/* SPDX-License-Identifier: BSD-3-Clause * Copyright (c) 2016 - 2018 Cavium Inc. * All rights reserved. * www.cavium.com */ #include "qede_ethdev.h" #include #include #include #include /* Globals */ int qede_logtype_init; int qede_logtype_driver; static const struct qed_eth_ops *qed_ops; static int qede_eth_dev_uninit(struct rte_eth_dev *eth_dev); static int qede_eth_dev_init(struct rte_eth_dev *eth_dev); #define QEDE_SP_TIMER_PERIOD 10000 /* 100ms */ struct rte_qede_xstats_name_off { char name[RTE_ETH_XSTATS_NAME_SIZE]; uint64_t offset; }; static const struct rte_qede_xstats_name_off qede_xstats_strings[] = { {"rx_unicast_bytes", offsetof(struct ecore_eth_stats_common, rx_ucast_bytes)}, {"rx_multicast_bytes", offsetof(struct ecore_eth_stats_common, rx_mcast_bytes)}, {"rx_broadcast_bytes", offsetof(struct ecore_eth_stats_common, rx_bcast_bytes)}, {"rx_unicast_packets", offsetof(struct ecore_eth_stats_common, rx_ucast_pkts)}, {"rx_multicast_packets", offsetof(struct ecore_eth_stats_common, rx_mcast_pkts)}, {"rx_broadcast_packets", offsetof(struct ecore_eth_stats_common, rx_bcast_pkts)}, {"tx_unicast_bytes", offsetof(struct ecore_eth_stats_common, tx_ucast_bytes)}, {"tx_multicast_bytes", offsetof(struct ecore_eth_stats_common, tx_mcast_bytes)}, {"tx_broadcast_bytes", offsetof(struct ecore_eth_stats_common, tx_bcast_bytes)}, {"tx_unicast_packets", offsetof(struct ecore_eth_stats_common, tx_ucast_pkts)}, {"tx_multicast_packets", offsetof(struct ecore_eth_stats_common, tx_mcast_pkts)}, {"tx_broadcast_packets", offsetof(struct ecore_eth_stats_common, tx_bcast_pkts)}, {"rx_64_byte_packets", offsetof(struct ecore_eth_stats_common, rx_64_byte_packets)}, {"rx_65_to_127_byte_packets", offsetof(struct ecore_eth_stats_common, rx_65_to_127_byte_packets)}, {"rx_128_to_255_byte_packets", offsetof(struct ecore_eth_stats_common, rx_128_to_255_byte_packets)}, {"rx_256_to_511_byte_packets", offsetof(struct ecore_eth_stats_common, rx_256_to_511_byte_packets)}, {"rx_512_to_1023_byte_packets", offsetof(struct ecore_eth_stats_common, rx_512_to_1023_byte_packets)}, {"rx_1024_to_1518_byte_packets", offsetof(struct ecore_eth_stats_common, rx_1024_to_1518_byte_packets)}, {"tx_64_byte_packets", offsetof(struct ecore_eth_stats_common, tx_64_byte_packets)}, {"tx_65_to_127_byte_packets", offsetof(struct ecore_eth_stats_common, tx_65_to_127_byte_packets)}, {"tx_128_to_255_byte_packets", offsetof(struct ecore_eth_stats_common, tx_128_to_255_byte_packets)}, {"tx_256_to_511_byte_packets", offsetof(struct ecore_eth_stats_common, tx_256_to_511_byte_packets)}, {"tx_512_to_1023_byte_packets", offsetof(struct ecore_eth_stats_common, tx_512_to_1023_byte_packets)}, {"tx_1024_to_1518_byte_packets", offsetof(struct ecore_eth_stats_common, tx_1024_to_1518_byte_packets)}, {"rx_mac_crtl_frames", offsetof(struct ecore_eth_stats_common, rx_mac_crtl_frames)}, {"tx_mac_control_frames", offsetof(struct ecore_eth_stats_common, tx_mac_ctrl_frames)}, {"rx_pause_frames", offsetof(struct ecore_eth_stats_common, rx_pause_frames)}, {"tx_pause_frames", offsetof(struct ecore_eth_stats_common, tx_pause_frames)}, {"rx_priority_flow_control_frames", offsetof(struct ecore_eth_stats_common, rx_pfc_frames)}, {"tx_priority_flow_control_frames", offsetof(struct ecore_eth_stats_common, tx_pfc_frames)}, {"rx_crc_errors", offsetof(struct ecore_eth_stats_common, rx_crc_errors)}, {"rx_align_errors", offsetof(struct ecore_eth_stats_common, rx_align_errors)}, {"rx_carrier_errors", offsetof(struct ecore_eth_stats_common, rx_carrier_errors)}, {"rx_oversize_packet_errors", offsetof(struct ecore_eth_stats_common, rx_oversize_packets)}, {"rx_jabber_errors", offsetof(struct ecore_eth_stats_common, rx_jabbers)}, {"rx_undersize_packet_errors", offsetof(struct ecore_eth_stats_common, rx_undersize_packets)}, {"rx_fragments", offsetof(struct ecore_eth_stats_common, rx_fragments)}, {"rx_host_buffer_not_available", offsetof(struct ecore_eth_stats_common, no_buff_discards)}, /* Number of packets discarded because they are bigger than MTU */ {"rx_packet_too_big_discards", offsetof(struct ecore_eth_stats_common, packet_too_big_discard)}, {"rx_ttl_zero_discards", offsetof(struct ecore_eth_stats_common, ttl0_discard)}, {"rx_multi_function_tag_filter_discards", offsetof(struct ecore_eth_stats_common, mftag_filter_discards)}, {"rx_mac_filter_discards", offsetof(struct ecore_eth_stats_common, mac_filter_discards)}, {"rx_hw_buffer_truncates", offsetof(struct ecore_eth_stats_common, brb_truncates)}, {"rx_hw_buffer_discards", offsetof(struct ecore_eth_stats_common, brb_discards)}, {"tx_error_drop_packets", offsetof(struct