/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2019 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "test.h" #define N 10000 static int is_mem_on_socket(int32_t socket); static int32_t addr_to_socket(void *addr); /* * Malloc * ====== * * Allocate some dynamic memory from heap (3 areas). Check that areas * don't overlap and that alignment constraints match. This test is * done many times on different lcores simultaneously. */ /* Test if memory overlaps: return 1 if true, or 0 if false. */ static int is_memory_overlap(void *p1, size_t len1, void *p2, size_t len2) { unsigned long ptr1 = (unsigned long)p1; unsigned long ptr2 = (unsigned long)p2; if (ptr2 >= ptr1 && (ptr2 - ptr1) < len1) return 1; else if (ptr2 < ptr1 && (ptr1 - ptr2) < len2) return 1; return 0; } static int is_aligned(void *p, int align) { unsigned long addr = (unsigned long)p; unsigned mask = align - 1; if (addr & mask) return 0; return 1; } static int test_align_overlap_per_lcore(__attribute__((unused)) void *arg) { const unsigned align1 = 8, align2 = 64, align3 = 2048; unsigned i,j; void *p1 = NULL, *p2 = NULL, *p3 = NULL; int ret = 0; for (i = 0; i < N; i++) { p1 = rte_zmalloc("dummy", 1000, align1); if (!p1){ printf("rte_zmalloc returned NULL (i=%u)\n", i); ret = -1; break; } for(j = 0; j < 1000 ; j++) { if( *(char *)p1 != 0) { printf("rte_zmalloc didn't zero the allocated memory\n"); ret = -1; } } p2 = rte_malloc("dummy", 1000, align2); if (!p2){ printf("rte_malloc returned NULL (i=%u)\n", i); ret = -1; rte_free(p1); break; } p3 = rte_malloc("dummy", 1000, align3); if (!p3){ printf("rte_malloc returned NULL (i=%u)\n", i); ret = -1; rte_free(p1); rte_free(p2); break; } if (is_memory_overlap(p1, 1000, p2, 1000)) { printf("p1 and p2 overlaps\n"); ret = -1; } if (is_memory_overlap(p2, 1000, p3, 1000)) { printf("p2 and p3 overlaps\n"); ret = -1; } if (is_memory_overlap(p1, 1000, p3, 1000)) { printf("p1 and p3 overlaps\n"); ret = -1; } if (!is_aligned(p1, align1)) { printf("p1 is not aligned\n"); ret = -1; } if (!is_aligned(p2, align2)) { printf("p2 is not aligned\n"); ret = -1; } if (!is_aligned(p3, align3)) { printf("p3 is not aligned\n"); ret = -1; } rte_free(p1); rte_free(p2); rte_free(p3); } rte_malloc_dump_stats(stdout, "dummy"); return ret; } static int test_reordered_free_per_lcore(__attribute__((unused)) void *arg) { const unsigned align1 = 8, align2 = 64, align3 = 2048; unsigned i,j; void *p1, *p2, *p3; int ret = 0; for (i = 0; i < 30; i++) { p1 = rte_zmalloc("dummy", 1000, align1); if (!p1){ printf("rte_zmalloc returned NULL (i=%u)\n", i); ret = -1; break; } for(j = 0; j < 1000 ; j++) { if( *(char *)p1 != 0) { printf("rte_zmalloc didn't zero the allocated memory\n"); ret = -1; } } /* use calloc to allocate 1000 16-byte items this time */ p2 = rte_calloc("dummy", 1000, 16, align2); /* for third request use regular malloc again */ p3 = rte_malloc("dummy", 1000, align3); if (!p2 || !p3){ printf("rte_malloc returned NULL (i=%u)\n", i); ret = -1; break; } if (is_memory_overlap(p1, 1000, p2, 1000)) { printf("p1 and p2 overlaps\n"); ret = -1; } if (is_memory_overlap(p2, 1000, p3, 1000)) { printf("p2 and p3 overlaps\n"); ret = -1; } if (is_memory_overlap(p1, 1000, p3, 1000)) { printf("p1 and p3 overlaps\n"); ret = -1; } if (!is_aligned(p1, align1)) { printf("p1 is not aligned\n"); ret = -1; } if (!is_aligned(p2, align2)) { printf("p2 is not aligned\n"); ret = -1; } if (!is_aligned(p3, align3)) { printf("p3 is not aligned\n"); ret = -1; } /* try freeing in every possible order */ switch (i%6){ case 0: rte_free(p1); rte_free(p2); rte_free(p3); break; case 1: rte_free(p1); rte_free(p3); rte_free(p2); break; case 2: rte_free(p2); rte_free(p1); rte_free(p3); break; case 