unstale") << last_unstale; f->dump_stream("last_undegraded") << last_undegraded; f->dump_stream("last_fullsized") << last_fullsized; f->dump_unsigned("mapping_epoch", mapping_epoch); f->dump_stream("log_start") << log_start; f->dump_stream("ondisk_log_start") << ondisk_log_start; f->dump_unsigned("created", created); f->dump_unsigned("last_epoch_clean", last_epoch_clean); f->dump_stream("parent") << parent; f->dump_unsigned("parent_split_bits", parent_split_bits); f->dump_stream("last_scrub") << last_scrub; f->dump_stream("last_scrub_stamp") << last_scrub_stamp; f->dump_stream("last_deep_scrub") << last_deep_scrub; f->dump_stream("last_deep_scrub_stamp") << last_deep_scrub_stamp; f->dump_stream("last_clean_scrub_stamp") << last_clean_scrub_stamp; f->dump_int("log_size", log_size); f->dump_int("ondisk_log_size", ondisk_log_size); f->dump_bool("stats_invalid", stats_invalid); f->dump_bool("dirty_stats_invalid", dirty_stats_invalid); f->dump_bool("omap_stats_invalid", omap_stats_invalid); f->dump_bool("hitset_stats_invalid", hitset_stats_invalid); f->dump_bool("hitset_bytes_stats_invalid", hitset_bytes_stats_invalid); f->dump_bool("pin_stats_invalid", pin_stats_invalid); f->dump_bool("manifest_stats_invalid", manifest_stats_invalid); f->dump_unsigned("snaptrimq_len", snaptrimq_len); stats.dump(f); f->open_array_section("up"); for (auto p = up.cbegin(); p != up.cend(); ++p) f->dump_int("osd", *p); f->close_section(); f->open_array_section("acting"); for (auto p = acting.cbegin(); p != acting.cend(); ++p) f->dump_int("osd", *p); f->close_section(); f->open_array_section("avail_no_missing"); for (auto p = avail_no_missing.cbegin(); p != avail_no_missing.cend(); ++p) f->dump_stream("shard") << *p; f->close_section(); f->open_array_section("object_location_counts"); for (auto p = object_location_counts.cbegin(); p != object_location_counts.cend(); ++p) { f->open_object_section("entry"); f->dump_stream("shards") << p->first; f->dump_int("objects", p->second); f->close_section(); } f->close_section(); f->open_array_section("blocked_by"); for (auto p = blocked_by.cbegin(); p != blocked_by.cend(); ++p) f->dump_int("osd", *p); f->close_section(); f->dump_int("up_primary", up_primary); f->dump_int("acting_primary", acting_primary); f->open_array_section("purged_snaps"); for (auto i = purged_snaps.begin(); i != purged_snaps.end(); ++i) { f->open_object_section("interval"); f->dump_stream("start") << i.get_start(); f->dump_stream("length") << i.get_len(); f->close_section(); } f->close_section(); } void pg_stat_t::dump_brief(Formatter *f) const { f->dump_string("state", pg_state_string(state)); f->open_array_section("up"); for (auto p = up.cbegin(); p != up.cend(); ++p) f->dump_int("osd", *p); f->close_section(); f->open_array_section("acting"); for (auto p = acting.cbegin(); p != acting.cend(); ++p) f->dump_int("osd", *p); f->close_section(); f->dump_int("up_primary", up_primary); f->dump_int("acting_primary", acting_primary); } void pg_stat_t::encode(ceph::buffer::list &bl) const { ENCODE_START(26, 22, bl); encode(version, bl); encode(reported_seq, bl); encode(reported_epoch, bl); encode((__u32)state, bl); // for older peers encode(log_start, bl); encode(ondisk_log_start, bl); encode(created, bl); encode(last_epoch_clean, bl); encode(parent, bl); encode(parent_split_bits, bl); encode(last_scrub, bl); encode(last_scrub_stamp, bl); encode(stats, bl); encode(log_size, bl); encode(ondisk_log_size, bl); encode(up, bl); encode(acting, bl); encode(last_fresh, bl); encode(last_change, bl); encode(last_active, bl); encode(last_clean, bl); encode(last_unstale, bl); encode(mapping_epoch, bl); encode(last_deep_scrub, bl); encode(last_deep_scrub_stamp, bl); encode(stats_invalid, bl); encode(last_clean_scrub_stamp, bl); encode(last_became_active, bl); encode(dirty_stats_invalid, bl); encode(up_primary, bl); encode(acting_primary, bl); encode(omap_stats_invalid, bl); encode(hitset_stats_invalid, bl); encode(blocked_by, bl); encode(last_undegraded, bl); encode(last_fullsized, bl); encode(hitset_bytes_stats_invalid, bl); encode(last_peered, bl); encode(last_became_peered, bl); encode(pin_stats_invalid, bl); encode(snaptrimq_len, bl); __u32 top_state = (state >> 32); encode(top_state, bl); encode(purged_snaps, bl); encode(manifest_stats_invalid, bl); encode(avail_no_missing, bl); encode(object_location_counts, bl); ENCODE_FINISH(bl); } void pg_stat_t::decode(ceph::buffer::list::const_iterator &bl) { bool tmp; uint32_t old_state; DECODE_START(26, bl); decode(version, bl); decode(reported_seq, bl); decode(reported_epoch, bl); decode(old_state, bl); decode(log_start, bl); decode(ondisk_log_start, bl); decode(created, bl); decode(last_epoch_clean, bl); decode(parent, bl); decode(parent_split_bits, bl); decode(last_scrub, bl); decode(last_scrub_stamp, bl); decode(stats, bl); decode(log_size, bl); decode(ondisk_log_size, bl); decode(up, bl); decode(acting, bl); decode(last_fresh, bl); decode(last_change, bl); decode(last_active, bl); decode(last_clean, bl); decode(last_unstale, bl); decode(mapping_epoch, bl); decode(last_deep_scrub, bl); decode(last_deep_scrub_stamp, bl); decode(tmp, bl); stats_invalid = tmp; decode(last_clean_scrub_stamp, bl); decode(last_became_active, bl); decode(tmp, bl); dirty_stats_invalid = tmp; decode(up_primary, bl); decode(acting_primary, bl); decode(tmp, bl); omap_stats_invalid = tmp; decode(tmp, bl); hitset_stats_invalid = tmp; decode(blocked_by, bl); decode(last_undegraded, bl); decode(last_fullsized, bl); decode(tmp, bl); hitset_bytes_stats_invalid = tmp; decode(last_peered, bl); decode(last_became_peered, bl); decode(tmp, bl); pin_stats_invalid = tmp; if (struct_v >= 23) { decode(snaptrimq_len, bl); if (struct_v >= 24) { __u32 top_state; decode(top_state, bl); state = (uint64_t)old_state | ((uint64_t)top_state << 32); decode(purged_snaps, bl); } else { state = old_state; } if (struct_v >= 25) { decode(tmp, bl); manifest_stats_invalid = tmp; } else { manifest_stats_invalid = true; } if (struct_v >= 26) { decode(avail_no_missing, bl); decode(object_location_counts, bl); } } DECODE_FINISH(bl); } void pg_stat_t::generate_test_instances(list& o) { pg_stat_t a; o.push_back(new pg_stat_t(a)); a.version = eversion_t(1, 3); a.reported_epoch = 1; a.reported_seq = 2; a.state = 123; a.mapping_epoch = 998; a.last_fresh = utime_t(1002, 1); a.last_change = utime_t(1002, 2); a.last_active = utime_t(1002, 3); a.last_clean = utime_t(1002, 4); a.last_unstale = utime_t(1002, 5); a.last_undegraded = utime_t(1002, 7); a.last_fullsized = utime_t(1002, 8); a.log_start = eversion_t(1, 4); a.ondisk_log_start = eversion_t(1, 5); a.created = 6; a.last_epoch_clean = 7; a.parent = pg_t(1, 2); a.parent_split_bits = 12; a.last_scrub = eversion_t(9, 10); a.last_scrub_stamp = utime_t(11, 12); a.last_deep_scrub = eversion_t(13, 14); a.last_deep_scrub_stamp = utime_t(15, 16); a.last_clean_scrub_stamp = utime_t(17, 18); a.snaptrimq_len = 1048576; list l; object_stat_collection_t::generate_test_instances(l); a.stats = *l.back(); a.log_size = 99; a.ondisk_log_size = 88; a.up.push_back(123); a.up_primary = 123; a.acting.push_back(456); a.avail_no_missing.push_back(pg_shard_t(456, shard_id_t::NO_SHARD)); set sset = { pg_shard_t(0), pg_shard_t(1) }; a.object_location_counts.insert(make_pair(sset, 10)); sset.insert(pg_shard_t(2)); a.object_location_counts.insert(make_pair(sset, 5)); a.acting_primary = 456; o.push_back(new pg_stat_t(a)); a.up.push_back(124); a.up_primary = 124; a.acting.push_back(124); a.acting_primary = 124; a.blocked_by.push_back(155); a.blocked_by.push_back(156); o.push_back(new pg_stat_t(a)); } bool operator==(const pg_stat_t& l, const pg_stat_t& r) { return l.version == r.version && l.reported_seq == r.reported_seq && l.reported_epoch == r.reported_epoch && l.state == r.state && l.last_fresh == r.last_fresh && l.last_change == r.last_change && l.last_active == r.last_active && l.last_peered == r.last_peered && l.last_clean == r.last_clean && l.last_unstale == r.last_unstale && l.last_undegraded == r.last_undegraded && l.last_fullsized == r.last_fullsized && l.log_start == r.log_start && l.ondisk_log_start == r.ondisk_log_start && l.created == r.created && l.last_epoch_clean == r.last_epoch_clean && l.parent == r.parent && l.parent_split_bits == r.parent_split_bits && l.last_scrub == r.last_scrub && l.last_deep_scrub == r.last_deep_scrub && l.last_scrub_stamp == r.last_scrub_stamp && l.last_deep_scrub_stamp == r.last_deep_scrub_stamp && l.last_clean_scrub_stamp == r.last_clean_scrub_stamp && l.stats == r.stats && l.stats_invalid == r.stats_invalid && l.log_size == r.log_size && l.ondisk_log_size == r.ondisk_log_size && l.up == r.up && l.acting == r.acting && l.avail_no_missing == r.avail_no_missing && l.object_location_counts == r.object_location_counts && l.mapping_epoch == r.mapping_epoch && l.blocked_by == r.blocked_by && l.last_became_active == r.last_became_active && l.last_became_peered == r.last_became_peered && l.dirty_stats_invalid == r.dirty_stats_invalid && l.omap_stats_invalid == r.omap_stats_invalid && l.hitset_stats_invalid == r.hitset_stats_invalid && l.hitset_bytes_stats_invalid == r.hitset_bytes_stats_invalid && l.up_primary == r.up_primary && l.acting_primary == r.acting_primary && l.pin_stats_invalid == r.pin_stats_invalid && l.manifest_stats_invalid == r.manifest_stats_invalid && l.purged_snaps == r.purged_snaps && l.snaptrimq_len == r.snaptrimq_len; } // -- store_statfs_t -- bool store_statfs_t::operator==(const store_statfs_t& other) const { return total == other.total && available == other.available && allocated == other.allocated && internally_reserved == other.internally_reserved && data_stored == other.data_stored && data_compressed == other.data_compressed && data_compressed_allocated == other.data_compressed_allocated && data_compressed_original == other.data_compressed_original && omap_allocated == other.omap_allocated && internal_metadata == other.internal_metadata; } void store_statfs_t::dump(Formatter *f) const { f->dump_int("total", total); f->dump_int("available", available); f->dump_int("internally_reserved", internally_reserved); f->dump_int("allocated", allocated); f->dump_int("data_stored", data_stored); f->dump_int("data_compressed", data_compressed); f->dump_int("data_compressed_allocated", data_compressed_allocated); f->dump_int("data_compressed_original", data_compressed_original); f->dump_int("omap_allocated", omap_allocated); f->dump_int("internal_metadata", internal_metadata); } ostream& operator<<(ostream& out, const store_statfs_t &s) { out << std::hex << "store_statfs(0x" << s.available << "/0x" << s.internally_reserved << "/0x" << s.total << ", data 0x" << s.data_stored << "/0x" << s.allocated << ", compress 0x" << s.data_compressed << "/0x" << s.data_compressed_allocated << "/0x" << s.data_compressed_original << ", omap 0x" << s.omap_allocated << ", meta 0x" << s.internal_metadata << std::dec << ")"; return out; } void store_statfs_t::generate_test_instances(list& o) { store_statfs_t a; o.push_back(new store_statfs_t(a)); a.total = 234; a.available = 123; a.internally_reserved = 33; a.allocated = 32; a.data_stored = 44; a.data_compressed = 21; a.data_compressed_allocated = 12; a.data_compressed_original = 13; a.omap_allocated = 14; a.internal_metadata = 15; o.push_back(new store_statfs_t(a)); } // -- pool_stat_t -- void pool_stat_t::dump(Formatter *f) const { stats.dump(f); f->open_object_section("store_stats"); store_stats.dump(f); f->close_section(); f->dump_int("log_size", log_size); f->dump_int("ondisk_log_size", ondisk_log_size); f->dump_int("up", up); f->dump_int("acting", acting); f->dump_int("num_store_stats", num_store_stats); } void pool_stat_t::encode(ceph::buffer::list &bl, uint64_t features) const { using ceph::encode; if ((features & CEPH_FEATURE_OSDENC) == 0) { __u8 v = 4; encode(v, bl); encode(stats, bl); encode(log_size, bl); encode(ondisk_log_size, bl); return; } ENCODE_START(7, 5, bl); encode(stats, bl); encode(log_size, bl); encode(ondisk_log_size, bl); encode(up, bl); encode(acting, bl); encode(store_stats, bl); encode(num_store_stats, bl); ENCODE_FINISH(bl); } void pool_stat_t::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START_LEGACY_COMPAT_LEN(7, 5, 5, bl); if (struct_v >= 4) { decode(stats, bl); decode(log_size, bl); decode(ondisk_log_size, bl); if (struct_v >= 6) { decode(up, bl); decode(acting, bl); } else { up = 0; acting = 0; } if (struct_v >= 7) { decode(store_stats, bl); decode(num_store_stats, bl); } else { store_stats.reset(); num_store_stats = 0; } } else { decode(stats.sum.num_bytes, bl); uint64_t num_kb; decode(num_kb, bl); decode(stats.sum.num_objects, bl); decode(stats.sum.num_object_clones, bl); decode(stats.sum.num_object_copies, bl); decode(stats.sum.num_objects_missing_on_primary, bl); decode(stats.sum.num_objects_degraded, bl); decode(log_size, bl); decode(ondisk_log_size, bl); if (struct_v >= 2) { decode(stats.sum.num_rd, bl); decode(stats.sum.num_rd_kb, bl); decode(stats.sum.num_wr, bl); decode(stats.sum.num_wr_kb, bl); } if (struct_v >= 3) { decode(stats.sum.num_objects_unfound, bl); } } DECODE_FINISH(bl); } void pool_stat_t::generate_test_instances(list& o) { pool_stat_t a; o.push_back(new pool_stat_t(a)); list l; object_stat_collection_t::generate_test_instances(l); list ll; store_statfs_t::generate_test_instances(ll); a.stats = *l.back(); a.store_stats = *ll.back(); a.log_size = 123; a.ondisk_log_size = 456; a.acting = 3; a.up = 4; a.num_store_stats = 1; o.push_back(new pool_stat_t(a)); } // -- pg_history_t -- void