ecore_eth_stats_common, tx_err_drop_pkts)}, {"rx_mac_bytes", offsetof(struct ecore_eth_stats_common, rx_mac_bytes)}, {"rx_mac_unicast_packets", offsetof(struct ecore_eth_stats_common, rx_mac_uc_packets)}, {"rx_mac_multicast_packets", offsetof(struct ecore_eth_stats_common, rx_mac_mc_packets)}, {"rx_mac_broadcast_packets", offsetof(struct ecore_eth_stats_common, rx_mac_bc_packets)}, {"rx_mac_frames_ok", offsetof(struct ecore_eth_stats_common, rx_mac_frames_ok)}, {"tx_mac_bytes", offsetof(struct ecore_eth_stats_common, tx_mac_bytes)}, {"tx_mac_unicast_packets", offsetof(struct ecore_eth_stats_common, tx_mac_uc_packets)}, {"tx_mac_multicast_packets", offsetof(struct ecore_eth_stats_common, tx_mac_mc_packets)}, {"tx_mac_broadcast_packets", offsetof(struct ecore_eth_stats_common, tx_mac_bc_packets)}, {"lro_coalesced_packets", offsetof(struct ecore_eth_stats_common, tpa_coalesced_pkts)}, {"lro_coalesced_events", offsetof(struct ecore_eth_stats_common, tpa_coalesced_events)}, {"lro_aborts_num", offsetof(struct ecore_eth_stats_common, tpa_aborts_num)}, {"lro_not_coalesced_packets", offsetof(struct ecore_eth_stats_common, tpa_not_coalesced_pkts)}, {"lro_coalesced_bytes", offsetof(struct ecore_eth_stats_common, tpa_coalesced_bytes)}, }; static const struct rte_qede_xstats_name_off qede_bb_xstats_strings[] = { {"rx_1519_to_1522_byte_packets", offsetof(struct ecore_eth_stats, bb) + offsetof(struct ecore_eth_stats_bb, rx_1519_to_1522_byte_packets)}, {"rx_1519_to_2047_byte_packets", offsetof(struct ecore_eth_stats, bb) + offsetof(struct ecore_eth_stats_bb, rx_1519_to_2047_byte_packets)}, {"rx_2048_to_4095_byte_packets", offsetof(struct ecore_eth_stats, bb) + offsetof(struct ecore_eth_stats_bb, rx_2048_to_4095_byte_packets)}, {"rx_4096_to_9216_byte_packets", offsetof(struct ecore_eth_stats, bb) + offsetof(struct ecore_eth_stats_bb, rx_4096_to_9216_byte_packets)}, {"rx_9217_to_16383_byte_packets", offsetof(struct ecore_eth_stats, bb) + offsetof(struct ecore_eth_stats_bb, rx_9217_to_16383_byte_packets)}, {"tx_1519_to_2047_byte_packets", offsetof(struct ecore_eth_stats, bb) + offsetof(struct ecore_eth_stats_bb, tx_1519_to_2047_byte_packets)}, {"tx_2048_to_4095_byte_packets", offsetof(struct ecore_eth_stats, bb) + offsetof(struct ecore_eth_stats_bb, tx_2048_to_4095_byte_packets)}, {"tx_4096_to_9216_byte_packets", offsetof(struct ecore_eth_stats, bb) + offsetof(struct ecore_eth_stats_bb, tx_4096_to_9216_byte_packets)}, {"tx_9217_to_16383_byte_packets", offsetof(struct ecore_eth_stats, bb) + offsetof(struct ecore_eth_stats_bb, tx_9217_to_16383_byte_packets)}, {"tx_lpi_entry_count", offsetof(struct ecore_eth_stats, bb) + offsetof(struct ecore_eth_stats_bb, tx_lpi_entry_count)}, {"tx_total_collisions", offsetof(struct ecore_eth_stats, bb) + offsetof(struct ecore_eth_stats_bb, tx_total_collisions)}, }; static const struct rte_qede_xstats_name_off qede_ah_xstats_strings[] = { {"rx_1519_to_max_byte_packets", offsetof(struct ecore_eth_stats, ah) + offsetof(struct ecore_eth_stats_ah, rx_1519_to_max_byte_packets)}, {"tx_1519_to_max_byte_packets", offsetof(struct ecore_eth_stats, ah) + offsetof(struct ecore_eth_stats_ah, tx_1519_to_max_byte_packets)}, }; static const struct rte_qede_xstats_name_off qede_rxq_xstats_strings[] = { {"rx_q_segments", offsetof(struct qede_rx_queue, rx_segs)}, {"rx_q_hw_errors", offsetof(struct qede_rx_queue, rx_hw_errors)}, {"rx_q_allocation_errors", offsetof(struct qede_rx_queue, rx_alloc_errors)} }; static void qede_interrupt_action(struct ecore_hwfn *p_hwfn) { ecore_int_sp_dpc((osal_int_ptr_t)(p_hwfn)); } static void qede_interrupt_handler_intx(void *param) { struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param; struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; u64 status; /* Check if our device actually raised an interrupt */ status = ecore_int_igu_read_sisr_reg(ECORE_LEADING_HWFN(edev)); if (status & 0x1) { qede_interrupt_action(ECORE_LEADING_HWFN(edev)); if (rte_intr_enable(eth_dev->intr_handle)) DP_ERR(edev, "rte_intr_enable failed\n"); } } static void qede_interrupt_handler(void *param) { struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param; struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; qede_interrupt_action(ECORE_LEADING_HWFN(edev)); if (rte_intr_enable(eth_dev->intr_handle)) DP_ERR(edev, "rte_intr_enable failed\n"); } static void qede_alloc_etherdev(struct qede_dev *qdev, struct qed_dev_eth_info *info) { rte_memcpy(&qdev->dev_info, info, sizeof(*info)); qdev->ops = qed_ops; } static void qede_print_adapter_info(struct qede_dev *qdev) { struct ecore_dev *edev = &qdev->edev; struct qed_dev_info *info = &qdev->dev_info.common; static char drv_ver[QEDE_PMD_DRV_VER_STR_SIZE]; static char ver_str[QEDE_PMD_DRV_VER_STR_SIZE]; DP_INFO(edev, "*********************************\n"); DP_INFO(edev, " DPDK version:%s\n", rte_version()); DP_INFO(edev, " Chip details : %s %c%d\n", ECORE_IS_BB(edev) ? "BB" : "AH", 'A' + edev->chip_rev, (int)edev->chip_metal); snprintf(ver_str, QEDE_PMD_DRV_VER_STR_SIZE, "%d.