3: rte_free(p2); rte_free(p3); rte_free(p1); break; case 4: rte_free(p3); rte_free(p1); rte_free(p2); break; case 5: rte_free(p3); rte_free(p2); rte_free(p1); break; } } rte_malloc_dump_stats(stdout, "dummy"); return ret; } /* test function inside the malloc lib*/ static int test_str_to_size(void) { struct { const char *str; uint64_t value; } test_values[] = {{ "5G", (uint64_t)5 * 1024 * 1024 *1024 }, {"0x20g", (uint64_t)0x20 * 1024 * 1024 *1024}, {"10M", 10 * 1024 * 1024}, {"050m", 050 * 1024 * 1024}, {"8K", 8 * 1024}, {"15k", 15 * 1024}, {"0200", 0200}, {"0x103", 0x103}, {"432", 432}, {"-1", 0}, /* negative values return 0 */ {" -2", 0}, {" -3MB", 0}, {"18446744073709551616", 0} /* ULLONG_MAX + 1 == out of range*/ }; unsigned i; for (i = 0; i < sizeof(test_values)/sizeof(test_values[0]); i++) if (rte_str_to_size(test_values[i].str) != test_values[i].value) return -1; return 0; } static int test_multi_alloc_statistics(void) { int socket = 0; struct rte_malloc_socket_stats pre_stats, post_stats ,first_stats, second_stats; size_t size = 2048; int align = 1024; int overhead = 0; /* Dynamically calculate the overhead by allocating one cacheline and * then comparing what was allocated from the heap. */ rte_malloc_get_socket_stats(socket, &pre_stats); void *dummy = rte_malloc_socket(NULL, RTE_CACHE_LINE_SIZE, 0, socket); if (dummy == NULL) return -1; rte_malloc_get_socket_stats(socket, &post_stats); /* after subtracting cache line, remainder is overhead */ overhead = post_stats.heap_allocsz_bytes - pre_stats.heap_allocsz_bytes; overhead -= RTE_CACHE_LINE_SIZE; rte_free(dummy); /* Now start the real tests */ rte_malloc_get_socket_stats(socket, &pre_stats); void *p1 = rte_malloc_socket("stats", size , align, socket); if (!p1) return -1; rte_free(p1); rte_malloc_dump_stats(stdout, "stats"); rte_malloc_get_socket_stats(socket,&post_stats); /* Check statistics reported are correct */ /* All post stats should be equal to pre stats after alloc freed */ if ((post_stats.heap_totalsz_bytes != pre_stats.heap_totalsz_bytes) && (post_stats.heap_freesz_bytes!=pre_stats.heap_freesz_bytes) && (post_stats.heap_allocsz_bytes!=pre_stats.heap_allocsz_bytes)&& (post_stats.alloc_count!=pre_stats.alloc_count)&& (post_stats.free_count!=pre_stats.free_count)) { printf("Malloc statistics are incorrect - freed alloc\n"); return -1; } /* Check two consecutive allocations */ size = 1024; align = 0; rte_malloc_get_socket_stats(socket,&pre_stats); void *p2 = rte_malloc_socket("add", size ,align, socket); if (!p2) return -1; rte_malloc_get_socket_stats(socket,&first_stats); void *p3 = rte_malloc_socket("add2", size,align, socket); if (!p3) return -1; rte_malloc_get_socket_stats(socket,&second_stats); rte_free(p2); rte_free(p3); /* After freeing both allocations check stats return to original */ rte_malloc_get_socket_stats(socket, &post_stats); if(second_stats.heap_totalsz_bytes != first_stats.heap_totalsz_bytes) { printf("Incorrect heap statistics: Total size \n"); return -1; } /* Check allocated size is equal to two additions plus overhead */ if(second_stats.heap_allocsz_bytes != size + overhead + first_stats.heap_allocsz_bytes) { printf("Incorrect heap statistics: Allocated size \n"); return -1; } /* Check that allocation count increments correctly i.e. +1 */ if (second_stats.alloc_count != first_stats.alloc_count + 1) { printf("Incorrect heap statistics: Allocated count \n"); return -1; } if (second_stats.free_count != first_stats.free_count){ printf("Incorrect heap statistics: Free count \n"); return -1; } /* Make sure that we didn't touch our greatest chunk: 2 * 11M) */ if (post_stats.greatest_free_size != pre_stats.greatest_free_size) { printf("Incorrect heap statistics: Greatest free size \n"); return -1; } /* Free size must equal the original free size minus the new allocation*/ if (first_stats.heap_freesz_bytes <= second_stats.heap_freesz_bytes) { printf("Incorrect heap statistics: Free size \n"); return -1; } if ((post_stats.heap_totalsz_bytes != pre_stats.heap_totalsz_bytes) && (post_stats.heap_freesz_bytes!