pg_history_t::encode(ceph::buffer::list &bl) const { ENCODE_START(10, 4, bl); encode(epoch_created, bl); encode(last_epoch_started, bl); encode(last_epoch_clean, bl); encode(last_epoch_split, bl); encode(same_interval_since, bl); encode(same_up_since, bl); encode(same_primary_since, bl); encode(last_scrub, bl); encode(last_scrub_stamp, bl); encode(last_deep_scrub, bl); encode(last_deep_scrub_stamp, bl); encode(last_clean_scrub_stamp, bl); encode(last_epoch_marked_full, bl); encode(last_interval_started, bl); encode(last_interval_clean, bl); encode(epoch_pool_created, bl); encode(prior_readable_until_ub, bl); ENCODE_FINISH(bl); } void pg_history_t::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START_LEGACY_COMPAT_LEN(10, 4, 4, bl); decode(epoch_created, bl); decode(last_epoch_started, bl); if (struct_v >= 3) decode(last_epoch_clean, bl); else last_epoch_clean = last_epoch_started; // careful, it's a lie! decode(last_epoch_split, bl); decode(same_interval_since, bl); decode(same_up_since, bl); decode(same_primary_since, bl); if (struct_v >= 2) { decode(last_scrub, bl); decode(last_scrub_stamp, bl); } if (struct_v >= 5) { decode(last_deep_scrub, bl); decode(last_deep_scrub_stamp, bl); } if (struct_v >= 6) { decode(last_clean_scrub_stamp, bl); } if (struct_v >= 7) { decode(last_epoch_marked_full, bl); } if (struct_v >= 8) { decode(last_interval_started, bl); decode(last_interval_clean, bl); } else { if (last_epoch_started >= same_interval_since) { last_interval_started = same_interval_since; } else { last_interval_started = last_epoch_started; // best guess } if (last_epoch_clean >= same_interval_since) { last_interval_clean = same_interval_since; } else { last_interval_clean = last_epoch_clean; // best guess } } if (struct_v >= 9) { decode(epoch_pool_created, bl); } else { epoch_pool_created = epoch_created; } if (struct_v >= 10) { decode(prior_readable_until_ub, bl); } DECODE_FINISH(bl); } void pg_history_t::dump(Formatter *f) const { f->dump_int("epoch_created", epoch_created); f->dump_int("epoch_pool_created", epoch_pool_created); f->dump_int("last_epoch_started", last_epoch_started); f->dump_int("last_interval_started", last_interval_started); f->dump_int("last_epoch_clean", last_epoch_clean); f->dump_int("last_interval_clean", last_interval_clean); f->dump_int("last_epoch_split", last_epoch_split); f->dump_int("last_epoch_marked_full", last_epoch_marked_full); f->dump_int("same_up_since", same_up_since); f->dump_int("same_interval_since", same_interval_since); f->dump_int("same_primary_since", same_primary_since); f->dump_stream("last_scrub") << last_scrub; f->dump_stream("last_scrub_stamp") << last_scrub_stamp; f->dump_stream("last_deep_scrub") << last_deep_scrub; f->dump_stream("last_deep_scrub_stamp") << last_deep_scrub_stamp; f->dump_stream("last_clean_scrub_stamp") << last_clean_scrub_stamp; f->dump_float( "prior_readable_until_ub", std::chrono::duration(prior_readable_until_ub).count()); } void pg_history_t::generate_test_instances(list& o) { o.push_back(new pg_history_t); o.push_back(new pg_history_t); o.back()->epoch_created = 1; o.back()->epoch_pool_created = 1; o.back()->last_epoch_started = 2; o.back()->last_interval_started = 2; o.back()->last_epoch_clean = 3; o.back()->last_interval_clean = 2; o.back()->last_epoch_split = 4; o.back()->prior_readable_until_ub = make_timespan(3.1415); o.back()->same_up_since = 5; o.back()->same_interval_since = 6; o.back()->same_primary_since = 7; o.back()->last_scrub = eversion_t(8, 9); o.back()->last_scrub_stamp = utime_t(10, 11); o.back()->last_deep_scrub = eversion_t(12, 13); o.back()->last_deep_scrub_stamp = utime_t(14, 15); o.back()->last_clean_scrub_stamp = utime_t(16, 17); o.back()->last_epoch_marked_full = 18; } // -- pg_info_t -- void pg_info_t::encode(ceph::buffer::list &bl) const { ENCODE_START(32, 26, bl); encode(pgid.pgid, bl); encode(last_update, bl); encode(last_complete, bl); encode(log_tail, bl); encode(hobject_t(), bl); // old (nibblewise) last_backfill encode(stats, bl); history.encode(bl); encode(purged_snaps, bl); encode(last_epoch_started, bl); encode(last_user_version, bl); encode(hit_set, bl); encode(pgid.shard, bl); encode(last_backfill, bl); encode(true, bl); // was last_backfill_bitwise encode(last_interval_started, bl); ENCODE_FINISH(bl); } void pg_info_t::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START(32, bl); decode(pgid.pgid, bl); decode(last_update, bl); decode(last_complete, bl); decode(log_tail, bl); { hobject_t old_last_backfill; decode(old_last_backfill, bl); } decode(stats, bl); history.decode(bl); decode(purged_snaps, bl); decode(last_epoch_started, bl); decode(last_user_version, bl); decode(hit_set, bl); decode(pgid.shard, bl); decode(last_backfill, bl); { bool last_backfill_bitwise; decode(last_backfill_bitwise, bl); // note: we may see a false value here since the default value for // the member was false, so it often didn't get set to true until // peering progressed. } if (struct_v >= 32) { decode(last_interval_started, bl); } else { last_interval_started = last_epoch_started; } DECODE_FINISH(bl); } // -- pg_info_t -- void pg_info_t::dump(Formatter *f) const { f->dump_stream("pgid") << pgid; f->dump_stream("last_update") << last_update; f->dump_stream("last_complete") << last_complete; f->dump_stream("log_tail") << log_tail; f->dump_int("last_user_version", last_user_version); f->dump_stream("last_backfill") << last_backfill; f->open_array_section("purged_snaps"); for (interval_set::const_iterator i=purged_snaps.begin(); i != purged_snaps.end(); ++i) { f->open_object_section("purged_snap_interval"); f->dump_stream("start") << i.get_start(); f->dump_stream("length") << i.get_len(); f->close_section(); } f->close_section(); f->open_object_section("history"); history.dump(f); f->close_section(); f->open_object_section("stats"); stats.dump(f); f->close_section(); f->dump_int("empty", is_empty()); f->dump_int("dne", dne()); f->dump_int("incomplete", is_incomplete()); f->dump_int("last_epoch_started", last_epoch_started); f->open_object_section("hit_set_history"); hit_set.dump(f); f->close_section(); } void pg_info_t::generate_test_instances(list& o) { o.push_back(new pg_info_t); o.push_back(new pg_info_t); list h; pg_history_t::generate_test_instances(h); o.back()->history = *h.back(); o.back()->pgid = spg_t(pg_t(1, 2), shard_id_t::NO_SHARD); o.back()->last_update = eversion_t(3, 4); o.back()->last_complete = eversion_t(5, 6); o.back()->last_user_version = 2; o.back()->log_tail = eversion_t(7, 8); o.back()->last_backfill = hobject_t(object_t("objname"), "key", 123, 456, -1, ""); { list s; pg_stat_t::generate_test_instances(s); o.back()->stats = *s.back(); } { list s; pg_hit_set_history_t::generate_test_instances(s); o.back()->hit_set = *s.back(); } } // -- pg_notify_t -- void pg_notify_t::encode(ceph::buffer::list &bl) const { ENCODE_START(3, 2, bl); encode(query_epoch, bl); encode(epoch_sent, bl); encode(info, bl); encode(to, bl); encode(from, bl); encode(past_intervals, bl); ENCODE_FINISH(bl); } void pg_notify_t::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START(3, bl); decode(query_epoch, bl); decode(epoch_sent, bl); decode(info, bl); decode(to, bl); decode(from, bl); if (struct_v >= 3) { decode(past_intervals, bl); } DECODE_FINISH(bl); } void pg_notify_t::dump(Formatter *f) const { f->dump_int("from", from); f->dump_int("to", to); f->dump_unsigned("query_epoch", query_epoch); f->dump_unsigned("epoch_sent", epoch_sent); { f->open_object_section("info"); info.dump(f); f->close_section(); } f->dump_object("past_intervals", past_intervals); } void pg_notify_t::generate_test_instances(list& o) { o.push_back(new pg_notify_t(shard_id_t(3), shard_id_t::NO_SHARD, 1, 1, pg_info_t(), PastIntervals())); o.push_back(new pg_notify_t(shard_id_t(0), shard_id_t(0), 3, 10, pg_info_t(), PastIntervals())); } ostream &operator<<(ostream &lhs, const pg_notify_t ¬ify) { lhs << "(query:" << notify.query_epoch << " sent:" << notify.epoch_sent << " " << notify.info; if (notify.from != shard_id_t::NO_SHARD || notify.to != shard_id_t::NO_SHARD) lhs << " " << (unsigned)notify.from << "->" << (unsigned)notify.to; lhs << " " << notify.past_intervals; return lhs << ")"; } // -- pg_interval_t -- void PastIntervals::pg_interval_t::encode(ceph::buffer::list& bl) const { ENCODE_START(4, 2, bl); encode(first, bl); encode(last, bl); encode(up, bl); encode(acting, bl); encode(maybe_went_rw, bl); encode(primary, bl); encode(up_primary, bl); ENCODE_FINISH(bl); } void PastIntervals::pg_interval_t::decode(ceph::buffer::list::const_iterator& bl) { DECODE_START_LEGACY_COMPAT_LEN(4, 2, 2, bl); decode(first, bl); decode(last, bl); decode(up, bl); decode(acting, bl); decode(maybe_went_rw, bl); if (struct_v >= 3) { decode(primary, bl); } else { if (acting.size()) primary = acting[0]; } if (struct_v >= 4) { decode(up_primary, bl); } else { if (up.size()) up_primary = up[0]; } DECODE_FINISH(bl); } void PastIntervals::pg_interval_t::dump(Formatter *f) const { f->dump_unsigned("first", first); f->dump_unsigned("last", last); f->dump_int("maybe_went_rw", maybe_went_rw ? 1 : 0); f->open_array_section("up"); for (auto p = up.cbegin(); p != up.cend(); ++p) f->dump_int("osd", *p); f->close_section(); f->open_array_section("acting"); for (auto p = acting.cbegin(); p != acting.cend(); ++p) f->dump_int("osd", *p); f->close_section(); f->dump_int("primary", primary); f->dump_int("up_primary", up_primary); } void PastIntervals::pg_interval_t::generate_test_instances(list& o) { o.push_back(new pg_interval_t); o.push_back(new pg_interval_t); o.back()->up.push_back(1); o.back()->acting.push_back(2); o.back()->acting.push_back(3); o.back()->first = 4; o.back()->last = 5; o.back()->maybe_went_rw = true; } WRITE_CLASS_ENCODER(PastIntervals::pg_interval_t) /** * pi_compact_rep * * PastIntervals only needs to be able to answer two questions: * 1) Where should the primary look for unfound objects? * 2) List a set of subsets of the OSDs such that contacting at least * one from each subset guarantees we speak to at least one witness * of any completed write. * * Crucially, 2) does not require keeping *all* past intervals. Certainly, * we don't need to keep any where maybe_went_rw would be false. We also * needn't keep two intervals where the actingset in one is a subset * of the other (only need to keep the smaller of the two sets). In order * to accurately trim the set of intervals as last_epoch_started changes * without rebuilding the set from scratch, we'll retain the larger set * if it in an older interval. */ struct compact_interval_t { epoch_t first; epoch_t last; set acting; bool supersedes(const compact_interval_t &other) { for (auto &&i: acting) { if (!other.acting.count(i)) return false; } return true; } void dump(Formatter *f) const { f->open_object_section("compact_interval_t"); f->dump_stream("first") << first; f->dump_stream("last") << last; f->dump_stream("acting") << acting; f->close_section(); } void encode(ceph::buffer::list &bl) const { ENCODE_START(1, 1, bl); encode(first, bl); encode(last, bl); encode(acting, bl); ENCODE_FINISH(bl); } void decode(ceph::buffer::list::const_iterator &bl) { DECODE_START(1, bl); decode(first, bl); decode(last, bl); decode(acting, bl); DECODE_FINISH(bl); } static void generate_test_instances(list & o) { /* Not going to be used, we'll generate pi_compact_rep directly */ } }; ostream &operator<<(ostream &o, const compact_interval_t &rhs) { return o << "([" << rhs.first << "," << rhs.last << "] acting " << rhs.acting << ")"; } WRITE_CLASS_ENCODER(compact_interval_t) class pi_compact_rep : public PastIntervals::interval_rep { epoch_t first = 0; epoch_t last = 0; // inclusive set all_participants; list intervals; pi_compact_rep( bool ec_pool, std::list &&intervals) { for (auto &&i: intervals) add_interval(ec_pool, i); } public: pi_compact_rep() = default; pi_compact_rep(const pi_compact_rep &) = default; pi_compact_rep(pi_compact_rep &&) = default; pi_compact_rep &operator=(const pi_compact_rep &) = default; pi_compact_rep &operator=(pi_compact_rep &&) = default; size_t size() const override { return intervals.size(); } bool empty() const override { return first > last || (first == 0 && last == 0); } void clear() override { *this = pi_compact_rep(); } pair get_bounds() const override { return make_pair(first, last + 1); } void adjust_start_backwards(epoch_t last_epoch_clean) override { first = last_epoch_clean; } set get_all_participants( bool ec_pool) const override { return all_participants; } void add_interval( bool ec_pool, const PastIntervals::pg_interval_t &interval) override { if (first == 0) first = interval.first; ceph_assert(interval.last > last); last = interval.last; set acting; for (unsigned i = 0; i < interval.acting.size(); ++i) { if (interval.acting[i] == CRUSH_ITEM_NONE) continue; acting.insert( pg_shard_t( interval.acting[i], ec_pool ? shard_id_t(i) : shard_id_t::NO_SHARD)); } all_participants.insert(acting.begin(), acting.end()); if (!interval.maybe_went_rw) return; intervals.push_back( compact_interval_t{interval.first, interval.last, acting}); auto plast = intervals.end(); --plast; for (auto cur = intervals.begin(); cur != plast; ) { if (plast->supersedes(*cur)) { intervals.erase(cur++); } else { ++cur; } } } unique_ptr clone() const override { return unique_ptr(new pi_compact_rep(*this)); } ostream &print(ostream &out) const override { return out << "([" << first << "," << last << "] all_participants=" << all_participants << " intervals=" << intervals << ")"; } void encode(ceph::buffer::list &bl) const override { ENCODE_START(1, 1, bl); encode(first, bl); encode(last, bl); encode(all_participants, bl); encode(intervals, bl); ENCODE_FINISH(bl); } void decode(ceph::buffer::list::const_iterator &bl) override { DECODE_START(1, bl); decode(first, bl); decode(last, bl); decode(all_participants, bl); decode(intervals, bl); DECODE_FINISH(bl); } void dump(Formatter *f) const override { f->open_object_section("PastIntervals::compact_rep"); f->dump_stream("first") << first; f->dump_stream("last") << last; f->open_array_section("all_participants"); for (auto& i : all_participants) { f->dump_object("pg_shard", i); } f->close_section(); f->open_array_section("intervals"); for (auto &&i: intervals) { i.dump(f); } f->close_section(); f->close_section(); } static void generate_test_instances(list &o) { using ival = PastIntervals::pg_interval_t; using ivallst = std::list; o.push_back( new pi_compact_rep( true, ivallst { ival{{0, 1, 2}, {0, 1, 2}, 10, 20, true, 0, 0} , ival{{ 1, 2}, { 1, 2}, 21, 30, true, 1, 1} , ival{{ 2}, { 2}, 31, 35, false, 2, 2} , ival{{0, 2}, {0, 2}, 36, 50, true, 0, 0} })); o.push_back( new pi_compact_rep( false, ivallst { ival{{0, 1, 2}, {0, 1, 2}, 10, 20, true, 0, 0} , ival{{ 1, 2}, { 1, 2}, 21, 30, true, 1, 1} , ival{{ 2}, { 2}, 31, 35, false, 2, 2} , ival{{0, 2}, {0, 2}, 36, 50, true, 0, 0} })); o.push_back( new pi_compact_rep( true, ivallst { ival{{2, 1, 0}, {2, 1, 0}, 10, 20, true, 1, 1} , ival{{ 0, 2}, { 0, 2}, 21, 30, true, 0, 0} , ival{{ 0, 2}, {2, 0}, 31, 35, true, 2, 2} , ival{{ 0, 2}, { 0, 2}, 36, 50, true, 0, 0} })); } void iterate_mayberw_back_to( epoch_t les, std::function &)> &&f) const override { for (auto i = intervals.rbegin(); i != intervals.rend(); ++i) { if (i->last < les) break; f(i->first, i->acting); } } virtual ~pi_compact_rep() override {} }; WRITE_CLASS_ENCODER(pi_compact_rep) PastIntervals::PastIntervals() { past_intervals.reset(new pi_compact_rep); } PastIntervals::PastIntervals(const PastIntervals &rhs) : past_intervals(rhs.past_intervals ? rhs.past_intervals->clone() : nullptr) {} PastIntervals &PastIntervals::operator=(const PastIntervals &rhs) { PastIntervals other(rhs); swap(other); return *this; } ostream& operator<<(ostream& out, const PastIntervals &i) { if (i.past_intervals) { return i.past_intervals->print(out); } else { return out << "(empty)"; } } ostream& operator<<(ostream& out, const PastIntervals::PriorSet &i) { return out << "PriorSet(" << "ec_pool: " << i.ec_pool << ", probe: " << i.probe << ", down: " << i.down << ", blocked_by: " << i.blocked_by << ", pg_down: " << i.pg_down << ")"; } void PastIntervals::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START(1, bl); __u8 type = 0; decode(type, bl); switch (type) { case 0: break; case 1: ceph_abort_msg("pi_simple_rep support removed post-luminous"); break; case 2: past_intervals.reset(new pi_compact_rep); past_intervals->decode(bl); break; } DECODE_FINISH(bl); } void PastIntervals::generate_test_instances(list &o) { { list compact; pi_compact_rep::generate_test_instances(compact); for (auto &&i: compact) { // takes ownership of contents o.push_back(new PastIntervals(i)); } } return; } bool PastIntervals::is_new_interval( int old_acting_primary, int new_acting_primary, const vector &old_acting, const vector &new_acting, int old_up_primary, int new_up_primary, const vector &old_up, const vector &new_up, int old_size, int new_size, int old_min_size, int new_min_size, unsigned old_pg_num, unsigned new_pg_num, unsigned old_pg_num_pending, unsigned new_pg_num_pending, bool old_sort_bitwise, bool new_sort_bitwise, bool old_recovery_deletes, bool new_recovery_deletes, uint32_t old_crush_count, uint32_t new_crush_count, uint32_t old_crush_target, uint32_t new_crush_target, uint32_t old_crush_barrier, uint32_t new_crush_barrier, int32_t old_crush_member, int32_t new_crush_member, pg_t pgid) { return old_acting_primary != new_acting_primary || new_acting != old_acting || old_up_primary != new_up_primary || new_up != old_up || old_min_size != new_min_size || old_size != new_size || pgid.is_split(old_pg_num, new_pg_num, 0) || // (is or was) pre-merge source pgid.is_merge_source(old_pg_num_pending, new_pg_num_pending, 0) || pgid.is_merge_source(new_pg_num_pending, old_pg_num_pending, 0) || // merge source pgid.is_merge_source(old_pg_num, new_pg_num, 0) || // (is or was) pre-merge target pgid.is_merge_target(old_pg_num_pending, new_pg_num_pending) || pgid.is_merge_target(new_pg_num_pending, old_pg_num_pending) || // merge target pgid.is_merge_target(old_pg_num, new_pg_num) || old_sort_bitwise != new_sort_bitwise || old_recovery_deletes != new_recovery_deletes || old_crush_count != new_crush_count || old_crush_target != new_crush_target || old_crush_barrier != new_crush_barrier || old_crush_member != new_crush_member; } bool PastIntervals::is_new_interval( int old_acting_primary, int new_acting_primary, const vector &old_acting, const vector &new_acting, int old_up_primary, int new_up_primary, const vector &old_up, const vector &new_up, const OSDMap *osdmap, const OSDMap *lastmap, pg_t pgid) { const pg_pool_t *plast = lastmap->get_pg_pool(pgid.pool()); if (!plast) { return false; // after pool is deleted there are no more interval changes } const pg_pool_t *pi = osdmap->get_pg_pool(pgid.pool()); if (!pi) { return true; // pool was deleted this epoch -> (final!) interval change } return is_new_interval(old_acting_primary, new_acting_primary, old_acting, new_acting, old_up_primary, new_up_primary, old_up, new_up, plast->size, pi->size, plast->min_size, pi->min_size, plast->get_pg_num(), pi->get_pg_num(), plast->get_pg_num_pending(), pi->get_pg_num_pending(), lastmap->test_flag(CEPH_OSDMAP_SORTBITWISE), osdmap->test_flag(CEPH_OSDMAP_SORTBITWISE), lastmap->test_flag(CEPH_OSDMAP_RECOVERY_DELETES), osdmap->test_flag(CEPH_OSDMAP_RECOVERY_DELETES), plast->peering_crush_bucket_count, pi->peering_crush_bucket_count, plast->peering_crush_bucket_target, pi->peering_crush_bucket_target, plast->peering_crush_bucket_barrier, pi->peering_crush_bucket_barrier, plast->peering_crush_mandatory_member, pi->peering_crush_mandatory_member, pgid); } bool PastIntervals::check_new_interval( int old_acting_primary, int new_acting_primary, const vector &old_acting, const vector &new_acting, int old_up_primary, int new_up_primary, const vector &old_up, const vector &new_up, epoch_t same_interval_since, epoch_t last_epoch_clean, const OSDMap *osdmap, const OSDMap *lastmap, pg_t pgid, const IsPGRecoverablePredicate &could_have_gone_active, PastIntervals *past_intervals, std::ostream *out) { /* * We have to be careful to gracefully deal with situations like * so. Say we have a power outage or something that takes out both * OSDs, but the monitor doesn't mark them down in the same epoch. * The history may look like * * 1: A B * 2: B * 3: let's say B dies for good, too (say, from the power spike) * 4: A * * which makes it look like B may have applied updates to the PG * that we need in order to proceed. This sucks... * * To minimize the risk of this happening, we CANNOT go active if * _any_ OSDs in the prior set are down until we send an MOSDAlive * to the monitor such that the OSDMap sets osd_up_thru to an epoch. * Then, we have something like * * 1: A B * 2: B up_thru[B]=0 * 3: * 4: A * * -> we can ignore B, bc it couldn't have gone active (up_thru still 0). * * or, * * 1: A B * 2: B up_thru[B]=0 * 3: B up_thru[B]=2 * 4: * 5: A * * -> we must wait for B, bc it was alive through 2, and could have * written to the pg. * * If B is really dead, then an administrator will need to manually * intervene by marking the OSD as "lost." */ // remember past interval // NOTE: a change in the up set primary triggers an interval // change, even though the interval members in the pg_interval_t // do not change. ceph_assert(past_intervals); ceph_assert(past_intervals->past_intervals); if (is_new_interval( old_acting_primary, new_acting_primary, old_acting, new_acting, old_up_primary, new_up_primary, old_up, new_up, osdmap, lastmap, pgid)) { pg_interval_t i; i.first = same_interval_since; i.last = osdmap->get_epoch() - 1; ceph_assert(i.first <= i.last); i.acting = old_acting; i.up = old_up; i.primary = old_acting_primary; i.up_primary = old_up_primary; unsigned num_acting = 0; for (auto p = i.acting.cbegin(); p != i.acting.cend(); ++p) if (*p != CRUSH_ITEM_NONE) ++num_acting; ceph_assert(lastmap->get_pools().count(pgid.pool())); const pg_pool_t& old_pg_pool = lastmap->get_pools().find(pgid.pool())->second; set old_acting_shards; old_pg_pool.convert_to_pg_shards(old_acting, &old_acting_shards); if (num_acting && i.primary != -1 && num_acting >= old_pg_pool.min_size && (!old_pg_pool.is_stretch_pool() || old_pg_pool.stretch_set_can_peer(old_acting, *lastmap, out)) && could_have_gone_active(old_acting_shards)) { if (out) *out << __func__ << " " << i << " up_thru " << lastmap->get_up_thru(i.primary) << " up_from " << lastmap->get_up_from(i.primary) << " last_epoch_clean " << last_epoch_clean; if (lastmap->get_up_thru(i.primary) >= i.first && lastmap->get_up_from(i.primary) <= i.first) { i.maybe_went_rw = true; if (out) *out << " " << i << " : primary up " << lastmap->get_up_from(i.primary) << "-" << lastmap->get_up_thru(i.primary) << " includes interval" << std::endl; } else if (last_epoch_clean >= i.first && last_epoch_clean <= i.last) { // If the last_epoch_clean is included in this interval, then // the pg must have been rw (for recovery to have completed). // This is important because we won't know the _real_ // first_epoch because we stop at last_epoch_clean, and we // don't want the oldest interval to randomly have // maybe_went_rw false depending on the relative up_thru vs // last_epoch_clean timing. i.maybe_went_rw = true; if (out) *out << " " << i << " : includes last_epoch_clean " << last_epoch_clean << " and presumed to have been rw" << std::endl; } else { i.maybe_went_rw = false; if (out) *out << " " << i << " : primary up " << lastmap->get_up_from(i.primary) << "-" << lastmap->get_up_thru(i.primary) << " does not include interval" << std::endl; } } else { i.maybe_went_rw = false; if (out) *out << __func__ << " " << i << " : acting set is too small" << std::endl; } past_intervals->past_intervals->add_interval(old_pg_pool.is_erasure(), i); return true; } else { return false; } } // true if the given map affects the prior set bool PastIntervals::PriorSet::affected_by_map( const OSDMap &osdmap, const DoutPrefixProvider *dpp) const { for (auto p = probe.begin(); p != probe.end(); ++p) { int o = p->osd; // did someone in the prior set go down? if (osdmap.is_down(o) && down.count(o) == 0) { ldpp_dout(dpp, 10) << "affected_by_map osd." << o << " now down" << dendl; return true; } // did a down osd in cur get (re)marked as lost? auto r = blocked_by.find(o); if (r != blocked_by.end()) { if (!osdmap.exists(o)) { ldpp_dout(dpp, 10) << "affected_by_map osd." << o << " no longer exists" << dendl; return true; } if (osdmap.get_info(o).lost_at != r->second) { ldpp_dout(dpp, 10) << "affected_by_map osd." << o << " (re)marked as lost" << dendl; return true; } } } // did someone in the prior down set go up? for (auto p = down.cbegin(); p != down.cend(); ++p) { int o = *p; if (osdmap.is_up(o)) { ldpp_dout(dpp, 10) << "affected_by_map osd." << o << " now up" << dendl; return true; } // did someone in the prior set get lost or destroyed? if (!osdmap.exists(o)) { ldpp_dout(dpp, 10) << "affected_by_map osd." << o << " no longer exists" << dendl; return true; } // did a down osd in down get (re)marked as lost? auto r = blocked_by.find(o); if (r != blocked_by.end()) { if (osdmap.get_info(o).lost_at != r->second) { ldpp_dout(dpp, 10) << "affected_by_map osd." << o << " (re)marked as lost" << dendl; return true; } } } return false; } ostream& operator<<(ostream& out, const PastIntervals::pg_interval_t& i) { out << "interval(" << i.first << "-" << i.last << " up " << i.up << "(" << i.up_primary << ")" << " acting " << i.acting << "(" << i.primary << ")"; if (i.maybe_went_rw) out << " maybe_went_rw"; out << ")"; return out; } // -- pg_query_t -- void pg_query_t::encode(ceph::buffer::list &bl, uint64_t features) const { ENCODE_START(3, 3, bl); encode(type, bl); encode(since, bl); history.encode(bl); encode(epoch_sent, bl); encode(to, bl); encode(from, bl); ENCODE_FINISH(bl); } void pg_query_t::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START(3, bl); decode(type, bl); decode(since, bl); history.decode(bl); decode(epoch_sent, bl); decode(to, bl); decode(from, bl); DECODE_FINISH(bl); } void pg_query_t::dump(Formatter *f) const { f->dump_int("from", from); f->dump_int("to", to); f->dump_string("type", get_type_name()); f->dump_stream("since") << since; f->dump_stream("epoch_sent") << epoch_sent; f->open_object_section("history"); history.dump(f); f->close_section(); } void pg_query_t::generate_test_instances(list& o) { o.push_back(new pg_query_t()); list h; pg_history_t::generate_test_instances(h); o.push_back(new pg_query_t(pg_query_t::INFO, shard_id_t(1), shard_id_t(2), *h.back(), 4)); o.push_back(new pg_query_t(pg_query_t::MISSING, shard_id_t(2), shard_id_t(3), *h.back(), 4)); o.push_back(new pg_query_t(pg_query_t::LOG, shard_id_t(0), shard_id_t(0), eversion_t(4, 5), *h.back(), 4)); o.push_back(new pg_query_t(pg_query_t::FULLLOG, shard_id_t::NO_SHARD, shard_id_t::NO_SHARD, *h.back(), 5)); } // -- pg_lease_t -- void pg_lease_t::encode(bufferlist& bl) const { ENCODE_START(1, 1, bl); encode(readable_until, bl); encode(readable_until_ub, bl); encode(interval, bl); ENCODE_FINISH(bl); } void