%d.%d.%d", info->fw_major, info->fw_minor, info->fw_rev, info->fw_eng); snprintf(drv_ver, QEDE_PMD_DRV_VER_STR_SIZE, "%s_%s", ver_str, QEDE_PMD_VERSION); DP_INFO(edev, " Driver version : %s\n", drv_ver); DP_INFO(edev, " Firmware version : %s\n", ver_str); snprintf(ver_str, MCP_DRV_VER_STR_SIZE, "%d.%d.%d.%d", (info->mfw_rev >> 24) & 0xff, (info->mfw_rev >> 16) & 0xff, (info->mfw_rev >> 8) & 0xff, (info->mfw_rev) & 0xff); DP_INFO(edev, " Management Firmware version : %s\n", ver_str); DP_INFO(edev, " Firmware file : %s\n", qede_fw_file); DP_INFO(edev, "*********************************\n"); } static void qede_reset_queue_stats(struct qede_dev *qdev, bool xstats) { struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); unsigned int i = 0, j = 0, qid; unsigned int rxq_stat_cntrs, txq_stat_cntrs; struct qede_tx_queue *txq; DP_VERBOSE(edev, ECORE_MSG_DEBUG, "Clearing queue stats\n"); rxq_stat_cntrs = RTE_MIN(QEDE_RSS_COUNT(qdev), RTE_ETHDEV_QUEUE_STAT_CNTRS); txq_stat_cntrs = RTE_MIN(QEDE_TSS_COUNT(qdev), RTE_ETHDEV_QUEUE_STAT_CNTRS); for_each_rss(qid) { OSAL_MEMSET(((char *)(qdev->fp_array[qid].rxq)) + offsetof(struct qede_rx_queue, rcv_pkts), 0, sizeof(uint64_t)); OSAL_MEMSET(((char *)(qdev->fp_array[qid].rxq)) + offsetof(struct qede_rx_queue, rx_hw_errors), 0, sizeof(uint64_t)); OSAL_MEMSET(((char *)(qdev->fp_array[qid].rxq)) + offsetof(struct qede_rx_queue, rx_alloc_errors), 0, sizeof(uint64_t)); if (xstats) for (j = 0; j < RTE_DIM(qede_rxq_xstats_strings); j++) OSAL_MEMSET((((char *) (qdev->fp_array[qid].rxq)) + qede_rxq_xstats_strings[j].offset), 0, sizeof(uint64_t)); i++; if (i == rxq_stat_cntrs) break; } i = 0; for_each_tss(qid) { txq = qdev->fp_array[qid].txq; OSAL_MEMSET((uint64_t *)(uintptr_t) (((uint64_t)(uintptr_t)(txq)) + offsetof(struct qede_tx_queue, xmit_pkts)), 0, sizeof(uint64_t)); i++; if (i == txq_stat_cntrs) break; } } static int qede_stop_vport(struct ecore_dev *edev) { struct ecore_hwfn *p_hwfn; uint8_t vport_id; int rc; int i; vport_id = 0; for_each_hwfn(edev, i) { p_hwfn = &edev->hwfns[i]; rc = ecore_sp_vport_stop(p_hwfn, p_hwfn->hw_info.opaque_fid, vport_id); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "Stop V-PORT failed rc = %d\n", rc); return rc; } } DP_INFO(edev, "vport stopped\n"); return 0; } static int qede_start_vport(struct qede_dev *qdev, uint16_t mtu) { struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct ecore_sp_vport_start_params params; struct ecore_hwfn *p_hwfn; int rc; int i; if (qdev->vport_started) qede_stop_vport(edev); memset(¶ms, 0, sizeof(params)); params.vport_id = 0; params.mtu = mtu; /* @DPDK - Disable FW placement */ params.zero_placement_offset = 1; for_each_hwfn(edev, i) { p_hwfn = &edev->hwfns[i]; params.concrete_fid = p_hwfn->hw_info.concrete_fid; params.opaque_fid = p_hwfn->hw_info.opaque_fid; rc = ecore_sp_vport_start(p_hwfn, ¶ms); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "Start V-PORT failed %d\n", rc); return rc; } } ecore_reset_vport_stats(edev); qdev->vport_started = true; DP_INFO(edev, "VPORT started with MTU = %u\n", mtu); return 0; } #define QEDE_NPAR_TX_SWITCHING "npar_tx_switching" #define QEDE_VF_TX_SWITCHING "vf_tx_switching" /* Activate or deactivate vport via vport-update */ int qede_activate_vport(struct rte_eth_dev *eth_dev, bool flg) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct ecore_sp_vport_update_params params; struct ecore_hwfn *p_hwfn; uint8_t i; int rc = -1; memset(¶ms, 0, sizeof(struct ecore_sp_vport_update_params)); params.vport_id = 0; params.update_vport_active_rx_flg = 1; params.update_vport_active_tx_flg = 1; params.vport_active_rx_flg = flg; params.vport_active_tx_flg = flg; if (~qdev->enable_tx_switching & flg) { params.update_tx_switching_flg = 1; params.tx_switching_flg = !flg; } for_each_hwfn(edev, i) { p_hwfn = &edev->hwfns[i]; params.opaque_fid = p_hwfn->hw_info.opaque_fid; rc = ecore_sp_vport_update(p_hwfn, ¶ms, ECORE_SPQ_MODE_EBLOCK, NULL); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "Failed to update vport\n"); break; } } DP_INFO(edev, "vport is %s\n", flg ? "activated" : "deactivated"); return rc; } static void qede_update_sge_tpa_params(struct ecore_sge_tpa_params *sge_tpa_params, uint16_t mtu, bool enable) { /* Enable LRO in split mode */ sge_tpa_params->tpa_ipv4_en_flg = enable; sge_tpa_params->tpa_ipv6_en_flg = enable; sge_tpa_params->tpa_ipv4_tunn_en_flg = enable; sge_tpa_params->tpa_ipv6_tunn_en_flg = enable; /* set if tpa enable changes */ sge_tpa_params->update_tpa_en_flg = 1; /* set if tpa parameters should be handled */ sge_tpa_params->update_tpa_param_flg = enable; sge_tpa_params->max_buffers_per_cqe = 20; /* Enable TPA in split mode. In this mode each TPA segment * starts on the new BD, so there is one BD per segment. */ sge_tpa_params->tpa_pkt_split_flg = 1; sge_tpa_params->tpa_hdr_data_split_flg = 0; sge_tpa_params->tpa_gro_consistent_flg = 0; sge_tpa_params->tpa_max_aggs_num = ETH_TPA_MAX_AGGS_NUM; sge_tpa_params->tpa_max_size = 0x7FFF; sge_tpa_params->tpa_min_size_to_start = mtu / 2; sge_tpa_params->tpa_min_size_to_cont = mtu / 2; } /* Enable/disable LRO via vport-update */ int qede_enable_tpa(struct rte_eth_dev *eth_dev, bool flg) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct ecore_sp_vport_update_params params; struct ecore_sge_tpa_params tpa_params; struct ecore_hwfn *p_hwfn; int rc; int i; memset(¶ms, 0, sizeof(struct ecore_sp_vport_update_params)); memset(&tpa_params, 0, sizeof(struct ecore_sge_tpa_params)); qede_update_sge_tpa_params(&tpa_params, qdev->mtu, flg); params.vport_id = 0; params.sge_tpa_params = &tpa_params; for_each_hwfn(edev, i) { p_hwfn = &edev->hwfns[i]; params.opaque_fid = p_hwfn->hw_info.opaque_fid; rc = ecore_sp_vport_update(p_hwfn, ¶ms, ECORE_SPQ_MODE_EBLOCK, NULL); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "Failed to update LRO\n"); return -1; } } qdev->enable_lro = flg; eth_dev->data->lro = flg; DP_INFO(edev, "LRO is %s\n", flg ? "enabled" : "disabled"); return 0; } static int qed_configure_filter_rx_mode(struct rte_eth_dev *eth_dev, enum qed_filter_rx_mode_type type) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct ecore_filter_accept_flags flags; memset(&flags, 0, sizeof(flags)); flags.update_rx_mode_config = 1; flags.update_tx_mode_config = 1; flags.rx_accept_filter = ECORE_ACCEPT_UCAST_MATCHED | ECORE_ACCEPT_MCAST_MATCHED | ECORE_ACCEPT_BCAST; flags.tx_accept_filter = ECORE_ACCEPT_UCAST_MATCHED | ECORE_ACCEPT_MCAST_MATCHED | ECORE_ACCEPT_BCAST; if (type == QED_FILTER_RX_MODE_TYPE_PROMISC) { flags.rx_accept_filter |= ECORE_ACCEPT_UCAST_UNMATCHED; if (IS_VF(edev)) { flags.tx_accept_filter |= ECORE_ACCEPT_UCAST_UNMATCHED; DP_INFO(edev, "Enabling Tx unmatched flag for VF\n"); } } else if (type == QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC) { flags.rx_accept_filter |= ECORE_ACCEPT_MCAST_UNMATCHED; } else if (type == (QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC | QED_FILTER_RX_MODE_TYPE_PROMISC)) { flags.rx_accept_filter |= ECORE_ACCEPT_UCAST_UNMATCHED | ECORE_ACCEPT_MCAST_UNMATCHED; } return ecore_filter_accept_cmd(edev, 0, flags, false, false, ECORE_SPQ_MODE_CB, NULL); } int qede_ucast_filter(struct rte_eth_dev *eth_dev, struct ecore_filter_ucast *ucast, bool add) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct qede_ucast_entry *tmp = NULL; struct qede_ucast_entry *u; struct ether_addr *mac_addr; mac_addr = (struct ether_addr *)ucast->mac; if (add) { SLIST_FOREACH(tmp, &qdev->uc_list_head, list) { if ((memcmp(mac_addr, &tmp->mac, ETHER_ADDR_LEN) == 0) && ucast->vni == tmp->vni && ucast->vlan == tmp->vlan) { DP_INFO(edev, "Unicast MAC is already added" " with vlan = %u, vni = %u\n", ucast->vlan, ucast->vni); return 0; } } u = rte_malloc(NULL, sizeof(struct qede_ucast_entry), RTE_CACHE_LINE_SIZE); if (!u) { DP_ERR(edev, "Did not allocate memory for ucast\n"); return -ENOMEM; } ether_addr_copy(mac_addr, &u->mac); u->vlan = ucast->vlan; u->vni = ucast->vni; SLIST_INSERT_HEAD(&qdev->uc_list_head, u, list); qdev->num_uc_addr++; } else { SLIST_FOREACH(tmp, &qdev->uc_list_head, list) { if ((memcmp(mac_addr, &tmp->mac, ETHER_ADDR_LEN) == 0) && ucast->vlan == tmp->vlan && ucast->vni == tmp->vni) break; } if (tmp == NULL) { DP_INFO(edev, "Unicast MAC is not found\n"); return -EINVAL; } SLIST_REMOVE(&qdev->uc_list_head, tmp, qede_ucast_entry, list); qdev->num_uc_addr--; } return 0; } static int qede_add_mcast_filters(struct rte_eth_dev *eth_dev, struct ether_addr *mc_addrs, uint32_t mc_addrs_num) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct ecore_filter_mcast mcast; struct qede_mcast_entry *m = NULL; uint8_t i; int rc; for (i = 0; i < mc_addrs_num; i++) { m = rte_malloc(NULL, sizeof(struct qede_mcast_entry), RTE_CACHE_LINE_SIZE); if (!m) { DP_ERR(edev, "Did not allocate memory for