// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #ifndef GFLAGS #include int main() { fprintf(stderr, "Please install gflags to run this test... Skipping...\n"); return 0; } #else #include #include #include #include #include #include #include #include "dynamic_bloom.h" #include "logging/logging.h" #include "memory/arena.h" #include "port/port.h" #include "test_util/testharness.h" #include "test_util/testutil.h" #include "util/gflags_compat.h" #include "util/stop_watch.h" using GFLAGS_NAMESPACE::ParseCommandLineFlags; DEFINE_int32(bits_per_key, 10, ""); DEFINE_int32(num_probes, 6, ""); DEFINE_bool(enable_perf, false, ""); namespace ROCKSDB_NAMESPACE { struct KeyMaker { uint64_t a; uint64_t b; // Sequential, within a hash function block inline Slice Seq(uint64_t i) { a = i; return Slice(reinterpret_cast(&a), sizeof(a)); } // Not quite sequential, varies across hash function blocks inline Slice Nonseq(uint64_t i) { a = i; b = i * 123; return Slice(reinterpret_cast(this), sizeof(*this)); } inline Slice Key(uint64_t i, bool nonseq) { return nonseq ? Nonseq(i) : Seq(i); } }; class DynamicBloomTest : public testing::Test {}; TEST_F(DynamicBloomTest, EmptyFilter) { Arena arena; DynamicBloom bloom1(&arena, 100, 2); ASSERT_TRUE(!bloom1.MayContain("hello")); ASSERT_TRUE(!bloom1.MayContain("world")); DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 2); ASSERT_TRUE(!bloom2.MayContain("hello")); ASSERT_TRUE(!bloom2.MayContain("world")); } TEST_F(DynamicBloomTest, Small) { Arena arena; DynamicBloom bloom1(&arena, 100, 2); bloom1.Add("hello"); bloom1.Add("world"); ASSERT_TRUE(bloom1.MayContain("hello")); ASSERT_TRUE(bloom1.MayContain("world")); ASSERT_TRUE(!bloom1.MayContain("x")); ASSERT_TRUE(!bloom1.MayContain("foo")); DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 2); bloom2.Add("hello"); bloom2.Add("world"); ASSERT_TRUE(bloom2.MayContain("hello")); ASSERT_TRUE(bloom2.MayContain("world")); ASSERT_TRUE(!bloom2.MayContain("x")); ASSERT_TRUE(!bloom2.MayContain("foo")); } TEST_F(DynamicBloomTest, SmallConcurrentAdd) { Arena arena; DynamicBloom bloom1(&arena, 100, 2); bloom1.AddConcurrently("hello"); bloom1.AddConcurrently("world"); ASSERT_TRUE(bloom1.MayContain("hello")); ASSERT_TRUE(bloom1.MayContain("world")); ASSERT_TRUE(!bloom1.MayContain("x")); ASSERT_TRUE(!bloom1.MayContain("foo")); DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 2); bloom2.AddConcurrently("hello"); bloom2.AddConcurrently("world"); ASSERT_TRUE(bloom2.MayContain("hello")); ASSERT_TRUE(bloom2.MayContain("world")); ASSERT_TRUE(!bloom2.MayContain("x")); ASSERT_TRUE(!bloom2.MayContain("foo")); } static uint32_t NextNum(uint32_t num) { if (num < 10) { num += 1; } else if (num < 100) { num += 10; } else if (num < 1000) { num += 100; } else { num = num * 26 / 10; } return num; } TEST_F(DynamicBloomTest, VaryingLengths) { KeyMaker km; // Count number of filters that significantly exceed the false positive rate int mediocre_filters = 0; int good_filters = 0; uint32_t num_probes = static_cast(FLAGS_num_probes); fprintf(stderr, "bits_per_key: %d num_probes: %d\n", FLAGS_bits_per_key, num_probes); // NB: FP rate impact of 32-bit hash is noticeable starting around 10M keys. // But that effect is hidden if using sequential keys (unique hashes). for (bool nonseq : {false, true}) { const uint32_t max_num = FLAGS_enable_perf ? 