=pre_stats.heap_freesz_bytes) && (post_stats.heap_allocsz_bytes!=pre_stats.heap_allocsz_bytes)&& (post_stats.alloc_count!=pre_stats.alloc_count)&& (post_stats.free_count!=pre_stats.free_count)) { printf("Malloc statistics are incorrect - freed alloc\n"); return -1; } return 0; } static int test_rte_malloc_type_limits(void) { /* The type-limits functionality is not yet implemented, * so always return 0 no matter what the retval. */ const char *typename = "limit_test"; rte_malloc_set_limit(typename, 64 * 1024); rte_malloc_dump_stats(stdout, typename); return 0; } static int test_realloc(void) { const char hello_str[] = "Hello, world!"; const unsigned size1 = 1024; const unsigned size2 = size1 + 1024; const unsigned size3 = size2; const unsigned size4 = size3 + 1024; /* test data is the same even if element is moved*/ char *ptr1 = rte_zmalloc(NULL, size1, RTE_CACHE_LINE_SIZE); if (!ptr1){ printf("NULL pointer returned from rte_zmalloc\n"); return -1; } strlcpy(ptr1, hello_str, size1); char *ptr2 = rte_realloc(ptr1, size2, RTE_CACHE_LINE_SIZE); if (!ptr2){ rte_free(ptr1); printf("NULL pointer returned from rte_realloc\n"); return -1; } if (ptr1 == ptr2){ printf("unexpected - ptr1 == ptr2\n"); } if (strcmp(ptr2, hello_str) != 0){ printf("Error - lost data from pointed area\n"); rte_free(ptr2); return -1; } unsigned i; for (i = strnlen(hello_str, sizeof(hello_str)); i < size1; i++) if (ptr2[i] != 0){ printf("Bad data in realloc\n"); rte_free(ptr2); return -1; } /* now allocate third element, free the second * and resize third. It should not move. (ptr1 is now invalid) */ char *ptr3 = rte_zmalloc(NULL, size3, RTE_CACHE_LINE_SIZE); if (!ptr3){ printf("NULL pointer returned from rte_zmalloc\n"); rte_free(ptr2); return -1; } for (i = 0; i < size3; i++) if (ptr3[i] != 0){ printf("Bad data in zmalloc\n"); rte_free(ptr3); rte_free(ptr2); return -1; } rte_free(ptr2); /* first resize to half the size of the freed block */ char *ptr4 = rte_realloc(ptr3, size4, RTE_CACHE_LINE_SIZE); if (!ptr4){ printf("NULL pointer returned from rte_realloc\n"); rte_free(ptr3); return -1; } if (ptr3 != ptr4){ printf("Unexpected - ptr4 != ptr3\n"); rte_free(ptr4); return -1; } /* now resize again to the full size of the freed block */ ptr4 = rte_realloc(ptr3, size3 + size2 + size1, RTE_CACHE_LINE_SIZE); if (ptr3 != ptr4){ printf("Unexpected - ptr4 != ptr3 on second resize\n"); rte_free(ptr4); return -1; } rte_free(ptr4); /* now try a resize to a smaller size, see if it works */ const unsigned size5 = 1024; const unsigned size6 = size5 / 2; char *ptr5 = rte_malloc(NULL, size5, RTE_CACHE_LINE_SIZE); if (!ptr5){ printf("NULL pointer returned from rte_malloc\n"); return -1; } char *ptr6 = rte_realloc(ptr5, size6, RTE_CACHE_LINE_SIZE); if (!ptr6){ printf("NULL pointer returned from rte_realloc\n"); rte_free(ptr5); return -1; } if (ptr5 != ptr6){ printf("Error, resizing to a smaller size moved data\n"); rte_free(ptr6); return -1; } rte_free(ptr6); /* check for behaviour changing alignment */ const unsigned size7 = 1024; const unsigned orig_align = RTE_CACHE_LINE_SIZE; unsigned new_align = RTE_CACHE_LINE_SIZE * 2; char *ptr7 = rte_malloc(NULL, size7, orig_align); if (!ptr7){ printf("NULL pointer returned from rte_malloc\n"); return -1; } /* calc an alignment we don't