mcast\n"); return -ENOMEM; } ether_addr_copy(&mc_addrs[i], &m->mac); SLIST_INSERT_HEAD(&qdev->mc_list_head, m, list); } memset(&mcast, 0, sizeof(mcast)); mcast.num_mc_addrs = mc_addrs_num; mcast.opcode = ECORE_FILTER_ADD; for (i = 0; i < mc_addrs_num; i++) ether_addr_copy(&mc_addrs[i], (struct ether_addr *) &mcast.mac[i]); rc = ecore_filter_mcast_cmd(edev, &mcast, ECORE_SPQ_MODE_CB, NULL); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "Failed to add multicast filter (rc = %d\n)", rc); return -1; } return 0; } static int qede_del_mcast_filters(struct rte_eth_dev *eth_dev) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct qede_mcast_entry *tmp = NULL; struct ecore_filter_mcast mcast; int j; int rc; memset(&mcast, 0, sizeof(mcast)); mcast.num_mc_addrs = qdev->num_mc_addr; mcast.opcode = ECORE_FILTER_REMOVE; j = 0; SLIST_FOREACH(tmp, &qdev->mc_list_head, list) { ether_addr_copy(&tmp->mac, (struct ether_addr *)&mcast.mac[j]); j++; } rc = ecore_filter_mcast_cmd(edev, &mcast, ECORE_SPQ_MODE_CB, NULL); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "Failed to delete multicast filter\n"); return -1; } /* Init the list */ while (!SLIST_EMPTY(&qdev->mc_list_head)) { tmp = SLIST_FIRST(&qdev->mc_list_head); SLIST_REMOVE_HEAD(&qdev->mc_list_head, list); } SLIST_INIT(&qdev->mc_list_head); return 0; } enum _ecore_status_t qede_mac_int_ops(struct rte_eth_dev *eth_dev, struct ecore_filter_ucast *ucast, bool add) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); enum _ecore_status_t rc = ECORE_INVAL; if (add && (qdev->num_uc_addr >= qdev->dev_info.num_mac_filters)) { DP_ERR(edev, "Ucast filter table limit exceeded," " Please enable promisc mode\n"); return ECORE_INVAL; } rc = qede_ucast_filter(eth_dev, ucast, add); if (rc == 0) rc = ecore_filter_ucast_cmd(edev, ucast, ECORE_SPQ_MODE_CB, NULL); /* Indicate error only for add filter operation. * Delete filter operations are not severe. */ if ((rc != ECORE_SUCCESS) && add) DP_ERR(edev, "MAC filter failed, rc = %d, op = %d\n", rc, add); return rc; } static int qede_mac_addr_add(struct rte_eth_dev *eth_dev, struct ether_addr *mac_addr, __rte_unused uint32_t index, __rte_unused uint32_t pool) { struct ecore_filter_ucast ucast; int re; if (!is_valid_assigned_ether_addr(mac_addr)) return -EINVAL; qede_set_ucast_cmn_params(&ucast); ucast.opcode = ECORE_FILTER_ADD; ucast.type = ECORE_FILTER_MAC; ether_addr_copy(mac_addr, (struct ether_addr *)&ucast.mac); re = (int)qede_mac_int_ops(eth_dev, &ucast, 1); return re; } static void qede_mac_addr_remove(struct rte_eth_dev *eth_dev, uint32_t index) { struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; struct ecore_filter_ucast ucast; PMD_INIT_FUNC_TRACE(edev); if (index >= qdev->dev_info.num_mac_filters) { DP_ERR(edev, "Index %u is above MAC filter limit %u\n", index, qdev->dev_info.num_mac_filters); return; } if (!is_valid_assigned_ether_addr(ð_dev->data->mac_addrs[index])) return; qede_set_ucast_cmn_params(&ucast); ucast.opcode = ECORE_FILTER_REMOVE; ucast.type = ECORE_FILTER_MAC; /* Use the index maintained by rte */ ether_addr_copy(ð_dev->data->mac_addrs[index], (struct ether_addr *)&ucast.mac); qede_mac_int_ops(eth_dev, &ucast, false); } static int qede_mac_addr_set(struct rte_eth_dev *eth_dev, struct ether_addr *mac_addr) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); if (IS_VF(edev) && !ecore_vf_check_mac(ECORE_LEADING_HWFN(edev), mac_addr->addr_bytes)) { DP_ERR(edev, "Setting MAC address is not allowed\n"); return -EPERM; } qede_mac_addr_remove(eth_dev, 0); return qede_mac_addr_add(eth_dev, mac_addr, 0, 0); } void qede_config_accept_any_vlan(struct qede_dev *qdev, bool flg) { struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct ecore_sp_vport_update_params params; struct ecore_hwfn *p_hwfn; uint8_t i; int rc; memset(¶ms, 0, sizeof(struct ecore_sp_vport_update_params)); params.vport_id = 0; params.update_accept_any_vlan_flg = 1; params.accept_any_vlan = flg; for_each_hwfn(edev, i) { p_hwfn = &edev->hwfns[i]; params.opaque_fid = p_hwfn->hw_info.opaque_fid; rc = ecore_sp_vport_update(p_hwfn, ¶ms, ECORE_SPQ_MODE_EBLOCK, NULL); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "Failed to configure accept-any-vlan\n"); return; } } DP_INFO(edev, "%s accept-any-vlan\n", flg ? "enabled" : "disabled"); } static int qede_vlan_stripping(struct rte_eth_dev *eth_dev, bool flg) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct ecore_sp_vport_update_params params; struct ecore_hwfn *p_hwfn; uint8_t i; int rc; memset(¶ms, 0, sizeof(struct ecore_sp_vport_update_params)); params.vport_id = 0; params.update_inner_vlan_removal_flg = 1; params.inner_vlan_removal_flg = flg; for_each_hwfn(edev, i) { p_hwfn = &edev->hwfns[i]; params.opaque_fid = p_hwfn->hw_info.opaque_fid; rc = ecore_sp_vport_update(p_hwfn, ¶ms, ECORE_SPQ_MODE_EBLOCK, NULL); if (rc != ECORE_SUCCESS) { DP_ERR(edev, "Failed to update vport\n"); return -1; } } DP_INFO(edev, "VLAN stripping %s\n", flg ? "enabled" : "disabled"); return 0; } static int qede_vlan_filter_set(struct rte_eth_dev *eth_dev, uint16_t vlan_id, int on) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct qed_dev_eth_info *dev_info = &qdev->dev_info; struct qede_vlan_entry *tmp = NULL; struct qede_vlan_entry *vlan; struct ecore_filter_ucast ucast; int rc; if (on) { if (qdev->configured_vlans == dev_info->num_vlan_filters) { DP_ERR(edev, "Reached max VLAN filter limit" " enabling accept_any_vlan\n"); qede_config_accept_any_vlan(qdev, true); return 0; } SLIST_FOREACH(tmp, &qdev->vlan_list_head, list) { if (tmp->vid == vlan_id) { DP_INFO(edev, "VLAN %u already configured\n", vlan_id); return 0; } } vlan = rte_malloc(NULL, sizeof(struct qede_vlan_entry), RTE_CACHE_LINE_SIZE); if (!vlan) { DP_ERR(edev, "Did not allocate memory for VLAN\n"); return -ENOMEM; } qede_set_ucast_cmn_params(&ucast); ucast.opcode = ECORE_FILTER_ADD; ucast.type = ECORE_FILTER_VLAN; ucast.vlan = vlan_id; rc = ecore_filter_ucast_cmd(edev, &ucast, ECORE_SPQ_MODE_CB, NULL); if (rc != 0) { DP_ERR(edev, "Failed to add VLAN %u rc %d\n", vlan_id, rc); rte_free(vlan); } else { vlan->vid = vlan_id; SLIST_INSERT_HEAD(&qdev->vlan_list_head, vlan, list); qdev->configured_vlans++; DP_INFO(edev, "VLAN %u added, configured_vlans %u\n", vlan_id, qdev->configured_vlans); } } else { SLIST_FOREACH(tmp, &qdev->vlan_list_head, list) { if (tmp->vid == vlan_id) break; } if (!tmp) { if (qdev->configured_vlans == 0) { DP_INFO(edev, "No VLAN filters configured yet\n"); return 0; } DP_ERR(edev, "VLAN %u not configured\n", vlan_id); return -EINVAL; } SLIST_REMOVE(&qdev->vlan_list_head, tmp, qede_vlan_entry, list); qede_set_ucast_cmn_params(&ucast); ucast.opcode = ECORE_FILTER_REMOVE; ucast.type = ECORE_FILTER_VLAN; ucast.vlan = vlan_id; rc = ecore_filter_ucast_cmd(edev, &ucast, ECORE_SPQ_MODE_CB, NULL); if (rc != 0) { DP_ERR(edev, "Failed to delete VLAN %u rc %d\n", vlan_id, rc); } else { qdev->configured_vlans--; DP_INFO(edev, "VLAN %u removed configured_vlans %u\n", vlan_id, qdev->configured_vlans); } } return rc; } static int qede_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); uint64_t rx_offloads = eth_dev->data->dev_conf.rxmode.offloads; if (mask & ETH_VLAN_STRIP_MASK) { if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP) (void)qede_vlan_stripping(eth_dev, 1); else (void)qede_vlan_stripping(eth_dev, 0); } if (mask & ETH_VLAN_FILTER_MASK) { /* VLAN filtering kicks in when a VLAN is added */ if (rx_offloads & DEV_RX_OFFLOAD_VLAN_FILTER) { qede_vlan_filter_set(eth_dev, 0, 1); } else { if (qdev->configured_vlans > 1) { /* Excluding VLAN0 */ DP_ERR(edev, " Please remove existing VLAN filters" " before disabling VLAN filtering\n"); /* Signal app that VLAN filtering is still * enabled */ eth_dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; } else { qede_vlan_filter_set(eth_dev, 0, 0); } } } if (mask & ETH_VLAN_EXTEND_MASK) DP_ERR(edev, "Extend VLAN not supported\n"); qdev->vlan_offload_mask = mask; DP_INFO(edev, "VLAN offload mask %d\n", mask); return 0; } static void qede_prandom_bytes(uint32_t *buff) { uint8_t i; srand((unsigned int)time(NULL)); for (i = 0; i < ECORE_RSS_KEY_SIZE; i++) buff[i] = rand(); } int qede_config_rss(struct rte_eth_dev *eth_dev) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); uint32_t def_rss_key[ECORE_RSS_KEY_SIZE]; struct rte_eth_rss_reta_entry64 reta_conf[2]; struct rte_eth_rss_conf rss_conf; uint32_t i, id, pos, q; rss_conf = eth_dev->data->dev_conf.rx_adv_conf.rss_conf; if (!rss_conf.rss_key) { DP_INFO(edev, "Applying driver default key\n"); rss_conf.rss_key_len = ECORE_RSS_KEY_SIZE * sizeof(uint32_t); qede_prandom_bytes(&def_rss_key[0]); rss_conf.rss_key = (uint8_t *)&def_rss_key[0]; } /* Configure RSS hash */ if (qede_rss_hash_update(eth_dev, &rss_conf)) return -EINVAL; /* Configure default RETA */ memset(reta_conf, 0, sizeof(reta_conf)); for (i = 0; i < ECORE_RSS_IND_TABLE_SIZE; i++) reta_conf[i / RTE_RETA_GROUP_SIZE].mask = UINT64_MAX; for (i = 0; i < ECORE_RSS_IND_TABLE_SIZE; i++) { id = i / RTE_RETA_GROUP_SIZE; pos = i % RTE_RETA_GROUP_SIZE; q = i % QEDE_RSS_COUNT(qdev); reta_conf[id].reta[pos] = q; } if (qede_rss_reta_update(eth_dev, &reta_conf[0], ECORE_RSS_IND_TABLE_SIZE)) return -EINVAL; return 0; } static