pg_lease_t::decode(bufferlist::const_iterator& p) { DECODE_START(1, p); decode(readable_until, p); decode(readable_until_ub, p); decode(interval, p); DECODE_FINISH(p); } void pg_lease_t::dump(Formatter *f) const { f->dump_stream("readable_until") << readable_until; f->dump_stream("readable_until_ub") << readable_until_ub; f->dump_stream("interval") << interval; } void pg_lease_t::generate_test_instances(std::list& o) { o.push_back(new pg_lease_t()); o.push_back(new pg_lease_t()); o.back()->readable_until = make_timespan(1.5); o.back()->readable_until_ub = make_timespan(3.4); o.back()->interval = make_timespan(1.0); } // -- pg_lease_ack_t -- void pg_lease_ack_t::encode(bufferlist& bl) const { ENCODE_START(1, 1, bl); encode(readable_until_ub, bl); ENCODE_FINISH(bl); } void pg_lease_ack_t::decode(bufferlist::const_iterator& p) { DECODE_START(1, p); decode(readable_until_ub, p); DECODE_FINISH(p); } void pg_lease_ack_t::dump(Formatter *f) const { f->dump_stream("readable_until_ub") << readable_until_ub; } void pg_lease_ack_t::generate_test_instances(std::list& o) { o.push_back(new pg_lease_ack_t()); o.push_back(new pg_lease_ack_t()); o.back()->readable_until_ub = make_timespan(3.4); } // -- ObjectModDesc -- void ObjectModDesc::visit(Visitor *visitor) const { auto bp = bl.cbegin(); try { while (!bp.end()) { DECODE_START(max_required_version, bp); uint8_t code; decode(code, bp); switch (code) { case APPEND: { uint64_t size; decode(size, bp); visitor->append(size); break; } case SETATTRS: { map > attrs; decode(attrs, bp); visitor->setattrs(attrs); break; } case DELETE: { version_t old_version; decode(old_version, bp); visitor->rmobject(old_version); break; } case CREATE: { visitor->create(); break; } case UPDATE_SNAPS: { set snaps; decode(snaps, bp); visitor->update_snaps(snaps); break; } case TRY_DELETE: { version_t old_version; decode(old_version, bp); visitor->try_rmobject(old_version); break; } case ROLLBACK_EXTENTS: { vector > extents; version_t gen; decode(gen, bp); decode(extents, bp); visitor->rollback_extents(gen,extents); break; } default: ceph_abort_msg("Invalid rollback code"); } DECODE_FINISH(bp); } } catch (...) { ceph_abort_msg("Invalid encoding"); } } struct DumpVisitor : public ObjectModDesc::Visitor { Formatter *f; explicit DumpVisitor(Formatter *f) : f(f) {} void append(uint64_t old_size) override { f->open_object_section("op"); f->dump_string("code", "APPEND"); f->dump_unsigned("old_size", old_size); f->close_section(); } void setattrs(map > &attrs) override { f->open_object_section("op"); f->dump_string("code", "SETATTRS"); f->open_array_section("attrs"); for (auto i = attrs.begin(); i != attrs.end(); ++i) { f->dump_string("attr_name", i->first); } f->close_section(); f->close_section(); } void rmobject(version_t old_version) override { f->open_object_section("op"); f->dump_string("code", "RMOBJECT"); f->dump_unsigned("old_version", old_version); f->close_section(); } void try_rmobject(version_t old_version) override { f->open_object_section("op"); f->dump_string("code", "TRY_RMOBJECT"); f->dump_unsigned("old_version", old_version); f->close_section(); } void create() override { f->open_object_section("op"); f->dump_string("code", "CREATE"); f->close_section(); } void update_snaps(const set &snaps) override { f->open_object_section("op"); f->dump_string("code", "UPDATE_SNAPS"); f->dump_stream("snaps") << snaps; f->close_section(); } void rollback_extents( version_t gen, const vector > &extents) override { f->open_object_section("op"); f->dump_string("code", "ROLLBACK_EXTENTS"); f->dump_unsigned("gen", gen); f->dump_stream("snaps") << extents; f->close_section(); } }; void ObjectModDesc::dump(Formatter *f) const { f->open_object_section("object_mod_desc"); f->dump_bool("can_local_rollback", can_local_rollback); f->dump_bool("rollback_info_completed", rollback_info_completed); { f->open_array_section("ops"); DumpVisitor vis(f); visit(&vis); f->close_section(); } f->close_section(); } void ObjectModDesc::generate_test_instances(list& o) { map > attrs; attrs[OI_ATTR]; attrs[SS_ATTR]; attrs["asdf"]; o.push_back(new ObjectModDesc()); o.back()->append(100); o.back()->setattrs(attrs); o.push_back(new ObjectModDesc()); o.back()->rmobject(1001); o.push_back(new ObjectModDesc()); o.back()->create(); o.back()->setattrs(attrs); o.push_back(new ObjectModDesc()); o.back()->create(); o.back()->setattrs(attrs); o.back()->mark_unrollbackable(); o.back()->append(1000); } void ObjectModDesc::encode(ceph::buffer::list &_bl) const { ENCODE_START(max_required_version, max_required_version, _bl); encode(can_local_rollback, _bl); encode(rollback_info_completed, _bl); encode(bl, _bl); ENCODE_FINISH(_bl); } void ObjectModDesc::decode(ceph::buffer::list::const_iterator &_bl) { DECODE_START(2, _bl); max_required_version = struct_v; decode(can_local_rollback, _bl); decode(rollback_info_completed, _bl); decode(bl, _bl); // ensure bl does not pin a larger ceph::buffer in memory bl.rebuild(); bl.reassign_to_mempool(mempool::mempool_osd_pglog); DECODE_FINISH(_bl); } std::atomic ObjectCleanRegions::max_num_intervals = {10}; void ObjectCleanRegions::set_max_num_intervals(uint32_t num) { max_num_intervals = num; } void ObjectCleanRegions::trim() { while(clean_offsets.num_intervals() > max_num_intervals) { typename interval_set::iterator shortest_interval = clean_offsets.begin(); if (shortest_interval == clean_offsets.end()) break; for (typename interval_set::iterator it = clean_offsets.begin(); it != clean_offsets.end(); ++it) { if (it.get_len() < shortest_interval.get_len()) shortest_interval = it; } clean_offsets.erase(shortest_interval); } } void ObjectCleanRegions::merge(const ObjectCleanRegions &other) { clean_offsets.intersection_of(other.clean_offsets); clean_omap = clean_omap && other.clean_omap; trim(); } void ObjectCleanRegions::mark_data_region_dirty(uint64_t offset, uint64_t len) { interval_set clean_region; clean_region.insert(0, (uint64_t)-1); clean_region.erase(offset, len); clean_offsets.intersection_of(clean_region); trim(); } bool ObjectCleanRegions::is_clean_region(uint64_t offset, uint64_t len) const { return clean_offsets.contains(offset, len); } void ObjectCleanRegions::mark_omap_dirty() { clean_omap = false; } void ObjectCleanRegions::mark_object_new() { new_object = true; } void ObjectCleanRegions::mark_fully_dirty() { mark_data_region_dirty(0, (uint64_t)-1); mark_omap_dirty(); mark_object_new(); } interval_set ObjectCleanRegions::get_dirty_regions() const { interval_set dirty_region; dirty_region.insert(0, (uint64_t)-1); dirty_region.subtract(clean_offsets); return dirty_region; } bool ObjectCleanRegions::omap_is_dirty() const { return !clean_omap; } bool ObjectCleanRegions::object_is_exist() const { return !new_object; } void ObjectCleanRegions::encode(bufferlist &bl) const { ENCODE_START(1, 1, bl); using ceph::encode; encode(clean_offsets, bl); encode(clean_omap, bl); encode(new_object, bl); ENCODE_FINISH(bl); } void ObjectCleanRegions::decode(bufferlist::const_iterator &bl) { DECODE_START(1, bl); using ceph::decode; decode(clean_offsets, bl); decode(clean_omap, bl); decode(new_object, bl); DECODE_FINISH(bl); } void ObjectCleanRegions::dump(Formatter *f) const { f->open_object_section("object_clean_regions"); f->dump_stream("clean_offsets") << clean_offsets; f->dump_bool("clean_omap", clean_omap); f->dump_bool("new_object", new_object); f->close_section(); } void ObjectCleanRegions::generate_test_instances(list& o) { o.push_back(new ObjectCleanRegions()); o.push_back(new ObjectCleanRegions()); o.back()->mark_data_region_dirty(4096, 40960); o.back()->mark_omap_dirty(); o.back()->mark_object_new(); } ostream& operator<<(ostream& out, const ObjectCleanRegions& ocr) { return out << "clean_offsets: " << ocr.clean_offsets << ", clean_omap: " << ocr.clean_omap << ", new_object: " << ocr.new_object; } // -- pg_log_entry_t -- string pg_log_entry_t::get_key_name() const { return version.get_key_name(); } void pg_log_entry_t::encode_with_checksum(ceph::buffer::list& bl) const { using ceph::encode; ceph::buffer::list ebl(sizeof(*this)*2); this->encode(ebl); __u32 crc = ebl.crc32c(0); encode(ebl, bl); encode(crc, bl); } void pg_log_entry_t::decode_with_checksum(ceph::buffer::list::const_iterator& p) { using ceph::decode; ceph::buffer::list bl; decode(bl, p); __u32 crc; decode(crc, p); if (crc != bl.crc32c(0)) throw ceph::buffer::malformed_input("bad checksum on pg_log_entry_t"); auto q = bl.cbegin(); this->decode(q); } void pg_log_entry_t::encode(ceph::buffer::list &bl) const { ENCODE_START(14, 4, bl); encode(op, bl); encode(soid, bl); encode(version, bl); /** * Added with reverting_to: * Previous code used prior_version to encode * what we now call reverting_to. This will * allow older code to decode reverting_to * into prior_version as expected. */ if (op == LOST_REVERT) encode(reverting_to, bl); else encode(prior_version, bl); encode(reqid, bl); encode(mtime, bl); if (op == LOST_REVERT) encode(prior_version, bl); encode(snaps, bl); encode(user_version, bl); encode(mod_desc, bl); encode(extra_reqids, bl); if (op == ERROR) encode(return_code, bl); if (!extra_reqids.empty()) encode(extra_reqid_return_codes, bl); encode(clean_regions, bl); if (op != ERROR) encode(return_code, bl); encode(op_returns, bl); ENCODE_FINISH(bl); } void pg_log_entry_t::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START_LEGACY_COMPAT_LEN(14, 4, 4, bl); decode(op, bl); if (struct_v < 2) { sobject_t old_soid; decode(old_soid, bl); soid.oid = old_soid.oid; soid.snap = old_soid.snap; invalid_hash = true; } else { decode(soid, bl); } if (struct_v < 3) invalid_hash = true; decode(version, bl); if (struct_v >= 6 && op == LOST_REVERT) decode(reverting_to, bl); else decode(prior_version, bl); decode(reqid, bl); decode(mtime, bl); if (struct_v < 5) invalid_pool = true; if (op == LOST_REVERT) { if (struct_v >= 6) { decode(prior_version, bl); } else { reverting_to = prior_version; } } if (struct_v >= 7 || // for v >= 7, this is for all ops. op == CLONE) { // for v < 7, it's only present for CLONE. decode(snaps, bl); // ensure snaps does not pin a larger ceph::buffer in memory snaps.rebuild(); snaps.reassign_to_mempool(mempool::mempool_osd_pglog); } if (struct_v >= 8) decode(user_version, bl); else user_version = version.version; if (struct_v >= 9) decode(mod_desc, bl); else mod_desc.mark_unrollbackable(); if (struct_v >= 10) decode(extra_reqids, bl); if (struct_v >= 11 && op == ERROR) decode(return_code, bl); if (struct_v >= 12 && !extra_reqids.empty()) decode(extra_reqid_return_codes, bl); if (struct_v >= 13) decode(clean_regions, bl); else clean_regions.mark_fully_dirty(); if (struct_v >= 14) { if (op != ERROR) { decode(return_code, bl); } decode(op_returns, bl); } DECODE_FINISH(bl); } void pg_log_entry_t::dump(Formatter *f) const { f->dump_string("op", get_op_name()); f->dump_stream("object") << soid; f->dump_stream("version") << version; f->dump_stream("prior_version") << prior_version; f->dump_stream("reqid") << reqid; f->open_array_section("extra_reqids"); uint32_t idx = 0; for (auto p = extra_reqids.begin(); p != extra_reqids.end(); ++idx, ++p) { f->open_object_section("extra_reqid"); f->dump_stream("reqid") << p->first; f->dump_stream("user_version") << p->second; auto it = extra_reqid_return_codes.find(idx); if (it != extra_reqid_return_codes.end()) { f->dump_int("return_code", it->second); } f->close_section(); } f->close_section(); f->dump_stream("mtime") << mtime; f->dump_int("return_code", return_code); if (!op_returns.empty()) { f->open_array_section("op_returns"); for (auto& i : op_returns) { f->dump_object("op", i); } f->close_section(); } if (snaps.length() > 0) { vector v; ceph::buffer::list c = snaps; auto p = c.cbegin(); try { using ceph::decode; decode(v, p); } catch (...) { v.clear(); } f->open_object_section("snaps"); for (auto p = v.begin(); p != v.end(); ++p) f->dump_unsigned("snap", *p); f->close_section(); } { f->open_object_section("mod_desc"); mod_desc.dump(f); f->close_section(); } { f->open_object_section("clean_regions"); clean_regions.dump(f); f->close_section(); } } void pg_log_entry_t::generate_test_instances(list& o) { o.push_back(new pg_log_entry_t()); hobject_t oid(object_t("objname"), "key", 123, 456, 0, ""); o.push_back(new pg_log_entry_t(MODIFY, oid, eversion_t(1,2), eversion_t(3,4), 1, osd_reqid_t(entity_name_t::CLIENT(777), 8, 999), utime_t(8,9), 0)); o.push_back(new pg_log_entry_t(ERROR, oid, eversion_t(1,2), eversion_t(3,4), 1, osd_reqid_t(entity_name_t::CLIENT(777), 8, 999), utime_t(8,9), -ENOENT)); } ostream& operator<<(ostream& out, const pg_log_entry_t& e) { out << e.version << " (" << e.prior_version << ") " << std::left << std::setw(8) << e.get_op_name() << ' ' << e.soid << " by " << e.reqid << " " << e.mtime << " " << e.return_code; if (!e.op_returns.empty()) { out << " " << e.op_returns; } if (e.snaps.length()) { vector snaps; ceph::buffer::list c = e.snaps; auto p = c.cbegin(); try { decode(snaps, p); } catch (...) { snaps.clear(); } out << " snaps " << snaps; } out << " ObjectCleanRegions " << e.clean_regions; return out; } // -- pg_log_dup_t -- std::string pg_log_dup_t::get_key_name() const { static const char prefix[] = "dup_"; std::string key(36, ' '); memcpy(&key[0], prefix, 4); version.get_key_name(&key[4]); key.resize(35); // remove the null terminator return key; } void pg_log_dup_t::encode(ceph::buffer::list &bl) const { ENCODE_START(2, 1, bl); encode(reqid, bl); encode(version, bl); encode(user_version, bl); encode(return_code, bl); encode(op_returns, bl); ENCODE_FINISH(bl); } void