already have */ while(RTE_PTR_ALIGN(ptr7, new_align) == ptr7) new_align *= 2; char *ptr8 = rte_realloc(ptr7, size7, new_align); if (!ptr8){ printf("NULL pointer returned from rte_realloc\n"); rte_free(ptr7); return -1; } if (RTE_PTR_ALIGN(ptr8, new_align) != ptr8){ printf("Failure to re-align data\n"); rte_free(ptr8); return -1; } rte_free(ptr8); /* test behaviour when there is a free block after current one, * but its not big enough */ unsigned size9 = 1024, size10 = 1024; unsigned size11 = size9 + size10 + 256; char *ptr9 = rte_malloc(NULL, size9, RTE_CACHE_LINE_SIZE); if (!ptr9){ printf("NULL pointer returned from rte_malloc\n"); return -1; } char *ptr10 = rte_malloc(NULL, size10, RTE_CACHE_LINE_SIZE); if (!ptr10){ printf("NULL pointer returned from rte_malloc\n"); return -1; } rte_free(ptr9); char *ptr11 = rte_realloc(ptr10, size11, RTE_CACHE_LINE_SIZE); if (!ptr11){ printf("NULL pointer returned from rte_realloc\n"); rte_free(ptr10); return -1; } if (ptr11 == ptr10){ printf("Error, unexpected that realloc has not created new buffer\n"); rte_free(ptr11); return -1; } rte_free(ptr11); /* check we don't crash if we pass null to realloc * We should get a malloc of the size requested*/ const size_t size12 = 1024; size_t size12_check; char *ptr12 = rte_realloc(NULL, size12, RTE_CACHE_LINE_SIZE); if (!ptr12){ printf("NULL pointer returned from rte_realloc\n"); return -1; } if (rte_malloc_validate(ptr12, &size12_check) < 0 || size12_check != size12){ rte_free(ptr12); return -1; } rte_free(ptr12); /* check realloc_socket part */ int32_t socket_count = 0, socket_allocated, socket; int ret = -1; size_t size = 1024; ptr1 = NULL; for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { if (is_mem_on_socket(socket)) { int j = 2; socket_count++; while (j--) { /* j == 1 -> resizing */ ptr2 = rte_realloc_socket(ptr1, size, RTE_CACHE_LINE_SIZE, socket); if (ptr2 == NULL) { printf("NULL pointer returned from rte_realloc_socket\n"); goto end; } ptr1 = ptr2; socket_allocated = addr_to_socket(ptr2); if (socket_allocated != socket) { printf("Requested socket (%d) doesn't mach allocated one (%d)\n", socket, socket_allocated); goto end; } size += RTE_CACHE_LINE_SIZE; } } } /* Print warnign if only a single socket, but don't fail the test */ if (socket_count < 2) printf("WARNING: realloc_socket test needs memory on multiple sockets!\n"); ret = 0; end: rte_free(ptr1); return ret; } static int test_random_alloc_free(void *_ __attribute__((unused))) { struct mem_list { struct mem_list *next; char data[0]; } *list_head = NULL; unsigned i; unsigned count = 0; rte_srand((unsigned)rte_rdtsc()); for (i = 0; i < N; i++){ unsigned free_mem = 0; size_t allocated_size; while (!free_mem){ const unsigned mem_size = sizeof(struct mem_list) + \ rte_rand() % (64 * 1024); const unsigned align = 1 << (rte_rand() % 12); /* up to 4k alignment */ struct mem_list *entry = rte_malloc(NULL, mem_size, align); if (entry == NULL) return -1; if (RTE_PTR_ALIGN(entry, align)!= entry) return -1; if (rte_malloc_validate(entry, &allocated_size) == -1 || allocated_size < mem_size) return -1; memset(entry->data, rte_lcore_id(), mem_size - sizeof(*entry)); entry->next = list_head; if (rte_malloc_validate(entry, NULL) == -1) return -1; list_head = entry; count++; /* switch to freeing the memory with a 20% probability */ free_mem = ((rte_rand() % 10) >= 8); } while (list_head){ struct mem_list *entry = list_head; list_head = list_head->next; rte_free(entry); } } printf("Lcore %u allocated/freed %u blocks\n", rte_lcore_id(), count); return 0; } #define err_return() do { \ printf("%s: %d - Error\n", __func__, __LINE__); \ goto err_return; \ } while (0) static int