// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "table/format.h" #include #include #include "block_fetcher.h" #include "file/random_access_file_reader.h" #include "logging/logging.h" #include "memory/memory_allocator.h" #include "monitoring/perf_context_imp.h" #include "monitoring/statistics.h" #include "rocksdb/env.h" #include "table/block_based/block.h" #include "table/block_based/block_based_table_reader.h" #include "table/persistent_cache_helper.h" #include "util/coding.h" #include "util/compression.h" #include "util/crc32c.h" #include "util/stop_watch.h" #include "util/string_util.h" namespace ROCKSDB_NAMESPACE { extern const uint64_t kLegacyBlockBasedTableMagicNumber; extern const uint64_t kBlockBasedTableMagicNumber; #ifndef ROCKSDB_LITE extern const uint64_t kLegacyPlainTableMagicNumber; extern const uint64_t kPlainTableMagicNumber; #else // ROCKSDB_LITE doesn't have plain table const uint64_t kLegacyPlainTableMagicNumber = 0; const uint64_t kPlainTableMagicNumber = 0; #endif bool ShouldReportDetailedTime(Env* env, Statistics* stats) { return env != nullptr && stats != nullptr && stats->get_stats_level() > kExceptDetailedTimers; } void BlockHandle::EncodeTo(std::string* dst) const { // Sanity check that all fields have been set assert(offset_ != ~static_cast(0)); assert(size_ != ~static_cast(0)); PutVarint64Varint64(dst, offset_, size_); } Status BlockHandle::DecodeFrom(Slice* input) { if (GetVarint64(input, &offset_) && GetVarint64(input, &size_)) { return Status::OK(); } else { // reset in case failure after partially decoding offset_ = 0; size_ = 0; return Status::Corruption("bad block handle"); } } Status BlockHandle::DecodeSizeFrom(uint64_t _offset, Slice* input) { if (GetVarint64(input, &size_)) { offset_ = _offset; return Status::OK(); } else { // reset in case failure after partially decoding offset_ = 0; size_ = 0; return Status::Corruption("bad block handle"); } } // Return a string that contains the copy of handle. std::string BlockHandle::ToString(bool hex) const { std::string handle_str; EncodeTo(&handle_str); if (hex) { return Slice(handle_str).ToString(true); } else { return handle_str; } } const BlockHandle BlockHandle::kNullBlockHandle(0, 0); void IndexValue::EncodeTo(std::string* dst, bool have_first_key, const BlockHandle* previous_handle) const { if (previous_handle) { assert(handle.offset() == previous_handle->offset() + previous_handle->size() + kBlockTrailerSize); PutVarsignedint64(dst, handle.size() - previous_handle->size()); } else { handle.EncodeTo(dst); } assert(dst->size() != 0); if (have_first_key) { PutLengthPrefixedSlice(dst, first_internal_key); } } Status IndexValue::DecodeFrom(Slice* input, bool have_first_key, const BlockHandle* previous_handle) { if (previous_handle) { int64_t delta; if (!GetVarsignedint64(input, &delta)) { return Status::Corruption("bad delta-encoded index value"); } handle = BlockHandle( previous_handle->offset() + previous_handle->size() + kBlockTrailerSize, previous_handle->size() + delta); } else { Status s = handle.DecodeFrom(input); if (!s.ok()) { return s; } } if (!have_first_key) { first_internal_key = Slice(); } else if (!GetLengthPrefixedSlice(input, &first_internal_key)) { return Status::Corruption("bad first key in block info"); } return Status::OK(); } std::string IndexValue::ToString(bool hex, bool have_first_key) const { std::string s; EncodeTo(&s, have_first_key, nullptr); if (hex) { return Slice(s).ToString(true); } else { return s; } } namespace { inline bool IsLegacyFooterFormat(uint64_t magic_number) { return magic_number == kLegacyBlockBasedTableMagicNumber || magic_number == kLegacyPlainTableMagicNumber; } inline uint64_t UpconvertLegacyFooterFormat(uint64_t magic_number) { if (magic_number == kLegacyBlockBasedTableMagicNumber) { return kBlockBasedTableMagicNumber; } if (magic_number == kLegacyPlainTableMagicNumber) { return kPlainTableMagicNumber; } assert(false); return 0; } } // namespace // legacy footer format: // metaindex handle (varint64 offset, varint64 size) // index handle (varint64 offset, varint64 size) // to make the total size 2 * BlockHandle::kMaxEncodedLength // table_magic_number (8 bytes) // new footer format: // checksum type (char, 1 byte) // metaindex handle (varint64 offset, varint64 size) // index handle (varint64 offset, varint64 size) // to make the total size 2 * BlockHandle::kMaxEncodedLength + 1 // footer version (4 bytes) // table_magic_number (8 bytes) void Footer::EncodeTo(std::string* dst) const { assert(HasInitializedTableMagicNumber()); if (IsLegacyFooterFormat(table_magic_number())) { // has to be default checksum with legacy footer assert(checksum_ == kCRC32c); const size_t original_size = dst->size(); metaindex_handle_.EncodeTo(dst); index_handle_.EncodeTo(dst); dst->resize(original_size + 2 * BlockHandle::kMaxEncodedLength); // Padding PutFixed32(dst, static_cast(table_magic_number() & 0xffffffffu)); PutFixed32(dst, static_cast(table_magic_number() >> 32)); assert(dst->size() == original_size + kVersion0EncodedLength); } else { const size_t original_size = dst->size(); dst->push_back(static_cast(checksum_)); metaindex_handle_.EncodeTo(dst); index_handle_.EncodeTo(dst); dst->resize(original_size + kNewVersionsEncodedLength - 12); // Padding PutFixed32(dst, version()); PutFixed32(dst, static_cast(table_magic_number() & 0xffffffffu)); PutFixed32(dst, static_cast(table_magic_number() >> 32)); assert(dst->size() == original_size + kNewVersionsEncodedLength); } } Footer::Footer(uint64_t _table_magic_number, uint32_t _version) : version_(_version), checksum_(kCRC32c), table_magic_number_(_table_magic_number) { // This should be guaranteed by constructor callers assert(!IsLegacyFooterFormat(_table_magic_number) || version_ == 0); } Status Footer::DecodeFrom(Slice* input) { assert(!HasInitializedTableMagicNumber()); assert(input != nullptr); assert(input->size() >= kMinEncodedLength); const char* magic_ptr = input->data() + input->size() - kMagicNumberLengthByte; const uint32_t magic_lo = DecodeFixed32(magic_ptr); const uint32_t magic_hi = DecodeFixed32(magic_ptr + 4); uint64_t magic = ((static_cast(magic_hi) << 32) | (static_cast(magic_lo))); // We check for legacy formats here and silently upconvert them bool legacy = IsLegacyFooterFormat(magic); if (legacy) { magic = UpconvertLegacyFooterFormat(magic); } set_table_magic_number(magic); if (legacy) { // The size is already asserted to be at least kMinEncodedLength // at the beginning of the function input->remove_prefix(input->size() - kVersion0EncodedLength); version_ = 0 /* legacy */; checksum_ = kCRC32c; } else { version_ = DecodeFixed32(magic_ptr - 4); // Footer version 1 and higher will always occupy exactly this many bytes. // It consists of the checksum type, two block handles, padding, // a version number, and a magic number if (input->size() < kNewVersionsEncodedLength) { return Status::Corruption("input is too short to be an sstable"); } else { input->remove_prefix(input->size() - kNewVersionsEncodedLength); } uint32_t chksum; if (!GetVarint32(input, &chksum)) { return Status::Corruption("bad checksum type"); } checksum_ = static_cast(chksum); } Status result = metaindex_handle_.DecodeFrom(input); if (result.ok()) { result = index_handle_.DecodeFrom(input); } if (result.ok()) { // We skip over any leftover data (just padding for now) in "input" const char* end = magic_ptr + kMagicNumberLengthByte; *input = Slice(end, input->data() + input->size() - end); } return result; } std::string Footer::ToString() const { std::string result; result.reserve(1024); bool legacy = IsLegacyFooterFormat(table_magic_number_); if (legacy) { result.append("metaindex handle: " + metaindex_handle_.ToString() + "\n "); result.append("index handle: " + index_handle_.ToString() + "\n "); result.append("table_magic_number: " + ROCKSDB_NAMESPACE::ToString(table_magic_number_) + "\n "); } else { result.append("checksum: " + ROCKSDB_NAMESPACE::ToString(checksum_) + "\n "); result.append("metaindex handle: " + metaindex_handle_.ToString() + "\n "); result.append("index handle: " + index_handle_.ToString() + "\n "); result.append("footer version: " + ROCKSDB_NAMESPACE::ToString(version_) + "\n "); result.append("table_magic_number: " + ROCKSDB_NAMESPACE::ToString(table_magic_number_) + "\n "); } return result; } Status ReadFooterFromFile(RandomAccessFileReader* file, FilePrefetchBuffer* prefetch_buffer, uint64_t file_size, Footer* footer, uint64_t enforce_table_magic_number) { if (file_size < Footer::kMinEncodedLength) { return Status::Corruption("file is too short (" + ToString(file_size) + " bytes) to be an " "sstable: " + file->file_name()); } char footer_space[Footer::kMaxEncodedLength]; Slice footer_input; size_t read_offset = (file_size > Footer::kMaxEncodedLength) ? static_cast(file_size - Footer::kMaxEncodedLength) : 0; Status s; if (prefetch_buffer == nullptr || !prefetch_buffer->TryReadFromCache(read_offset, Footer::kMaxEncodedLength, &footer_input)) { s = file->Read(read_offset, Footer::kMaxEncodedLength, &footer_input, footer_space); if (!s.ok()) return s; } // Check that we actually read the whole footer from the file. It may be // that size isn't correct. if (footer_input.size() < Footer::kMinEncodedLength) { return Status::Corruption("file is too short (" + ToString(file_size) + " bytes) to be an " "sstable" + file->file_name()); } s = footer->DecodeFrom(&footer_input); if (!s.ok()) { return s; } if (enforce_table_magic_number != 0 && enforce_table_magic_number != footer->table_magic_number()) { return Status::Corruption( "Bad table magic number: expected " + ToString(enforce_table_magic_number) + ", found " + ToString(footer->table_magic_number()) + " in " + file->file_name()); } return Status::OK(); } Status UncompressBlockContentsForCompressionType( const UncompressionInfo& uncompression_info, const char* data, size_t n, BlockContents* contents, uint32_t format_version, const ImmutableCFOptions& ioptions, MemoryAllocator* allocator) { CacheAllocationPtr ubuf; assert(uncompression_info.type() != kNoCompression && "Invalid compression type"); StopWatchNano timer(ioptions.env, ShouldReportDetailedTime( ioptions.env, ioptions.statistics)); int decompress_size = 0; switch (uncompression_info.type()) { case kSnappyCompression: { size_t ulength = 0; static char snappy_corrupt_msg[] = "Snappy not supported or corrupted Snappy compressed block contents"; if (!Snappy_GetUncompressedLength(data, n, &ulength)) { return Status::Corruption(snappy_corrupt_msg); } ubuf = AllocateBlock(ulength, allocator); if (!Snappy_Uncompress(data, n, ubuf.get())) { return Status::Corruption(snappy_corrupt_msg); } *contents = BlockContents(std::move(ubuf), ulength); break; } case kZlibCompression: ubuf = Zlib_Uncompress( uncompression_info, data, n, &decompress_size, GetCompressFormatForVersion(kZlibCompression, format_version), allocator); if (!ubuf) { static char zlib_corrupt_msg[] = "Zlib not supported or corrupted Zlib compressed block contents"; return Status::Corruption(zlib_corrupt_msg); } *contents = BlockContents(std::move(ubuf), decompress_size); break; case kBZip2Compression: ubuf = BZip2_Uncompress( data, n, &decompress_size, GetCompressFormatForVersion(kBZip2Compression, format_version), allocator); if (!ubuf) { static char bzip2_corrupt_msg[] = "Bzip2 not supported or corrupted Bzip2 compressed block contents"; return Status::Corruption(bzip2_corrupt_msg); } *contents = BlockContents(std::move(ubuf), decompress_size); break; case kLZ4Compression: ubuf = LZ4_Uncompress( uncompression_info, data, n, &decompress_size, GetCompressFormatForVersion(kLZ4Compression, format_version), allocator); if (!ubuf) { static char lz4_corrupt_msg[] = "LZ4 not supported or corrupted LZ4 compressed block contents"; return Status::Corruption(lz4_corrupt_msg); } *contents = BlockContents(std::move(ubuf), decompress_size); break; case kLZ4HCCompression: ubuf = LZ4_Uncompress( uncompression_info, data, n, &decompress_size, GetCompressFormatForVersion(kLZ4HCCompression, format_version), allocator); if (!ubuf) { static char lz4hc_corrupt_msg[] = "LZ4HC not supported or corrupted LZ4HC compressed block contents"; return Status::Corruption(lz4hc_corrupt_msg); } *contents = BlockContents(std::move(ubuf), decompress_size); break; case kXpressCompression: // XPRESS allocates memory internally, thus no support for custom // allocator. ubuf.reset(XPRESS_Uncompress(data, n, &decompress_size)); if (!ubuf) { static char xpress_corrupt_msg[] = "XPRESS not supported or corrupted XPRESS compressed block " "contents"; return Status::Corruption(xpress_corrupt_msg); } *contents = BlockContents(std::move(ubuf), decompress_size); break; case kZSTD: case kZSTDNotFinalCompression: ubuf = ZSTD_Uncompress(uncompression_info, data, n, &decompress_size, allocator); if (!ubuf) { static char zstd_corrupt_msg[] = "ZSTD not supported or corrupted ZSTD compressed block contents"; return Status::Corruption(zstd_corrupt_msg); } *contents = BlockContents(std::move(ubuf), decompress_size); break; default: return Status::Corruption("bad block type"); } if (ShouldReportDetailedTime(ioptions.env, ioptions.statistics)) { RecordTimeToHistogram(ioptions.statistics, DECOMPRESSION_TIMES_NANOS, timer.ElapsedNanos()); } RecordTimeToHistogram(ioptions.statistics, BYTES_DECOMPRESSED, contents->data.size()); RecordTick(ioptions.statistics, NUMBER_BLOCK_DECOMPRESSED); return Status::OK(); } // // The 'data' points to the raw block contents that was read in from file. // This method allocates a new heap buffer and the raw block // contents are uncompresed into this buffer. This // buffer is returned via 'result' and it is upto the caller to // free this buffer. // format_version is the block format as defined in include/rocksdb/table.h Status UncompressBlockContents(const UncompressionInfo& uncompression_info, const char* data, size_t n, BlockContents* contents, uint32_t format_version, const ImmutableCFOptions& ioptions, MemoryAllocator* allocator) { assert(data[n] != kNoCompression); assert(data[n] == uncompression_info.type()); return UncompressBlockContentsForCompressionType(uncompression_info, data, n, contents, format_version, ioptions, allocator); } } // namespace ROCKSDB_NAMESPACE