pg_log_dup_t::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START(2, bl); decode(reqid, bl); decode(version, bl); decode(user_version, bl); decode(return_code, bl); if (struct_v >= 2) { decode(op_returns, bl); } DECODE_FINISH(bl); } void pg_log_dup_t::dump(Formatter *f) const { f->dump_stream("reqid") << reqid; f->dump_stream("version") << version; f->dump_stream("user_version") << user_version; f->dump_stream("return_code") << return_code; if (!op_returns.empty()) { f->open_array_section("op_returns"); for (auto& i : op_returns) { f->dump_object("op", i); } f->close_section(); } } void pg_log_dup_t::generate_test_instances(list& o) { o.push_back(new pg_log_dup_t()); o.push_back(new pg_log_dup_t(eversion_t(1,2), 1, osd_reqid_t(entity_name_t::CLIENT(777), 8, 999), 0)); o.push_back(new pg_log_dup_t(eversion_t(1,2), 2, osd_reqid_t(entity_name_t::CLIENT(777), 8, 999), -ENOENT)); } std::ostream& operator<<(std::ostream& out, const pg_log_dup_t& e) { out << "log_dup(reqid=" << e.reqid << " v=" << e.version << " uv=" << e.user_version << " rc=" << e.return_code; if (!e.op_returns.empty()) { out << " " << e.op_returns; } return out << ")"; } // -- pg_log_t -- // out: pg_log_t that only has entries that apply to import_pgid using curmap // reject: Entries rejected from "in" are in the reject.log. Other fields not set. void pg_log_t::filter_log(spg_t import_pgid, const OSDMap &curmap, const string &hit_set_namespace, const pg_log_t &in, pg_log_t &out, pg_log_t &reject) { out = in; out.log.clear(); reject.log.clear(); for (auto i = in.log.cbegin(); i != in.log.cend(); ++i) { // Reject pg log entries for temporary objects if (i->soid.is_temp()) { reject.log.push_back(*i); continue; } if (i->soid.nspace != hit_set_namespace) { object_t oid = i->soid.oid; object_locator_t loc(i->soid); pg_t raw_pgid = curmap.object_locator_to_pg(oid, loc); pg_t pgid = curmap.raw_pg_to_pg(raw_pgid); if (import_pgid.pgid == pgid) { out.log.push_back(*i); } else { reject.log.push_back(*i); } } else { out.log.push_back(*i); } } } void pg_log_t::encode(ceph::buffer::list& bl) const { ENCODE_START(7, 3, bl); encode(head, bl); encode(tail, bl); encode(log, bl); encode(can_rollback_to, bl); encode(rollback_info_trimmed_to, bl); encode(dups, bl); ENCODE_FINISH(bl); } void pg_log_t::decode(ceph::buffer::list::const_iterator &bl, int64_t pool) { DECODE_START_LEGACY_COMPAT_LEN(7, 3, 3, bl); decode(head, bl); decode(tail, bl); if (struct_v < 2) { bool backlog; decode(backlog, bl); } decode(log, bl); if (struct_v >= 5) decode(can_rollback_to, bl); if (struct_v >= 6) decode(rollback_info_trimmed_to, bl); else rollback_info_trimmed_to = tail; if (struct_v >= 7) decode(dups, bl); DECODE_FINISH(bl); // handle hobject_t format change if (struct_v < 4) { for (auto i = log.begin(); i != log.end(); ++i) { if (!i->soid.is_max() && i->soid.pool == -1) i->soid.pool = pool; } } } void pg_log_t::dump(Formatter *f) const { f->dump_stream("head") << head; f->dump_stream("tail") << tail; f->open_array_section("log"); for (auto p = log.cbegin(); p != log.cend(); ++p) { f->open_object_section("entry"); p->dump(f); f->close_section(); } f->close_section(); f->open_array_section("dups"); for (const auto& entry : dups) { f->open_object_section("entry"); entry.dump(f); f->close_section(); } f->close_section(); } void pg_log_t::generate_test_instances(list& o) { o.push_back(new pg_log_t); // this is nonsensical: o.push_back(new pg_log_t); o.back()->head = eversion_t(1,2); o.back()->tail = eversion_t(3,4); list e; pg_log_entry_t::generate_test_instances(e); for (auto p = e.begin(); p != e.end(); ++p) o.back()->log.push_back(**p); } static void _handle_dups(CephContext* cct, pg_log_t &target, const pg_log_t &other, unsigned maxdups) { auto earliest_dup_version = target.head.version < maxdups ? 0u : target.head.version - maxdups + 1; lgeneric_subdout(cct, osd, 20) << __func__ << " earliest_dup_version " << earliest_dup_version << dendl; for (auto d = other.dups.cbegin(); d != other.dups.cend(); ++d) { if (d->version.version >= earliest_dup_version) { lgeneric_subdout(cct, osd, 20) << "copy_up_to/copy_after copy dup version " << d->version << dendl; target.dups.push_back(pg_log_dup_t(*d)); } } for (auto i = other.log.cbegin(); i != other.log.cend(); ++i) { ceph_assert(i->version > other.tail); if (i->version > target.tail) break; if (i->version.version >= earliest_dup_version) { lgeneric_subdout(cct, osd, 20) << "copy_up_to/copy_after copy dup from log version " << i->version << dendl; target.dups.push_back(pg_log_dup_t(*i)); } } } void pg_log_t::copy_after(CephContext* cct, const pg_log_t &other, eversion_t v) { can_rollback_to = other.can_rollback_to; head = other.head; tail = other.tail; lgeneric_subdout(cct, osd, 20) << __func__ << " v " << v << " dups.size()=" << dups.size() << " other.dups.size()=" << other.dups.size() << dendl; for (auto i = other.log.crbegin(); i != other.log.crend(); ++i) { ceph_assert(i->version > other.tail); if (i->version <= v) { // make tail accurate. tail = i->version; break; } lgeneric_subdout(cct, osd, 20) << __func__ << " copy log version " << i->version << dendl; log.push_front(*i); } _handle_dups(cct, *this, other, cct->_conf->osd_pg_log_dups_tracked); lgeneric_subdout(cct, osd, 20) << __func__ << " END v " << v << " dups.size()=" << dups.size() << " other.dups.size()=" << other.dups.size() << dendl; } void pg_log_t::copy_up_to(CephContext* cct, const pg_log_t &other, int max) { can_rollback_to = other.can_rollback_to; int n = 0; head = other.head; tail = other.tail; lgeneric_subdout(cct, osd, 20) << __func__ << " max " << max << " dups.size()=" << dups.size() << " other.dups.size()=" << other.dups.size() << dendl; for (auto i = other.log.crbegin(); i != other.log.crend(); ++i) { ceph_assert(i->version > other.tail); if (n++ >= max) { tail = i->version; break; } lgeneric_subdout(cct, osd, 20) << __func__ << " copy log version " << i->version << dendl; log.push_front(*i); } _handle_dups(cct, *this, other, cct->_conf->osd_pg_log_dups_tracked); lgeneric_subdout(cct, osd, 20) << __func__ << " END max " << max << " dups.size()=" << dups.size() << " other.dups.size()=" << other.dups.size() << dendl; } ostream& pg_log_t::print(ostream& out) const { out << *this << std::endl; for (auto p = log.cbegin(); p != log.cend(); ++p) out << *p << std::endl; for (const auto& entry : dups) { out << " dup entry: " << entry << std::endl; } return out; } // -- pg_missing_t -- ostream& operator<<(ostream& out, const pg_missing_item& i) { out << i.need; if (i.have != eversion_t()) out << "(" << i.have << ")"; out << " flags = " << i.flag_str() << " " << i.clean_regions; return out; } // -- object_copy_cursor_t -- void object_copy_cursor_t::encode(ceph::buffer::list& bl) const { ENCODE_START(1, 1, bl); encode(attr_complete, bl); encode(data_offset, bl); encode(data_complete, bl); encode(omap_offset, bl); encode(omap_complete, bl); ENCODE_FINISH(bl); } void object_copy_cursor_t::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START(1, bl); decode(attr_complete, bl); decode(data_offset, bl); decode(data_complete, bl); decode(omap_offset, bl); decode(omap_complete, bl); DECODE_FINISH(bl); } void object_copy_cursor_t::dump(Formatter *f) const { f->dump_unsigned("attr_complete", (int)attr_complete); f->dump_unsigned("data_offset", data_offset); f->dump_unsigned("data_complete", (int)data_complete); f->dump_string("omap_offset", omap_offset); f->dump_unsigned("omap_complete", (int)omap_complete); } void object_copy_cursor_t::generate_test_instances(list& o) { o.push_back(new object_copy_cursor_t); o.push_back(new object_copy_cursor_t); o.back()->attr_complete = true; o.back()->data_offset = 123; o.push_back(new object_copy_cursor_t); o.back()->attr_complete = true; o.back()->data_complete = true; o.back()->omap_offset = "foo"; o.push_back(new object_copy_cursor_t); o.back()->attr_complete = true; o.back()->data_complete = true; o.back()->omap_complete = true; } // -- object_copy_data_t -- void object_copy_data_t::encode(ceph::buffer::list& bl, uint64_t features) const { ENCODE_START(8, 5, bl); encode(size, bl); encode(mtime, bl); encode(attrs, bl); encode(data, bl); encode(omap_data, bl); encode(cursor, bl); encode(omap_header, bl); encode(snaps, bl); encode(snap_seq, bl); encode(flags, bl); encode(data_digest, bl); encode(omap_digest, bl); encode(reqids, bl); encode(truncate_seq, bl); encode(truncate_size, bl); encode(reqid_return_codes, bl); ENCODE_FINISH(bl); } void object_copy_data_t::decode(ceph::buffer::list::const_iterator& bl) { DECODE_START(8, bl); if (struct_v < 5) { // old decode(size, bl); decode(mtime, bl); { string category; decode(category, bl); // no longer used } decode(attrs, bl); decode(data, bl); { map omap; decode(omap, bl); omap_data.clear(); if (!omap.empty()) { using ceph::encode; encode(omap, omap_data); } } decode(cursor, bl); if (struct_v >= 2) decode(omap_header, bl); if (struct_v >= 3) { decode(snaps, bl); decode(snap_seq, bl); } else { snaps.clear(); snap_seq = 0; } if (struct_v >= 4) { decode(flags, bl); decode(data_digest, bl); decode(omap_digest, bl); } } else { // current decode(size, bl); decode(mtime, bl); decode(attrs, bl); decode(data, bl); decode(omap_data, bl); decode(cursor, bl); decode(omap_header, bl); decode(snaps, bl); decode(snap_seq, bl); if (struct_v >= 4) { decode(flags, bl); decode(data_digest, bl); decode(omap_digest, bl); } if (struct_v >= 6) { decode(reqids, bl); } if (struct_v >= 7) { decode(truncate_seq, bl); decode(truncate_size, bl); } if (struct_v >= 8) { decode(reqid_return_codes, bl); } } DECODE_FINISH(bl); } void object_copy_data_t::generate_test_instances(list& o) { o.push_back(new object_copy_data_t()); list cursors; object_copy_cursor_t::generate_test_instances(cursors); auto ci = cursors.begin(); o.back()->cursor = **(ci++); o.push_back(new object_copy_data_t()); o.back()->cursor = **(ci++); o.push_back(new object_copy_data_t()); o.back()->size = 1234; o.back()->mtime.set_from_double(1234); ceph::buffer::ptr bp("there", 5); ceph::buffer::list bl; bl.push_back(bp); o.back()->attrs["hello"] = bl; ceph::buffer::ptr bp2("not", 3); ceph::buffer::list bl2; bl2.push_back(bp2); map omap; omap["why"] = bl2; using ceph::encode; encode(omap, o.back()->omap_data); ceph::buffer::ptr databp("iamsomedatatocontain", 20); o.back()->data.push_back(databp); o.back()->omap_header.append("this is an omap header"); o.back()->snaps.push_back(123); o.back()->reqids.push_back(make_pair(osd_reqid_t(), version_t())); } void object_copy_data_t::dump(Formatter *f) const { f->open_object_section("cursor"); cursor.dump(f); f->close_section(); // cursor f->dump_int("size", size); f->dump_stream("mtime") << mtime; /* we should really print out the attrs here, but ceph::buffer::list const-correctness prevents that */ f->dump_int("attrs_size", attrs.size()); f->dump_int("flags", flags); f->dump_unsigned("data_digest", data_digest); f->dump_unsigned("omap_digest", omap_digest); f->dump_int("omap_data_length", omap_data.length()); f->dump_int("omap_header_length", omap_header.length()); f->dump_int("data_length", data.length()); f->open_array_section("snaps"); for (auto p = snaps.cbegin(); p != snaps.cend(); ++p) f->dump_unsigned("snap", *p); f->close_section(); f->open_array_section("reqids"); uint32_t idx = 0; for (auto p = reqids.begin(); p != reqids.end(); ++idx, ++p) { f->open_object_section("extra_reqid"); f->dump_stream("reqid") << p->first; f->dump_stream("user_version") << p->second; auto it = reqid_return_codes.find(idx); if (it != reqid_return_codes.end()) { f->dump_int("return_code", it->second); } f->close_section(); } f->close_section(); } // -- pg_create_t -- void pg_create_t::encode(ceph::buffer::list &bl) const { ENCODE_START(1, 1, bl); encode(created, bl); encode(parent, bl); encode(split_bits, bl); ENCODE_FINISH(bl); } void pg_create_t::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START(1, bl); decode(created, bl); decode(parent, bl); decode(split_bits, bl); DECODE_FINISH(bl); } void pg_create_t::dump(Formatter *f) const { f->dump_unsigned("created", created); f->dump_stream("parent") << parent; f->dump_int("split_bits", split_bits); } void pg_create_t::generate_test_instances(list& o) { o.push_back(new pg_create_t); o.push_back(new pg_create_t(1, pg_t(3, 4), 2)); } // -- pg_hit_set_info_t -- void pg_hit_set_info_t::encode(ceph::buffer::list& bl) const { ENCODE_START(2, 1, bl); encode(begin, bl); encode(end, bl); encode(version, bl); encode(using_gmt, bl); ENCODE_FINISH(bl); } void pg_hit_set_info_t::decode(ceph::buffer::list::const_iterator& p) { DECODE_START(2, p); decode(begin, p); decode(end, p); decode(version, p); if (struct_v >= 2) { decode(using_gmt, p); } else { using_gmt = false; } DECODE_FINISH(p); } void pg_hit_set_info_t::dump(Formatter *f) const { f->dump_stream("begin") << begin; f->dump_stream("end") << end; f->dump_stream("version") << version; f->dump_stream("using_gmt") << using_gmt; } void pg_hit_set_info_t::generate_test_instances(list& ls) { ls.push_back(new pg_hit_set_info_t); ls.push_back(new pg_hit_set_info_t); ls.back()->begin = utime_t(1, 2); ls.back()->end = utime_t(3, 4); } // -- pg_hit_set_history_t -- void pg_hit_set_history_t::encode(ceph::buffer::list& bl) const { ENCODE_START(1, 1, bl); encode(current_last_update, bl); { utime_t dummy_stamp; encode(dummy_stamp, bl); } { pg_hit_set_info_t dummy_info; encode(dummy_info, bl); } encode(history, bl); ENCODE_FINISH(bl); } void pg_hit_set_history_t::decode(ceph::buffer::list::const_iterator& p) { DECODE_START(1, p); decode(current_last_update, p); { utime_t