// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "rocksdb/comparator.h" #include #include #include #include "logging/logging.h" #include "port/port.h" #include "rocksdb/slice.h" namespace ROCKSDB_NAMESPACE { namespace { class BytewiseComparatorImpl : public Comparator { public: BytewiseComparatorImpl() { } const char* Name() const override { return "leveldb.BytewiseComparator"; } int Compare(const Slice& a, const Slice& b) const override { return a.compare(b); } bool Equal(const Slice& a, const Slice& b) const override { return a == b; } void FindShortestSeparator(std::string* start, const Slice& limit) const override { // Find length of common prefix size_t min_length = std::min(start->size(), limit.size()); size_t diff_index = 0; while ((diff_index < min_length) && ((*start)[diff_index] == limit[diff_index])) { diff_index++; } if (diff_index >= min_length) { // Do not shorten if one string is a prefix of the other } else { uint8_t start_byte = static_cast((*start)[diff_index]); uint8_t limit_byte = static_cast(limit[diff_index]); if (start_byte >= limit_byte) { // Cannot shorten since limit is smaller than start or start is // already the shortest possible. return; } assert(start_byte < limit_byte); if (diff_index < limit.size() - 1 || start_byte + 1 < limit_byte) { (*start)[diff_index]++; start->resize(diff_index + 1); } else { // v // A A 1 A A A // A A 2 // // Incrementing the current byte will make start bigger than limit, we // will skip this byte, and find the first non 0xFF byte in start and // increment it. diff_index++; while (diff_index < start->size()) { // Keep moving until we find the first non 0xFF byte to // increment it if (static_cast((*start)[diff_index]) < static_cast(0xff)) { (*start)[diff_index]++; start->resize(diff_index + 1); break; } diff_index++; } } assert(Compare(*start, limit) < 0); } } void FindShortSuccessor(std::string* key) const override { // Find first character that can be incremented size_t n = key->size(); for (size_t i = 0; i < n; i++) { const uint8_t byte = (*key)[i]; if (byte != static_cast(0xff)) { (*key)[i] = byte + 1; key->resize(i+1); return; } } // *key is a run of 0xffs. Leave it alone. } bool IsSameLengthImmediateSuccessor(const Slice& s, const Slice& t) const override { if (s.size() != t.size() || s.size() == 0) { return false; } size_t diff_ind = s.difference_offset(t); // same slice if (diff_ind >= s.size()) return false; uint8_t byte_s = static_cast(s[diff_ind]); uint8_t byte_t = static_cast(t[diff_ind]); // first different byte must be consecutive, and remaining bytes must be // 0xff for s and 0x00 for t if (byte_s != uint8_t{0xff} && byte_s + 1 == byte_t) { for (size_t i = diff_ind + 1; i < s.size(); ++i) { byte_s = static_cast(s[i]); byte_t = static_cast(t[i]); if (byte_s != uint8_t{0xff} || byte_t != uint8_t{0x00}) { return false; } } return true; } else { return false; } } bool CanKeysWithDifferentByteContentsBeEqual() const override { return false; } int CompareWithoutTimestamp(const Slice& a, const Slice& b) const override { return a.compare(b); } }; class ReverseBytewiseComparatorImpl : public BytewiseComparatorImpl { public: ReverseBytewiseComparatorImpl() { } const char* Name() const override { return "rocksdb.ReverseBytewiseComparator"; } int Compare(const Slice& a, const Slice& b) const override { return -a.compare(b); } void FindShortestSeparator(std::string* start, const Slice& limit) const override { // Find length of common prefix size_t min_length = std::min(start->size(), limit.size()); size_t diff_index = 0; while ((diff_index < min_length) && ((*start)[diff_index] == limit[diff_index])) { diff_index++; } assert(diff_index <= min_length); if (diff_index == min_length) { // Do not shorten if one string is a prefix of the other // // We could handle cases like: // V // A A 2 X Y // A A 2 // in a similar way as BytewiseComparator::FindShortestSeparator(). // We keep it simple by not implementing it. We can come back to it // later when needed. } else { uint8_t start_byte = static_cast((*start)[diff_index]); uint8_t limit_byte = static_cast(limit[diff_index]); if (start_byte > limit_byte && diff_index < start->size() - 1) { // Case like // V // A A 3 A A // A A 1 B B // // or // v // A A 2 A A // A A 1 B B // In this case "AA2" will be good. #ifndef NDEBUG std::string old_start = *start; #endif start->resize(diff_index + 1); #ifndef NDEBUG assert(old_start >= *start); #endif assert(Slice(*start).compare(limit) > 0); } } } void FindShortSuccessor(std::string* /*key*/) const override { // Don't do anything for simplicity. } bool CanKeysWithDifferentByteContentsBeEqual() const override { return false; } int CompareWithoutTimestamp(const Slice& a, const Slice& b) const override { return -a.compare(b); } }; }// namespace const Comparator* BytewiseComparator() { static BytewiseComparatorImpl bytewise; return &bytewise; } const Comparator* ReverseBytewiseComparator() { static ReverseBytewiseComparatorImpl rbytewise; return &rbytewise; } } // namespace ROCKSDB_NAMESPACE