40000000 : 400000; for (uint32_t num = 1; num <= max_num; num = NextNum(num)) { uint32_t bloom_bits = 0; Arena arena; bloom_bits = num * FLAGS_bits_per_key; DynamicBloom bloom(&arena, bloom_bits, num_probes); for (uint64_t i = 0; i < num; i++) { bloom.Add(km.Key(i, nonseq)); ASSERT_TRUE(bloom.MayContain(km.Key(i, nonseq))); } // All added keys must match for (uint64_t i = 0; i < num; i++) { ASSERT_TRUE(bloom.MayContain(km.Key(i, nonseq))); } // Check false positive rate int result = 0; for (uint64_t i = 0; i < 30000; i++) { if (bloom.MayContain(km.Key(i + 1000000000, nonseq))) { result++; } } double rate = result / 30000.0; fprintf(stderr, "False positives (%s keys): " "%5.2f%% @ num = %6u, bloom_bits = %6u\n", nonseq ? "nonseq" : "seq", rate * 100.0, num, bloom_bits); if (rate > 0.0125) mediocre_filters++; // Allowed, but not too often else good_filters++; } } fprintf(stderr, "Filters: %d good, %d mediocre\n", good_filters, mediocre_filters); ASSERT_LE(mediocre_filters, good_filters / 25); } TEST_F(DynamicBloomTest, perf) { KeyMaker km; StopWatchNano timer(Env::Default()); uint32_t num_probes = static_cast(FLAGS_num_probes); if (!FLAGS_enable_perf) { return; } for (uint32_t m = 1; m <= 8; ++m) { Arena arena; const uint32_t num_keys = m * 8 * 1024 * 1024; fprintf(stderr, "testing %" PRIu32 "M keys\n", m * 8); DynamicBloom std_bloom(&arena, num_keys * 10, num_probes); timer.Start(); for (uint64_t i = 1; i <= num_keys; ++i) { std_bloom.Add(km.Seq(i)); } uint64_t elapsed = timer.ElapsedNanos(); fprintf(stderr, "dynamic bloom, avg add latency %3g\n", static_cast(elapsed) / num_keys); uint32_t count = 0; timer.Start(); for (uint64_t i = 1; i <= num_keys; ++i) { if (std_bloom.MayContain(km.Seq(i))) { ++count; } } ASSERT_EQ(count, num_keys); elapsed = timer.ElapsedNanos(); assert(count > 0); fprintf(stderr, "dynamic bloom, avg query latency %3g\n", static_cast(elapsed) / count); } } TEST_F(DynamicBloomTest, concurrent_with_perf) { uint32_t num_probes = static_cast(FLAGS_num_probes); uint32_t m_limit = FLAGS_enable_perf ? 8 : 1; uint32_t num_threads = 4; std::vector threads; // NB: Uses sequential keys for speed, but that hides the FP rate // impact of 32-bit hash, which is noticeable starting around 10M keys // when they vary across hashing blocks. for (uint32_t m = 1; m <= m_limit; ++m) { Arena arena; const uint32_t num_keys = m * 8 * 1024 * 1024; fprintf(stderr, "testing %" PRIu32 "M keys\n", m * 8); DynamicBloom std_bloom(&arena, num_keys * 10, num_probes); std::atomic elapsed(0); std::function adder([&](size_t t) { KeyMaker km; StopWatchNano timer(Env::Default()); timer.Start(); for (uint64_t i = 1 + t; i <= num_keys; i += num_threads) { std_bloom.AddConcurrently(km.Seq(i)); } elapsed += timer.ElapsedNanos(); }); for (size_t t = 0; t < num_threads; ++t) { threads.emplace_back(adder, t); } while (threads.size() > 0) { threads.back().join(); threads.pop_back(); } fprintf(stderr, "dynamic bloom, avg parallel add latency %3g" " nanos/key\n", static_cast(elapsed) / num_threads / num_keys); elapsed = 0; std::function hitter([&](size_t t) { KeyMaker km; StopWatchNano timer(Env::Default()); timer.Start(); for (uint64_t i = 1 + t; i <= num_keys; i += num_threads) { bool f = std_bloom.MayContain(km.Seq(i)); ASSERT_TRUE(f); } elapsed += timer.ElapsedNanos(); }); for (size_t t = 0; t < num_threads; ++t) { threads.emplace_back(hitter, t); } while (threads.size() > 0) { threads.back().join(); threads.pop_back(); } fprintf(stderr, "dynamic bloom, avg parallel hit latency %3g" " nanos/key\n", static_cast(elapsed) / num_threads / num_keys); elapsed = 0; std::atomic false_positives(0); std::function misser([&](size_t t) { KeyMaker km; StopWatchNano timer(Env::Default()); timer.Start(); for (uint64_t i = num_keys + 1 + t; i <= 2 * num_keys; i += num_threads) { bool f = std_bloom.MayContain(km.Seq(i)); if (f) { ++false_positives; } } elapsed += timer.ElapsedNanos(); }); for (size_t t = 0; t < num_threads; ++t) { threads.emplace_back(misser, t); } while (threads.size() > 0) { threads.back().join(); threads.pop_back(); } fprintf(stderr, "dynamic bloom, avg parallel miss latency %3g" " nanos/key, %f%% false positive rate\n", static_cast(elapsed) / num_threads / num_keys, false_positives.load() * 100.0 / num_keys); } } } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); ParseCommandLineFlags(&argc, &argv, true); return RUN_ALL_TESTS(); } #endif // GFLAGS