dummy_stamp; decode(dummy_stamp, p); } { pg_hit_set_info_t dummy_info; decode(dummy_info, p); } decode(history, p); DECODE_FINISH(p); } void pg_hit_set_history_t::dump(Formatter *f) const { f->dump_stream("current_last_update") << current_last_update; f->open_array_section("history"); for (auto p = history.cbegin(); p != history.cend(); ++p) { f->open_object_section("info"); p->dump(f); f->close_section(); } f->close_section(); } void pg_hit_set_history_t::generate_test_instances(list& ls) { ls.push_back(new pg_hit_set_history_t); ls.push_back(new pg_hit_set_history_t); ls.back()->current_last_update = eversion_t(1, 2); ls.back()->history.push_back(pg_hit_set_info_t()); } // -- OSDSuperblock -- void OSDSuperblock::encode(ceph::buffer::list &bl) const { ENCODE_START(9, 5, bl); encode(cluster_fsid, bl); encode(whoami, bl); encode(current_epoch, bl); encode(oldest_map, bl); encode(newest_map, bl); encode(weight, bl); compat_features.encode(bl); encode(clean_thru, bl); encode(mounted, bl); encode(osd_fsid, bl); encode((epoch_t)0, bl); // epoch_t last_epoch_marked_full encode((uint32_t)0, bl); // map pool_last_epoch_marked_full encode(purged_snaps_last, bl); encode(last_purged_snaps_scrub, bl); ENCODE_FINISH(bl); } void OSDSuperblock::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START_LEGACY_COMPAT_LEN(9, 5, 5, bl); if (struct_v < 3) { string magic; decode(magic, bl); } decode(cluster_fsid, bl); decode(whoami, bl); decode(current_epoch, bl); decode(oldest_map, bl); decode(newest_map, bl); decode(weight, bl); if (struct_v >= 2) { compat_features.decode(bl); } else { //upgrade it! compat_features.incompat.insert(CEPH_OSD_FEATURE_INCOMPAT_BASE); } decode(clean_thru, bl); decode(mounted, bl); if (struct_v >= 4) decode(osd_fsid, bl); if (struct_v >= 6) { epoch_t last_map_marked_full; decode(last_map_marked_full, bl); } if (struct_v >= 7) { map pool_last_map_marked_full; decode(pool_last_map_marked_full, bl); } if (struct_v >= 9) { decode(purged_snaps_last, bl); decode(last_purged_snaps_scrub, bl); } else { purged_snaps_last = 0; } DECODE_FINISH(bl); } void OSDSuperblock::dump(Formatter *f) const { f->dump_stream("cluster_fsid") << cluster_fsid; f->dump_stream("osd_fsid") << osd_fsid; f->dump_int("whoami", whoami); f->dump_int("current_epoch", current_epoch); f->dump_int("oldest_map", oldest_map); f->dump_int("newest_map", newest_map); f->dump_float("weight", weight); f->open_object_section("compat"); compat_features.dump(f); f->close_section(); f->dump_int("clean_thru", clean_thru); f->dump_int("last_epoch_mounted", mounted); f->dump_unsigned("purged_snaps_last", purged_snaps_last); f->dump_stream("last_purged_snaps_scrub") << last_purged_snaps_scrub; } void OSDSuperblock::generate_test_instances(list& o) { OSDSuperblock z; o.push_back(new OSDSuperblock(z)); z.cluster_fsid.parse("01010101-0101-0101-0101-010101010101"); z.osd_fsid.parse("02020202-0202-0202-0202-020202020202"); z.whoami = 3; z.current_epoch = 4; z.oldest_map = 5; z.newest_map = 9; z.mounted = 8; z.clean_thru = 7; o.push_back(new OSDSuperblock(z)); o.push_back(new OSDSuperblock(z)); } // -- SnapSet -- void SnapSet::encode(ceph::buffer::list& bl) const { ENCODE_START(3, 2, bl); encode(seq, bl); encode(true, bl); // head_exists encode(snaps, bl); encode(clones, bl); encode(clone_overlap, bl); encode(clone_size, bl); encode(clone_snaps, bl); ENCODE_FINISH(bl); } void SnapSet::decode(ceph::buffer::list::const_iterator& bl) { DECODE_START_LEGACY_COMPAT_LEN(3, 2, 2, bl); decode(seq, bl); bl += 1u; // skip legacy head_exists (always true) decode(snaps, bl); decode(clones, bl); decode(clone_overlap, bl); decode(clone_size, bl); if (struct_v >= 3) { decode(clone_snaps, bl); } else { clone_snaps.clear(); } DECODE_FINISH(bl); } void SnapSet::dump(Formatter *f) const { f->dump_unsigned("seq", seq); f->open_array_section("clones"); for (auto p = clones.cbegin(); p != clones.cend(); ++p) { f->open_object_section("clone"); f->dump_unsigned("snap", *p); auto cs = clone_size.find(*p); if (cs != clone_size.end()) f->dump_unsigned("size", cs->second); else f->dump_string("size", "????"); auto co = clone_overlap.find(*p); if (co != clone_overlap.end()) f->dump_stream("overlap") << co->second; else f->dump_stream("overlap") << "????"; auto q = clone_snaps.find(*p); if (q != clone_snaps.end()) { f->open_array_section("snaps"); for (auto s : q->second) { f->dump_unsigned("snap", s); } f->close_section(); } f->close_section(); } f->close_section(); } void SnapSet::generate_test_instances(list& o) { o.push_back(new SnapSet); o.push_back(new SnapSet); o.back()->seq = 123; o.back()->snaps.push_back(123); o.back()->snaps.push_back(12); o.push_back(new SnapSet); o.back()->seq = 123; o.back()->snaps.push_back(123); o.back()->snaps.push_back(12); o.back()->clones.push_back(12); o.back()->clone_size[12] = 12345; o.back()->clone_overlap[12]; o.back()->clone_snaps[12] = {12, 10, 8}; } ostream& operator<<(ostream& out, const SnapSet& cs) { return out << cs.seq << "=" << cs.snaps << ":" << cs.clone_snaps; } void SnapSet::from_snap_set(const librados::snap_set_t& ss, bool legacy) { // NOTE: our reconstruction of snaps (and the snapc) is not strictly // correct: it will not include snaps that still logically exist // but for which there was no clone that is defined. For all // practical purposes this doesn't matter, since we only use that // information to clone on the OSD, and we have already moved // forward past that part of the object history. seq = ss.seq; set _snaps; set _clones; for (auto p = ss.clones.cbegin(); p != ss.clones.cend(); ++p) { if (p->cloneid != librados::SNAP_HEAD) { _clones.insert(p->cloneid); _snaps.insert(p->snaps.begin(), p->snaps.end()); clone_size[p->cloneid] = p->size; clone_overlap[p->cloneid]; // the entry must exist, even if it's empty. for (auto q = p->overlap.cbegin(); q != p->overlap.cend(); ++q) clone_overlap[p->cloneid].insert(q->first, q->second); if (!legacy) { // p->snaps is ascending; clone_snaps is descending vector& v = clone_snaps[p->cloneid]; for (auto q = p->snaps.rbegin(); q != p->snaps.rend(); ++q) { v.push_back(*q); } } } } // ascending clones.clear(); clones.reserve(_clones.size()); for (auto p = _clones.begin(); p != _clones.end(); ++p) clones.push_back(*p); // descending snaps.clear(); snaps.reserve(_snaps.size()); for (auto p = _snaps.rbegin(); p != _snaps.rend(); ++p) snaps.push_back(*p); } uint64_t SnapSet::get_clone_bytes(snapid_t clone) const { ceph_assert(clone_size.count(clone)); uint64_t size = clone_size.find(clone)->second; ceph_assert(clone_overlap.count(clone)); const interval_set &overlap = clone_overlap.find(clone)->second; ceph_assert(size >= (uint64_t)overlap.size()); return size - overlap.size(); } void SnapSet::filter(const pg_pool_t &pinfo) { vector oldsnaps; oldsnaps.swap(snaps); for (auto i = oldsnaps.cbegin(); i != oldsnaps.cend(); ++i) { if (!pinfo.is_removed_snap(*i)) snaps.push_back(*i); } } SnapSet SnapSet::get_filtered(const pg_pool_t &pinfo) const { SnapSet ss = *this; ss.filter(pinfo); return ss; } // -- watch_info_t -- void watch_info_t::encode(ceph::buffer::list& bl, uint64_t features) const { ENCODE_START(4, 3, bl); encode(cookie, bl); encode(timeout_seconds, bl); encode(addr, bl, features); ENCODE_FINISH(bl); } void watch_info_t::decode(ceph::buffer::list::const_iterator& bl) { DECODE_START_LEGACY_COMPAT_LEN(4, 3, 3, bl); decode(cookie, bl); if (struct_v < 2) { uint64_t ver; decode(ver, bl); } decode(timeout_seconds, bl); if (struct_v >= 4) { decode(addr, bl); } DECODE_FINISH(bl); } void watch_info_t::dump(Formatter *f) const { f->dump_unsigned("cookie", cookie); f->dump_unsigned("timeout_seconds", timeout_seconds); f->open_object_section("addr"); addr.dump(f); f->close_section(); } void watch_info_t::generate_test_instances(list& o) { o.push_back(new watch_info_t); o.push_back(new watch_info_t); o.back()->cookie = 123; o.back()->timeout_seconds = 99; entity_addr_t ea; ea.set_type(entity_addr_t::TYPE_LEGACY); ea.set_nonce(1); ea.set_family(AF_INET); ea.set_in4_quad(0, 127); ea.set_in4_quad(1, 0); ea.set_in4_quad(2, 1); ea.set_in4_quad(3, 2); ea.set_port(2); o.back()->addr = ea; } // -- chunk_info_t -- void chunk_info_t::encode(ceph::buffer::list& bl) const { ENCODE_START(1, 1, bl); encode(offset, bl); encode(length, bl); encode(oid, bl); __u32 _flags = flags; encode(_flags, bl); ENCODE_FINISH(bl); } void chunk_info_t::decode(ceph::buffer::list::const_iterator& bl) { DECODE_START(1, bl); decode(offset, bl); decode(length, bl); decode(oid, bl); __u32 _flags; decode(_flags, bl); flags = (cflag_t)_flags; DECODE_FINISH(bl); } void chunk_info_t::dump(Formatter *f) const { f->dump_unsigned("length", length); f->open_object_section("oid"); oid.dump(f); f->close_section(); f->dump_unsigned("flags", flags); } bool chunk_info_t::operator==(const chunk_info_t& cit) const { if (has_fingerprint()) { if (oid.oid.name == cit.oid.oid.name) { return true; } } else { if (offset == cit.offset && length == cit.length && oid.oid.name == cit.oid.oid.name) { return true; } } return false; } bool operator==(const std::pair & l, const std::pair & r) { return l.first == r.first && l.second == r.second; } ostream& operator<<(ostream& out, const chunk_info_t& ci) { return out << "(len: " << ci.length << " oid: " << ci.oid << " offset: " << ci.offset << " flags: " << ci.get_flag_string(ci.flags) << ")"; } // -- object_manifest_t -- std::ostream& operator<<(std::ostream& out, const object_ref_delta_t & ci) { return out << ci.ref_delta << std::endl; } void object_manifest_t::calc_refs_to_inc_on_set( const object_manifest_t* _g, const object_manifest_t* _l, object_ref_delta_t &refs) const { /* avoid to increment the same reference on adjacent clones */ auto iter = chunk_map.begin(); auto find_chunk = [](decltype(iter) &i, const object_manifest_t* cur) -> bool { if (cur) { auto c = cur->chunk_map.find(i->first); if (c != cur->chunk_map.end() && c->second == i->second) { return true; } } return false; }; /* If at least a same chunk exists on either _g or _l, do not increment * the reference * * head: [0, 2) ccc, [6, 2) bbb, [8, 2) ccc * 20: [0, 2) aaa, <- set_chunk * 30: [0, 2) abc, [6, 2) bbb, [8, 2) ccc * --> incremnt the reference * * head: [0, 2) ccc, [6, 2) bbb, [8, 2) ccc * 20: [0, 2) ccc, <- set_chunk * 30: [0, 2) abc, [6, 2) bbb, [8, 2) ccc * --> do not need to increment * * head: [0, 2) ccc, [6, 2) bbb, [8, 2) ccc * 20: [0, 2) ccc, <- set_chunk * 30: [0, 2) ccc, [6, 2) bbb, [8, 2) ccc * --> decrement the reference of ccc * */ for (; iter != chunk_map.end(); ++iter) { auto found_g = find_chunk(iter, _g); auto found_l = find_chunk(iter, _l); if (!found_g && !found_l) { refs.inc_ref(iter->second.oid); } else if (found_g && found_l) { refs.dec_ref(iter->second.oid); } } } void object_manifest_t::calc_refs_to_drop_on_modify( const object_manifest_t* _l, const ObjectCleanRegions& clean_regions, object_ref_delta_t &refs) const { for (auto &p : chunk_map) { if (!clean_regions.is_clean_region(p.first, p.second.length)) { // has previous snapshot if (_l) { /* * Let's assume that there is a manifest snapshotted object which has three chunks * head: [0, 2) aaa, [6, 2) bbb, [8, 2) ccc * 20: [0, 2) aaa, [6, 2) bbb, [8, 2) ccc * * If we modify [6, 2) at head, we shouldn't decrement bbb's refcount because * 20 has the reference for bbb. Therefore, we only drop the reference if two chunks * (head: [6, 2) and 20: [6, 2)) are different. * */ auto c = _l->chunk_map.find(p.first); if (c != _l->chunk_map.end()) { if (p.second == c->second) { continue; } } refs.dec_ref(p.second.oid); } else { // decrement the reference of the updated chunks if the manifest object has no snapshot refs.dec_ref(p.second.oid); } } } } void object_manifest_t::calc_refs_to_drop_on_removal( const object_manifest_t* _g, const object_manifest_t* _l, object_ref_delta_t &refs) const { /* At a high level, the rule is that consecutive clones with the same reference * at the same offset share a reference. As such, removing *this may result * in removing references in two cases: * 1) *this has a reference which it shares with neither _g nor _l * 2) _g and _l have a reference which they share with each other but not * *this. * * For a particular offset, both 1 and 2 can happen. * * Notably, this means that to evaluate the reference change from removing * the object with *this, we only need to look at the two adjacent clones. */ // Paper over possibly missing _g or _l -- nullopt is semantically the same // as an empty chunk_map static const object_manifest_t empty; const object_manifest_t &g = _g ? *_g : empty; const object_manifest_t &l = _l ? *_l : empty; auto giter = g.chunk_map.begin(); auto iter = chunk_map.begin(); auto liter = l.chunk_map.begin(); // Translate iter, map pair to the current offset, end() -> max auto get_offset = [](decltype(iter) &i, const object_manifest_t &manifest) -> uint64_t { return i == manifest.chunk_map.end() ? std::numeric_limits::max() : i->first; }; /* If current matches the offset at iter, returns the chunk at *iter * and increments iter. Otherwise, returns nullptr. * * current will always be derived from the min of *giter, *iter, and * *liter on each cycle, so the result will be that each loop iteration * will pick up all chunks at the offest being considered, each offset * will be considered once, and all offsets will be considered. */ auto get_chunk = []( uint64_t current, decltype(iter) &i, const object_manifest_t &manifest) -> const chunk_info_t * { if (i == manifest.chunk_map.end() || current != i->first) { return nullptr; } else { return &(i++)->second; } }; while (giter != g.chunk_map.end() || iter != chunk_map.end() || liter != l.chunk_map.end()) { auto current = std::min( std::min(get_offset(giter, g), get_offset(iter, *this)), get_offset(liter, l)); auto gchunk = get_chunk(current, giter, g); auto chunk = get_chunk(current, iter, *this); auto lchunk = get_chunk(current, liter, l); if (gchunk && lchunk && *gchunk == *lchunk && (!chunk || *gchunk != *chunk)) { // case 1 from above: l and g match, chunk does not refs.dec_ref(gchunk->oid); } if (chunk && (!gchunk || chunk->oid != gchunk->oid) && (!lchunk || chunk->oid != lchunk->oid)) { // case 2 from above: *this matches neither refs.dec_ref(chunk->oid); } } } void object_manifest_t::encode(ceph::buffer::list& bl) const { ENCODE_START(1, 1, bl); encode(type, bl); switch (type) { case TYPE_NONE: break; case TYPE_REDIRECT: encode(redirect_target, bl); break; case TYPE_CHUNKED: encode(chunk_map, bl); break; default: ceph_abort(); } ENCODE_FINISH(bl); } void object_manifest_t::decode(ceph::buffer::list::const_iterator& bl) { DECODE_START(1, bl); decode(type, bl); switch (type) { case TYPE_NONE: break; case TYPE_REDIRECT: decode(redirect_target, bl); break; case TYPE_CHUNKED: decode(chunk_map, bl); break; default: ceph_abort(); } DECODE_FINISH(bl); } void object_manifest_t::dump(Formatter *f) const { f->dump_unsigned("type", type); if (type == TYPE_REDIRECT) { f->open_object_section("redirect_target"); redirect_target.dump(f); f->close_section(); } else if (type == TYPE_CHUNKED) { f->open_array_section("chunk_map"); for (auto& p : chunk_map) { f->open_object_section("chunk"); f->dump_unsigned("offset", p.first); p.second.dump(f); f->close_section(); } f->close_section(); } } void object_manifest_t::generate_test_instances(list& o) { o.push_back(new object_manifest_t()); o.back()->type = TYPE_REDIRECT; } ostream& operator<<(ostream& out, const object_manifest_t& om) { out << "manifest(" << om.get_type_name(); if (om.is_redirect()) { out << " " << om.redirect_target; } else if (om.is_chunked()) { out << " " << om.chunk_map; } out << ")"; return out; } // -- object_info_t -- void object_info_t::copy_user_bits(const object_info_t& other) { // these bits are copied from head->clone. size = other.size; mtime = other.mtime; local_mtime = other.local_mtime; last_reqid = other.last_reqid; truncate_seq = other.truncate_seq; truncate_size = other.truncate_size; flags = other.flags; user_version = other.user_version; data_digest = other.data_digest; omap_digest = other.omap_digest; } void object_info_t::encode(ceph::buffer::list& bl, uint64_t features) const { object_locator_t myoloc(soid); map old_watchers; for (auto i = watchers.cbegin(); i != watchers.cend(); ++i) { old_watchers.insert(make_pair(i->first.second, i->second)); } ENCODE_START(17, 8, bl); encode(soid, bl); encode(myoloc, bl); //Retained for compatibility encode((__u32)0, bl); // was category, no longer used encode(version, bl); encode(prior_version, bl); encode(last_reqid, bl); encode(size, bl); encode(mtime, bl); if (soid.snap == CEPH_NOSNAP) encode(osd_reqid_t(), bl); // used to be wrlock_by else encode((uint32_t)0, bl); // was legacy_snaps encode(truncate_seq, bl); encode(truncate_size, bl); encode(is_lost(), bl); encode(old_watchers, bl, features); /* shenanigans to avoid breaking backwards compatibility in the disk format. * When we can, switch this out for simply putting the version_t on disk. */ eversion_t user_eversion(0, user_version); encode(user_eversion, bl); encode(test_flag(FLAG_USES_TMAP), bl); encode(watchers, bl, features); __u32 _flags = flags; encode(_flags, bl); encode(local_mtime, bl); encode(data_digest, bl); encode(omap_digest, bl); encode(expected_object_size, bl); encode(expected_write_size, bl); encode(alloc_hint_flags, bl); if (has_manifest()) { encode(manifest, bl); } ENCODE_FINISH(bl); } void object_info_t::decode(ceph::buffer::list::const_iterator& bl) { object_locator_t myoloc; DECODE_START_LEGACY_COMPAT_LEN(17, 8, 8, bl); map old_watchers; decode(soid, bl); decode(myoloc, bl); { string category; decode(category, bl); // no longer used } decode(version, bl); decode(prior_version, bl); decode(last_reqid, bl); decode(size, bl); decode(mtime, bl); if (soid.snap == CEPH_NOSNAP) { osd_reqid_t wrlock_by; decode(wrlock_by, bl); } else { vector legacy_snaps; decode(legacy_snaps, bl); } decode(truncate_seq, bl); decode(truncate_size, bl); // if this is struct_v >= 13, we will overwrite this // below since this field is just here for backwards // compatibility __u8 lo; decode(lo, bl); flags = (flag_t)lo; decode(old_watchers, bl); eversion_t user_eversion; decode(user_eversion, bl); user_version = user_eversion.version; if (struct_v >= 9) { bool uses_tmap = false; decode(uses_tmap, bl); if (uses_tmap) set_flag(FLAG_USES_TMAP); } else { set_flag(FLAG_USES_TMAP); } if (struct_v < 10) soid.pool = myoloc.pool; if (struct_v >= 11) { decode(watchers, bl); } else { for (auto i = old_watchers.begin(); i != old_watchers.end(); ++i) { watchers.insert( make_pair( make_pair(i->second.cookie, i->first), i->second)); } } if (struct_v >= 13) { __u32 _flags; decode(_flags, bl); flags = (flag_t)_flags; } if (struct_v >= 14) { decode(local_mtime, bl); } else { local_mtime = utime_t(); } if (struct_v >= 15) { decode(data_digest, bl); decode(omap_digest, bl); } else { data_digest = omap_digest = -1; clear_flag(FLAG_DATA_DIGEST); clear_flag(FLAG_OMAP_DIGEST); } if (struct_v >= 16) { decode(expected_object_size, bl); decode(expected_write_size, bl); decode(alloc_hint_flags, bl); } else { expected_object_size = 0; expected_write_size = 0; alloc_hint_flags = 0; } if (struct_v >= 17) { if (has_manifest()) { decode(manifest, bl); } } DECODE_FINISH(bl); } void object_info_t::dump(Formatter *f) const { f->open_object_section("oid"); soid.dump(f); f->close_section(); f->dump_stream("version") << version; f->dump_stream("prior_version") << prior_version; f->dump_stream("last_reqid") << last_reqid; f->dump_unsigned("user_version", user_version); f->dump_unsigned("size", size); f->dump_stream("mtime") << mtime; f->dump_stream("local_mtime") << local_mtime; f->dump_unsigned("lost", (int)is_lost()); vector sv = get_flag_vector(flags); f->open_array_section("flags"); for (auto str: sv) f->dump_string("flags", str); f->close_section(); f->dump_unsigned("truncate_seq", truncate_seq); f->dump_unsigned("truncate_size", truncate_size); f->dump_format("data_digest", "0x%08x", data_digest); f->dump_format("omap_digest", "0x%08x", omap_digest); f->dump_unsigned("expected_object_size", expected_object_size); f->dump_unsigned("expected_write_size", expected_write_size); f->dump_unsigned("alloc_hint_flags", alloc_hint_flags); f->dump_object("manifest", manifest); f->open_object_section("watchers"); for (auto p = watchers.cbegin(); p != watchers.cend(); ++p) { CachedStackStringStream css; *css << p->first.second; f->open_object_section(css->strv()); p->second.dump(f); f->close_section(); } f->close_section(); } void object_info_t::generate_test_instances(list& o) { o.push_back(new object_info_t()); // fixme } ostream& operator<<(ostream& out, const object_info_t& oi) { out << oi.soid << "(" << oi.version << " " << oi.last_reqid; if (oi.flags) out << " " << oi.get_flag_string(); out << " s " << oi.size; out << " uv " << oi.user_version; if (oi.is_data_digest()) out << " dd " << std::hex << oi.data_digest << std::dec; if (oi.is_omap_digest()) out << " od " << std::hex << oi.omap_digest << std::dec; out << " alloc_hint [" << oi.expected_object_size << " " << oi.expected_write_size << " " << oi.alloc_hint_flags << "]"; if (oi.has_manifest()) out << " " << oi.manifest; out << ")"; return out; } // -- ObjectRecovery -- void ObjectRecoveryProgress::encode(ceph::buffer::list &bl) const { ENCODE_START(1, 1, bl); encode(first, bl); encode(data_complete, bl); encode(data_recovered_to, bl); encode(omap_recovered_to, bl); encode(omap_complete, bl); ENCODE_FINISH(bl); } void ObjectRecoveryProgress::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START(1, bl); decode(first, bl); decode(data_complete, bl); decode(data_recovered_to, bl); decode(omap_recovered_to, bl); decode(omap_complete, bl); DECODE_FINISH(bl); } ostream &operator<<(ostream &out, const ObjectRecoveryProgress &prog) { return prog.print(out); } void ObjectRecoveryProgress::generate_test_instances( list& o) { o.push_back(new ObjectRecoveryProgress); o.back()->first = false; o.back()->data_complete = true; o.back()->omap_complete = true; o.back()->data_recovered_to = 100; o.push_back(new ObjectRecoveryProgress); o.back()->first = true; o.back()->data_complete = false; o.back()->omap_complete = false; o.back()->data_recovered_to = 0; } ostream &ObjectRecoveryProgress::print(ostream &out) const { return out << "ObjectRecoveryProgress(" << ( first ? "" : "!" ) << "first, " << "data_recovered_to:" << data_recovered_to << ", data_complete:" << ( data_complete ? "true" : "false" ) << ", omap_recovered_to:" << omap_recovered_to << ", omap_complete:" << ( omap_complete ? "true" : "false" ) << ", error:" << ( error ? "true" : "false" ) << ")"; } void ObjectRecoveryProgress::dump(Formatter *f) const { f->dump_int("first?", first); f->dump_int("data_complete?", data_complete); f->dump_unsigned("data_recovered_to", data_recovered_to); f->dump_int("omap_complete?", omap_complete); f->dump_string("omap_recovered_to", omap_recovered_to); } void ObjectRecoveryInfo::encode(ceph::buffer::list &bl, uint64_t features) const { ENCODE_START(3, 1, bl); encode(soid, bl); encode(version, bl); encode(size, bl); encode(oi, bl, features); encode(ss, bl); encode(copy_subset, bl); encode(clone_subset, bl); encode(object_exist, bl); ENCODE_FINISH(bl); } void ObjectRecoveryInfo::decode(ceph::buffer::list::const_iterator &bl, int64_t pool) { DECODE_START(3, bl); decode(soid, bl); decode(version, bl); decode(size, bl); decode(oi, bl); decode(ss, bl); decode(copy_subset, bl); decode(clone_subset, bl); if (struct_v > 2) decode(object_exist, bl); else object_exist = false; DECODE_FINISH(bl); if (struct_v < 2) { if (!soid.is_max() && soid.pool == -1) soid.pool = pool; map> tmp; tmp.swap(clone_subset); for (auto i = tmp.begin(); i != tmp.end(); ++i) { hobject_t first(i->first); if (!first.is_max() && first.pool == -1) first.pool = pool; clone_subset[first].swap(i->second); } } } void ObjectRecoveryInfo::generate_test_instances( list& o) { o.push_back(new ObjectRecoveryInfo); o.back()->soid = hobject_t(sobject_t("key", CEPH_NOSNAP)); o.back()->version = eversion_t(0,0); o.back()->size = 100; o.back()->object_exist = false; } void ObjectRecoveryInfo::dump(Formatter *f) const { f->dump_stream("object") << soid; f->dump_stream("at_version") << version; f->dump_stream("size") << size; { f->open_object_section("object_info"); oi.dump(f); f->close_section(); } { f->open_object_section("snapset"); ss.dump(f); f->close_section(); } f->dump_stream("copy_subset") << copy_subset; f->dump_stream("clone_subset") << clone_subset; f->dump_stream("object_exist") << object_exist; } ostream& operator<<(ostream& out, const ObjectRecoveryInfo &inf) { return inf.print(out); } ostream &ObjectRecoveryInfo::print(ostream &out) const { return out << "ObjectRecoveryInfo(" << soid << "@" << version << ", size: " << size << ", copy_subset: " << copy_subset << ", clone_subset: " << clone_subset << ", snapset: " << ss << ", object_exist: " << object_exist << ")"; } // -- PushReplyOp -- void PushReplyOp::generate_test_instances(list &o) { o.push_back(new PushReplyOp); o.push_back(new PushReplyOp); o.back()->soid = hobject_t(sobject_t("asdf", 2)); o.push_back(new PushReplyOp); o.back()->soid = hobject_t(sobject_t("asdf", CEPH_NOSNAP)); } void PushReplyOp::encode(ceph::buffer::list &bl) const { ENCODE_START(1, 1, bl); encode(soid, bl); ENCODE_FINISH(bl); } void PushReplyOp::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START(1, bl); decode(soid, bl); DECODE_FINISH(bl); } void PushReplyOp::dump(Formatter *f) const { f->dump_stream("soid") << soid; } ostream &PushReplyOp::print(ostream &out) const { return out << "PushReplyOp(" << soid << ")"; } ostream& operator<<(ostream& out, const PushReplyOp &op) { return op.print(out); } uint64_t PushReplyOp::cost(CephContext *cct) const { return cct->_conf->osd_push_per_object_cost + cct->_conf->osd_recovery_max_chunk; } // -- PullOp -- void PullOp::generate_test_instances(list &o) { o.push_back(new PullOp); o.push_back(new PullOp); o.back()->soid = hobject_t(sobject_t("asdf", 2)); o.back()->recovery_info.version = eversion_t(3, 10); o.push_back(new PullOp); o.back()->soid = hobject_t(sobject_t("asdf", CEPH_NOSNAP)); o.back()->recovery_info.version = eversion_t(0, 0); } void PullOp::encode(ceph::buffer::list &bl, uint64_t features) const { ENCODE_START(1, 1, bl); encode(soid, bl); encode(recovery_info, bl, features); encode(recovery_progress, bl); ENCODE_FINISH(bl); } void PullOp::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START(1, bl); decode(soid, bl); decode(recovery_info, bl); decode(recovery_progress, bl); DECODE_FINISH(bl); } void PullOp::dump(Formatter *f) const { f->dump_stream("soid") << soid; { f->open_object_section("recovery_info"); recovery_info.dump(f); f->close_section(); } { f->open_object_section("recovery_progress"); recovery_progress.dump(f); f->close_section(); } } ostream &PullOp::print(ostream &out) const { return out << "PullOp(" << soid << ", recovery_info: " << recovery_info << ", recovery_progress: " << recovery_progress << ")"; } ostream& operator<<(ostream& out, const