void qede_fastpath_start(struct ecore_dev *edev) { struct ecore_hwfn *p_hwfn; int i; for_each_hwfn(edev, i) { p_hwfn = &edev->hwfns[i]; ecore_hw_start_fastpath(p_hwfn); } } static int qede_dev_start(struct rte_eth_dev *eth_dev) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct rte_eth_rxmode *rxmode = ð_dev->data->dev_conf.rxmode; PMD_INIT_FUNC_TRACE(edev); /* Update MTU only if it has changed */ if (eth_dev->data->mtu != qdev->mtu) { if (qede_update_mtu(eth_dev, qdev->mtu)) goto err; } /* Configure TPA parameters */ if (rxmode->offloads & DEV_RX_OFFLOAD_TCP_LRO) { if (qede_enable_tpa(eth_dev, true)) return -EINVAL; /* Enable scatter mode for LRO */ if (!eth_dev->data->scattered_rx) rxmode->offloads |= DEV_RX_OFFLOAD_SCATTER; } /* Start queues */ if (qede_start_queues(eth_dev)) goto err; if (IS_PF(edev)) qede_reset_queue_stats(qdev, true); /* Newer SR-IOV PF driver expects RX/TX queues to be started before * enabling RSS. Hence RSS configuration is deferred upto this point. * Also, we would like to retain similar behavior in PF case, so we * don't do PF/VF specific check here. */ if (eth_dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_RSS) if (qede_config_rss(eth_dev)) goto err; /* Enable vport*/ if (qede_activate_vport(eth_dev, true)) goto err; /* Update link status */ qede_link_update(eth_dev, 0); /* Start/resume traffic */ qede_fastpath_start(edev); DP_INFO(edev, "Device started\n"); return 0; err: DP_ERR(edev, "Device start fails\n"); return -1; /* common error code is < 0 */ } static void qede_dev_stop(struct rte_eth_dev *eth_dev) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); PMD_INIT_FUNC_TRACE(edev); /* Disable vport */ if (qede_activate_vport(eth_dev, false)) return; if (qdev->enable_lro) qede_enable_tpa(eth_dev, false); /* Stop queues */ qede_stop_queues(eth_dev); /* Disable traffic */ ecore_hw_stop_fastpath(edev); /* TBD - loop */ DP_INFO(edev, "Device is stopped\n"); } static const char * const valid_args[] = { QEDE_NPAR_TX_SWITCHING, QEDE_VF_TX_SWITCHING, NULL, }; static int qede_args_check(const char *key, const char *val, void *opaque) { unsigned long tmp; int ret = 0; struct rte_eth_dev *eth_dev = opaque; struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); errno = 0; tmp = strtoul(val, NULL, 0); if (errno) { DP_INFO(edev, "%s: \"%s\" is not a valid integer", key, val); return errno; } if ((strcmp(QEDE_NPAR_TX_SWITCHING, key) == 0) || ((strcmp(QEDE_VF_TX_SWITCHING, key) == 0) && IS_VF(edev))) { qdev->enable_tx_switching = !!tmp; DP_INFO(edev, "Disabling %s tx-switching\n", strcmp(QEDE_NPAR_TX_SWITCHING, key) ? "VF" : "NPAR"); } return ret; } static int qede_args(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(eth_dev->device); struct rte_kvargs *kvlist; struct rte_devargs *devargs; int ret; int i; devargs = pci_dev->device.devargs; if (!devargs) return 0; /* return success */ kvlist = rte_kvargs_parse(devargs->args, valid_args); if (kvlist == NULL) return -EINVAL; /* Process parameters. */ for (i = 0; (valid_args[i] != NULL); ++i) { if (rte_kvargs_count(kvlist, valid_args[i])) { ret = rte_kvargs_process(kvlist, valid_args[i], qede_args_check, eth_dev); if (ret != ECORE_SUCCESS) { rte_kvargs_free(kvlist); return ret; } } } rte_kvargs_free(kvlist); return 0; } static int qede_dev_configure(struct rte_eth_dev *eth_dev) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct rte_eth_rxmode *rxmode = ð_dev->data->dev_conf.rxmode; int ret; PMD_INIT_FUNC_TRACE(edev); /* Check requirements for 100G mode */ if (ECORE_IS_CMT(edev)) { if (eth_dev->data->nb_rx_queues < 2 || eth_dev->data->nb_tx_queues < 2) { DP_ERR(edev, "100G mode needs min. 2 RX/TX queues\n"); return -EINVAL; } if ((eth_dev->data->nb_rx_queues % 2 != 0) || (eth_dev->data->nb_tx_queues % 2 != 0)) { DP_ERR(edev, "100G mode needs even no. of RX/TX queues\n"); return -EINVAL; } } /* We need to have min 1 RX queue.There is no min check in * rte_eth_dev_configure(), so we are checking it here. */ if (eth_dev->data->nb_rx_queues == 0) { DP_ERR(edev, "Minimum one RX queue is required\n"); return -EINVAL; } /* Enable Tx switching by default */ qdev->enable_tx_switching = 1; /* Parse devargs and fix up rxmode */ if (qede_args(eth_dev)) DP_NOTICE(edev, false, "Invalid devargs supplied, requested change will not take effect\n"); if (!