test_rte_malloc_validate(void) { const size_t request_size = 1024; size_t allocated_size; char *data_ptr = rte_malloc(NULL, request_size, RTE_CACHE_LINE_SIZE); #ifdef RTE_MALLOC_DEBUG int retval; char *over_write_vals = NULL; #endif if (data_ptr == NULL) { printf("%s: %d - Allocation error\n", __func__, __LINE__); return -1; } /* check that a null input returns -1 */ if (rte_malloc_validate(NULL, NULL) != -1) err_return(); /* check that we get ok on a valid pointer */ if (rte_malloc_validate(data_ptr, &allocated_size) < 0) err_return(); /* check that the returned size is ok */ if (allocated_size < request_size) err_return(); #ifdef RTE_MALLOC_DEBUG /****** change the header to be bad */ char save_buf[64]; over_write_vals = (char *)((uintptr_t)data_ptr - sizeof(save_buf)); /* first save the data as a backup before overwriting it */ memcpy(save_buf, over_write_vals, sizeof(save_buf)); memset(over_write_vals, 1, sizeof(save_buf)); /* then run validate */ retval = rte_malloc_validate(data_ptr, NULL); /* finally restore the data again */ memcpy(over_write_vals, save_buf, sizeof(save_buf)); /* check we previously had an error */ if (retval != -1) err_return(); /* check all ok again */ if (rte_malloc_validate(data_ptr, &allocated_size) < 0) err_return(); /**** change the trailer to be bad */ over_write_vals = (char *)((uintptr_t)data_ptr + allocated_size); /* first save the data as a backup before overwriting it */ memcpy(save_buf, over_write_vals, sizeof(save_buf)); memset(over_write_vals, 1, sizeof(save_buf)); /* then run validate */ retval = rte_malloc_validate(data_ptr, NULL); /* finally restore the data again */ memcpy(over_write_vals, save_buf, sizeof(save_buf)); if (retval != -1) err_return(); /* check all ok again */ if (rte_malloc_validate(data_ptr, &allocated_size) < 0) err_return(); #endif rte_free(data_ptr); return 0; err_return: /*clean up */ rte_free(data_ptr); return -1; } static int test_zero_aligned_alloc(void) { char *p1 = rte_malloc(NULL,1024, 0); if (!p1) goto err_return; if (!rte_is_aligned(p1, RTE_CACHE_LINE_SIZE)) goto err_return; rte_free(p1); return 0; err_return: /*clean up */ if (p1) rte_free(p1); return -1; } static int test_malloc_bad_params(void) { const char *type = NULL; size_t size = 0; unsigned align = RTE_CACHE_LINE_SIZE; /* rte_malloc expected to return null with inappropriate size */ char *bad_ptr = rte_malloc(type, size, align); if (bad_ptr != NULL) goto err_return; /* rte_malloc expected to return null with inappropriate alignment */ align = 17; size = 1024; bad_ptr = rte_malloc(type, size, align); if (bad_ptr != NULL) goto err_return; return 0; err_return: /* clean up pointer */ if (bad_ptr) rte_free(bad_ptr); return -1; } static int check_socket_mem(const struct rte_memseg_list *msl, void *arg) { int32_t *socket = arg; if (msl->external) return 0; return *socket == msl->socket_id; } /* Check if memory is available on a specific socket */ static int is_mem_on_socket(int32_t socket) { return rte_memseg_list_walk(check_socket_mem, &socket); } /* * Find what socket a memory address is on. Only works for addresses within * memsegs, not heap or stack... */ static int32_t addr_to_socket(void * addr) { const struct rte_memseg *ms = rte_mem_virt2memseg(addr, NULL); return ms == NULL ? -1 : ms->socket_id; } /* Test using rte_[c|m|zm]alloc_socket() on a specific socket */ static int test_alloc_single_socket(int32_t socket) { const char *type = NULL; const size_t size = 10; const unsigned align = 0; char *mem = NULL; int32_t desired_socket = (socket == SOCKET_ID_ANY) ? (int32_t)rte_socket_id() : socket; /* Test rte_calloc_socket() */ mem = rte_calloc_socket(type, size, sizeof(char), align, socket); if (mem == NULL) return -1; if (addr_to_socket(mem) != desired_socket) { rte_free(mem); return -1; } rte_free(mem); /* Test rte_malloc_socket() */ mem = rte_malloc_socket(type, size, align, socket); if (mem == NULL) return -1; if (addr_to_socket(mem) != desired_socket) { return -1; } rte_free(mem); /* Test rte_zmalloc_socket() */ mem = rte_zmalloc_socket(type, size, align, socket); if (mem == NULL) return -1; if (addr_to_socket(mem) != desired_socket) { rte_free(mem); return -1; } rte_free(mem); return 0; } static int test_alloc_socket(void) { unsigned socket_count = 0; unsigned i; if (test_alloc_single_socket(SOCKET_ID_ANY) < 0) return -1; for (i = 0; i < RTE_MAX_NUMA_NODES; i++) { if (is_mem_on_socket(i)) { socket_count++; if (test_alloc_single_socket(i) < 0) { printf("Fail: rte_malloc_socket(..., %u) did not succeed\n", i); return -1; } } else { if (test_alloc_single_socket(i) == 0) { printf("Fail: rte_malloc_socket(..., %u) succeeded\n", i); return -1; } } } /* Print warnign if only a single socket, but don't fail the test */ if (socket_count < 2) { printf("WARNING: alloc_socket test needs memory on multiple sockets!\n"); } return 0; } static int test_malloc(void) { unsigned lcore_id; int ret = 0; if (test_str_to_size() < 0){ printf("test_str_to_size() failed\n"); return -1; } else printf("test_str_to_size() passed\n"); if (test_zero_aligned_alloc() < 0){ printf("test_zero_aligned_alloc() failed\n"); return -1; } else printf("test_zero_aligned_alloc() passed\n"); if (test_malloc_bad_params() < 0){ printf("test_malloc_bad_params() failed\n"); return -1; } else printf("test_malloc_bad_params() passed\n"); if (test_realloc() < 0){ printf("test_realloc() failed\n"); return -1; } else printf("test_realloc() passed\n"); /*----------------------------*/ RTE_LCORE_FOREACH_SLAVE(lcore_id) { rte_eal_remote_launch(test_align_overlap_per_lcore, NULL, lcore_id); } RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (rte_eal_wait_lcore(lcore_id) < 0) ret = -1; } if (ret < 0){ printf("test_align_overlap_per_lcore() failed\n"); return ret; } else printf("test_align_overlap_per_lcore() passed\n"); /*----------------------------*/ RTE_LCORE_FOREACH_SLAVE(lcore_id) { rte_eal_remote_launch(test_reordered_free_per_lcore, NULL, lcore_id); } RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (rte_eal_wait_lcore(lcore_id) < 0) ret = -1; } if (ret < 0){ printf("test_reordered_free_per_lcore() failed\n"); return ret; } else printf("test_reordered_free_per_lcore() passed\n"); /*----------------------------*/ RTE_LCORE_FOREACH_SLAVE(lcore_id) { rte_eal_remote_launch(test_random_alloc_free, NULL, lcore_id); } RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (rte_eal_wait_lcore(lcore_id) < 0) ret = -1; } if (ret < 0){ printf("test_random_alloc_free() failed\n"); return ret; } else printf("test_random_alloc_free() passed\n"); /*----------------------------*/ ret = test_rte_malloc_type_limits(); if (ret < 0){ printf("test_rte_malloc_type_limits() failed\n"); return ret; } /* TODO: uncomment following line once type limits are valid */ /*else printf("test_rte_malloc_type_limits() passed\n");*/ /*----------------------------*/ ret = test_rte_malloc_validate(); if (ret < 0){ printf("test_rte_malloc_validate() failed\n"); return ret; } else printf("test_rte_malloc_validate() passed\n"); ret = test_alloc_socket(); if (ret < 0){ printf("test_alloc_socket() failed\n"); return ret; } else printf("test_alloc_socket() passed\n"); ret = test_multi_alloc_statistics(); if (ret < 0) { printf("test_multi_alloc_statistics() failed\n"); return ret; } else printf("test_multi_alloc_statistics() passed\n"); return 0; } REGISTER_TEST_COMMAND(malloc_autotest, test_malloc);