PullOp &op) { return op.print(out); } uint64_t PullOp::cost(CephContext *cct) const { return cct->_conf->osd_push_per_object_cost + cct->_conf->osd_recovery_max_chunk; } // -- PushOp -- void PushOp::generate_test_instances(list &o) { o.push_back(new PushOp); o.push_back(new PushOp); o.back()->soid = hobject_t(sobject_t("asdf", 2)); o.back()->version = eversion_t(3, 10); o.push_back(new PushOp); o.back()->soid = hobject_t(sobject_t("asdf", CEPH_NOSNAP)); o.back()->version = eversion_t(0, 0); } void PushOp::encode(ceph::buffer::list &bl, uint64_t features) const { ENCODE_START(1, 1, bl); encode(soid, bl); encode(version, bl); encode(data, bl); encode(data_included, bl); encode(omap_header, bl); encode(omap_entries, bl); encode(attrset, bl); encode(recovery_info, bl, features); encode(after_progress, bl); encode(before_progress, bl); ENCODE_FINISH(bl); } void PushOp::decode(ceph::buffer::list::const_iterator &bl) { DECODE_START(1, bl); decode(soid, bl); decode(version, bl); decode(data, bl); decode(data_included, bl); decode(omap_header, bl); decode(omap_entries, bl); decode(attrset, bl); decode(recovery_info, bl); decode(after_progress, bl); decode(before_progress, bl); DECODE_FINISH(bl); } void PushOp::dump(Formatter *f) const { f->dump_stream("soid") << soid; f->dump_stream("version") << version; f->dump_int("data_len", data.length()); f->dump_stream("data_included") << data_included; f->dump_int("omap_header_len", omap_header.length()); f->dump_int("omap_entries_len", omap_entries.size()); f->dump_int("attrset_len", attrset.size()); { f->open_object_section("recovery_info"); recovery_info.dump(f); f->close_section(); } { f->open_object_section("after_progress"); after_progress.dump(f); f->close_section(); } { f->open_object_section("before_progress"); before_progress.dump(f); f->close_section(); } } ostream &PushOp::print(ostream &out) const { return out << "PushOp(" << soid << ", version: " << version << ", data_included: " << data_included << ", data_size: " << data.length() << ", omap_header_size: " << omap_header.length() << ", omap_entries_size: " << omap_entries.size() << ", attrset_size: " << attrset.size() << ", recovery_info: " << recovery_info << ", after_progress: " << after_progress << ", before_progress: " << before_progress << ")"; } ostream& operator<<(ostream& out, const PushOp &op) { return op.print(out); } uint64_t PushOp::cost(CephContext *cct) const { uint64_t cost = data_included.size(); for (auto i = omap_entries.cbegin(); i != omap_entries.cend(); ++i) { cost += i->second.length(); } cost += cct->_conf->osd_push_per_object_cost; return cost; } // -- ScrubMap -- void ScrubMap::merge_incr(const ScrubMap &l) { ceph_assert(valid_through == l.incr_since); valid_through = l.valid_through; for (auto p = l.objects.cbegin(); p != l.objects.cend(); ++p){ if (p->second.negative) { auto q = objects.find(p->first); if (q != objects.end()) { objects.erase(q); } } else { objects[p->first] = p->second; } } } void ScrubMap::encode(ceph::buffer::list& bl) const { ENCODE_START(3, 2, bl); encode(objects, bl); encode((__u32)0, bl); // used to be attrs; now deprecated ceph::buffer::list old_logbl; // not used encode(old_logbl, bl); encode(valid_through, bl); encode(incr_since, bl); ENCODE_FINISH(bl); } void ScrubMap::decode(ceph::buffer::list::const_iterator& bl, int64_t pool) { DECODE_START_LEGACY_COMPAT_LEN(3, 2, 2, bl); decode(objects, bl); { map attrs; // deprecated decode(attrs, bl); } ceph::buffer::list old_logbl; // not used decode(old_logbl, bl); decode(valid_through, bl); decode(incr_since, bl); DECODE_FINISH(bl); // handle hobject_t upgrade if (struct_v < 3) { map tmp; tmp.swap(objects); for (auto i = tmp.begin(); i != tmp.end(); ++i) { hobject_t first(i->first); if (!first.is_max() && first.pool == -1) first.pool = pool; objects[first] = i->second; } } } void ScrubMap::dump(Formatter *f) const { f->dump_stream("valid_through") << valid_through; f->dump_stream("incremental_since") << incr_since; f->open_array_section("objects"); for (auto p = objects.cbegin(); p != objects.cend(); ++p) { f->open_object_section("object"); f->dump_string("name", p->first.oid.name); f->dump_unsigned("hash", p->first.get_hash()); f->dump_string("key", p->first.get_key()); f->dump_int("snapid", p->first.snap); p->second.dump(f); f->close_section(); } f->close_section(); } void ScrubMap::generate_test_instances(list& o) { o.push_back(new ScrubMap); o.push_back(new ScrubMap); o.back()->valid_through = eversion_t(1, 2); o.back()->incr_since = eversion_t(3, 4); list obj; object::generate_test_instances(obj); o.back()->objects[hobject_t(object_t("foo"), "fookey", 123, 456, 0, "")] = *obj.back(); obj.pop_back(); o.back()->objects[hobject_t(object_t("bar"), string(), 123, 456, 0, "")] = *obj.back(); } // -- ScrubMap::object -- void ScrubMap::object::encode(ceph::buffer::list& bl) const { bool compat_read_error = read_error || ec_hash_mismatch || ec_size_mismatch; ENCODE_START(10, 7, bl); encode(size, bl); encode(negative, bl); encode(attrs, bl); encode(digest, bl); encode(digest_present, bl); encode((uint32_t)0, bl); // obsolete nlinks encode((uint32_t)0, bl); // snapcolls encode(omap_digest, bl); encode(omap_digest_present, bl); encode(compat_read_error, bl); encode(stat_error, bl); encode(read_error, bl); encode(ec_hash_mismatch, bl); encode(ec_size_mismatch, bl); encode(large_omap_object_found, bl); encode(large_omap_object_key_count, bl); encode(large_omap_object_value_size, bl); encode(object_omap_bytes, bl); encode(object_omap_keys, bl); ENCODE_FINISH(bl); } void ScrubMap::object::decode(ceph::buffer::list::const_iterator& bl) { DECODE_START(10, bl); decode(size, bl); bool tmp, compat_read_error = false; decode(tmp, bl); negative = tmp; decode(attrs, bl); decode(digest, bl); decode(tmp, bl); digest_present = tmp; { uint32_t nlinks; decode(nlinks, bl); set snapcolls; decode(snapcolls, bl); } decode(omap_digest, bl); decode(tmp, bl); omap_digest_present = tmp; decode(compat_read_error, bl); decode(tmp, bl); stat_error = tmp; if (struct_v >= 8) { decode(tmp, bl); read_error = tmp; decode(tmp, bl); ec_hash_mismatch = tmp; decode(tmp, bl); ec_size_mismatch = tmp; } // If older encoder found a read_error, set read_error if (compat_read_error && !read_error && !ec_hash_mismatch && !ec_size_mismatch) read_error = true; if (struct_v >= 9) { decode(tmp, bl); large_omap_object_found = tmp; decode(large_omap_object_key_count, bl); decode(large_omap_object_value_size, bl); } if (struct_v >= 10) { decode(object_omap_bytes, bl); decode(object_omap_keys, bl); } DECODE_FINISH(bl); } void ScrubMap::object::dump(Formatter *f) const { f->dump_int("size", size); f->dump_int("negative", negative); f->open_array_section("attrs"); for (auto p = attrs.cbegin(); p != attrs.cend(); ++p) { f->open_object_section("attr"); f->dump_string("name", p->first); f->dump_int("length", p->second.length()); f->close_section(); } f->close_section(); } void ScrubMap::object::generate_test_instances(list& o) { o.push_back(new object); o.push_back(new object); o.back()->negative = true; o.push_back(new object); o.back()->size = 123; o.back()->attrs["foo"] = ceph::buffer::copy("foo", 3); o.back()->attrs["bar"] = ceph::buffer::copy("barval", 6); } // -- OSDOp -- ostream& operator<<(ostream& out, const OSDOp& op) { out << ceph_osd_op_name(op.op.op); if (ceph_osd_op_type_data(op.op.op)) { // data extent switch (op.op.op) { case CEPH_OSD_OP_ASSERT_VER: out << " v" << op.op.assert_ver.ver; break; case CEPH_OSD_OP_TRUNCATE: out << " " << op.op.extent.offset; break; case CEPH_OSD_OP_MASKTRUNC: case CEPH_OSD_OP_TRIMTRUNC: out << " " << op.op.extent.truncate_seq << "@" << (int64_t)op.op.extent.truncate_size; break; case CEPH_OSD_OP_ROLLBACK: out << " " << snapid_t(op.op.snap.snapid); break; case CEPH_OSD_OP_WATCH: out << " " << ceph_osd_watch_op_name(op.op.watch.op) << " cookie " << op.op.watch.cookie; if (op.op.watch.gen) out << " gen " << op.op.watch.gen; break; case CEPH_OSD_OP_NOTIFY: out << " cookie " << op.op.notify.cookie; break; case CEPH_OSD_OP_COPY_GET: out << " max " << op.op.copy_get.max; break; case CEPH_OSD_OP_COPY_FROM: out << " ver " << op.op.copy_from.src_version; break; case CEPH_OSD_OP_SETALLOCHINT: out << " object_size " << op.op.alloc_hint.expected_object_size << " write_size " << op.op.alloc_hint.expected_write_size; break; case CEPH_OSD_OP_READ: case CEPH_OSD_OP_SPARSE_READ: case CEPH_OSD_OP_SYNC_READ: case CEPH_OSD_OP_WRITE: case CEPH_OSD_OP_WRITEFULL: case CEPH_OSD_OP_ZERO: case CEPH_OSD_OP_APPEND: case CEPH_OSD_OP_MAPEXT: case CEPH_OSD_OP_CMPEXT: out << " " << op.op.extent.offset << "~" << op.op.extent.length; if (op.op.extent.truncate_seq) out << " [" << op.op.extent.truncate_seq << "@" << (int64_t)op.op.extent.truncate_size << "]"; if (op.op.flags) out << " [" << ceph_osd_op_flag_string(op.op.flags) << "]"; default: // don't show any arg info break; } } else if (ceph_osd_op_type_attr(op.op.op)) { // xattr name if (op.op.xattr.name_len && op.indata.length()) { out << " "; op.indata.write(0, op.op.xattr.name_len, out); } if (op.op.xattr.value_len) out << " (" << op.op.xattr.value_len << ")"; if (op.op.op == CEPH_OSD_OP_CMPXATTR) out << " op " << (int)op.op.xattr.cmp_op << " mode " << (int)op.op.xattr.cmp_mode; } else if (ceph_osd_op_type_exec(op.op.op)) { // class.method if (op.op.cls.class_len && op.indata.length()) { out << " "; op.indata.write(0, op.op.cls.class_len, out); out << "."; op.indata.write(op.op.cls.class_len, op.op.cls.method_len, out); } } else if (ceph_osd_op_type_pg(op.op.op)) { switch (op.op.op) { case CEPH_OSD_OP_PGLS: case CEPH_OSD_OP_PGLS_FILTER: case CEPH_OSD_OP_PGNLS: case CEPH_OSD_OP_PGNLS_FILTER: out << " start_epoch " << op.op.pgls.start_epoch; break; case CEPH_OSD_OP_PG_HITSET_LS: break; case CEPH_OSD_OP_PG_HITSET_GET: out << " " << utime_t(op.op.hit_set_get.stamp); break; case CEPH_OSD_OP_SCRUBLS: break; } } if (op.indata.length()) { out << " in=" << op.indata.length() << "b"; } if (op.outdata.length()) { out << " out=" << op.outdata.length() << "b"; } return out; } void OSDOp::split_osd_op_vector_out_data(vector& ops, ceph::buffer::list& in) { auto datap = in.begin(); for (unsigned i = 0; i < ops.size(); i++) { if (ops[i].op.payload_len) { datap.copy(ops[i].op.payload_len, ops[i].outdata); } } } void OSDOp::merge_osd_op_vector_out_data(vector& ops, ceph::buffer::list& out) { for (unsigned i = 0; i < ops.size(); i++) { ops[i].op.payload_len = ops[i].outdata.length(); if (ops[i].outdata.length()) { out.append(ops[i].outdata); } } } int prepare_info_keymap( CephContext* cct, map *km, string *key_to_remove, epoch_t epoch, pg_info_t &info, pg_info_t &last_written_info, PastIntervals &past_intervals, bool dirty_big_info, bool dirty_epoch, bool try_fast_info, PerfCounters *logger, DoutPrefixProvider *dpp) { if (dirty_epoch) { encode(epoch, (*km)[string(epoch_key)]); } if (logger) logger->inc(l_osd_pg_info); // try to do info efficiently? if (!dirty_big_info && try_fast_info && info.last_update > last_written_info.last_update) { pg_fast_info_t fast; fast.populate_from(info); bool did = fast.try_apply_to(&last_written_info); ceph_assert(did); // we verified last_update increased above if (info == last_written_info) { encode(fast, (*km)[string(fastinfo_key)]); if (logger) logger->inc(l_osd_pg_fastinfo); return 0; } if (dpp) { ldpp_dout(dpp, 30) << __func__ << " fastinfo failed, info:\n"; { JSONFormatter jf(true); jf.dump_object("info", info); jf.flush(*_dout); } { *_dout << "\nlast_written_info:\n"; JSONFormatter jf(true); jf.dump_object("last_written_info", last_written_info); jf.flush(*_dout); } *_dout << dendl; } } else if (info.last_update <= last_written_info.last_update) { // clean up any potentially stale fastinfo key resulting from last_update // not moving forwards (e.g., a backwards jump during peering) *key_to_remove = fastinfo_key; } last_written_info = info; // info. store purged_snaps separately. interval_set purged_snaps; purged_snaps.swap(info.purged_snaps); encode(info, (*km)[string(info_key)]); purged_snaps.swap(info.purged_snaps); if (dirty_big_info) { // potentially big stuff bufferlist& bigbl = (*km)[string(biginfo_key)]; encode(past_intervals, bigbl); encode(info.purged_snaps, bigbl); //dout(20) << "write_info bigbl " << bigbl.length() << dendl; if (logger) logger->inc(l_osd_pg_biginfo); } return 0; } void create_pg_collection( ceph::os::Transaction& t, spg_t pgid, int bits) { coll_t coll(pgid); t.create_collection(coll, bits); } void init_pg_ondisk( ceph::os::Transaction& t, spg_t pgid, const pg_pool_t *pool) { coll_t coll(pgid); if (pool) { // Give a hint to the PG collection bufferlist hint; uint32_t pg_num = pool->get_pg_num(); uint64_t expected_num_objects_pg = pool->expected_num_objects / pg_num; encode(pg_num, hint); encode(expected_num_objects_pg, hint); uint32_t hint_type = ceph::os::Transaction::COLL_HINT_EXPECTED_NUM_OBJECTS; t.collection_hint(coll, hint_type, hint); } ghobject_t pgmeta_oid(pgid.make_pgmeta_oid()); t.touch(coll, pgmeta_oid); map values; __u8 struct_v = pg_latest_struct_v; encode(struct_v, values[string(infover_key)]); t.omap_setkeys(coll, pgmeta_oid, values); } PGLSFilter::PGLSFilter() : cct(nullptr) { } PGLSFilter::~PGLSFilter() { } int PGLSPlainFilter::init(ceph::bufferlist::const_iterator ¶ms) { try { decode(xattr, params); decode(val, params); } catch (ceph::buffer::error &e) { return -EINVAL; } return 0; } bool PGLSPlainFilter::filter(const hobject_t& obj, const ceph::bufferlist& xattr_data) const { return xattr_data.contents_equal(val.c_str(), val.size()); }