(rxmode->mq_mode == ETH_MQ_RX_NONE || rxmode->mq_mode == ETH_MQ_RX_RSS)) { DP_ERR(edev, "Unsupported multi-queue mode\n"); return -ENOTSUP; } /* Flow director mode check */ if (qede_check_fdir_support(eth_dev)) return -ENOTSUP; qede_dealloc_fp_resc(eth_dev); qdev->num_tx_queues = eth_dev->data->nb_tx_queues; qdev->num_rx_queues = eth_dev->data->nb_rx_queues; if (qede_alloc_fp_resc(qdev)) return -ENOMEM; /* If jumbo enabled adjust MTU */ if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) eth_dev->data->mtu = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len - ETHER_HDR_LEN - QEDE_ETH_OVERHEAD; if (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) eth_dev->data->scattered_rx = 1; if (qede_start_vport(qdev, eth_dev->data->mtu)) return -1; qdev->mtu = eth_dev->data->mtu; /* Enable VLAN offloads by default */ ret = qede_vlan_offload_set(eth_dev, ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK); if (ret) return ret; DP_INFO(edev, "Device configured with RSS=%d TSS=%d\n", QEDE_RSS_COUNT(qdev), QEDE_TSS_COUNT(qdev)); return 0; } /* Info about HW descriptor ring limitations */ static const struct rte_eth_desc_lim qede_rx_desc_lim = { .nb_max = 0x8000, /* 32K */ .nb_min = 128, .nb_align = 128 /* lowest common multiple */ }; static const struct rte_eth_desc_lim qede_tx_desc_lim = { .nb_max = 0x8000, /* 32K */ .nb_min = 256, .nb_align = 256, .nb_seg_max = ETH_TX_MAX_BDS_PER_LSO_PACKET, .nb_mtu_seg_max = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET }; static void qede_dev_info_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *dev_info) { struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; struct qed_link_output link; uint32_t speed_cap = 0; PMD_INIT_FUNC_TRACE(edev); dev_info->min_rx_bufsize = (uint32_t)QEDE_MIN_RX_BUFF_SIZE; dev_info->max_rx_pktlen = (uint32_t)ETH_TX_MAX_NON_LSO_PKT_LEN; dev_info->rx_desc_lim = qede_rx_desc_lim; dev_info->tx_desc_lim = qede_tx_desc_lim; if (IS_PF(edev)) dev_info->max_rx_queues = (uint16_t)RTE_MIN( QEDE_MAX_RSS_CNT(qdev), QEDE_PF_NUM_CONNS / 2); else dev_info->max_rx_queues = (uint16_t)RTE_MIN( QEDE_MAX_RSS_CNT(qdev), ECORE_MAX_VF_CHAINS_PER_PF); dev_info->max_tx_queues = dev_info->max_rx_queues; dev_info->max_mac_addrs = qdev->dev_info.num_mac_filters; dev_info->max_vfs = 0; dev_info->reta_size = ECORE_RSS_IND_TABLE_SIZE; dev_info->hash_key_size = ECORE_RSS_KEY_SIZE * sizeof(uint32_t); dev_info->flow_type_rss_offloads = (uint64_t)QEDE_RSS_OFFLOAD_ALL; dev_info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_RX_OFFLOAD_TCP_LRO | DEV_RX_OFFLOAD_KEEP_CRC | DEV_RX_OFFLOAD_SCATTER | DEV_RX_OFFLOAD_JUMBO_FRAME | DEV_RX_OFFLOAD_VLAN_FILTER | DEV_RX_OFFLOAD_VLAN_STRIP); dev_info->rx_queue_offload_capa = 0; /* TX offloads are on a per-packet basis, so it is applicable * to both at port and queue levels. */ dev_info->tx_offload_capa = (DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | DEV_TX_OFFLOAD_MULTI_SEGS | DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | DEV_TX_OFFLOAD_GENEVE_TNL_TSO); dev_info->tx_queue_offload_capa = dev_info->tx_offload_capa; dev_info->default_txconf = (struct rte_eth_txconf) { .offloads = DEV_TX_OFFLOAD_MULTI_SEGS, }; dev_info->default_rxconf = (struct rte_eth_rxconf) { /* Packets are always dropped if no descriptors are available */ .rx_drop_en = 1, .offloads = 0, }; memset(&link, 0, sizeof(struct qed_link_output)); qdev->ops->common->get_link(edev, &link); if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G) speed_cap |= ETH_LINK_SPEED_1G; if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G) speed_cap |= ETH_LINK_SPEED_10G; if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G) speed_cap |= ETH_LINK_SPEED_25G; if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G) speed_cap |= ETH_LINK_SPEED_40G; if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G) speed_cap |= ETH_LINK_SPEED_50G; if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G) speed_cap |= ETH_LINK_SPEED_100G; dev_info->speed_capa = speed_cap; } /* return 0 means link status changed, -1 means not changed */ int qede_link_update(struct rte_eth_dev *eth_dev, __rte_unused int wait_to_complete) { struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; struct qed_link_output q_link; struct rte_eth_link link; uint16_t link_duplex; memset(&q_link, 0, sizeof(q_link)); memset(&link, 0, sizeof(link)); qdev->ops->common->get_link(edev, &q_link); /* Link Speed */ link.link_speed = q_link.speed; /* Link Mode */ switch (q_link.duplex) { case QEDE_DUPLEX_HALF: link_duplex = ETH_LINK_HALF_DUPLEX; break; case QEDE_DUPLEX_FULL: link_duplex = ETH_LINK_FULL_DUPLEX; break; case QEDE_DUPLEX_UNKNOWN: default: link_duplex = -1; } link.link_duplex = link_duplex; /* Link Status */ link.link_status = q_link.link_up ? ETH_LINK_UP : ETH_LINK_DOWN; /* AN */ link.link_autoneg = (q_link.supported_caps & QEDE_SUPPORTED_AUTONEG) ? ETH_LINK_AUTONEG : ETH_LINK_FIXED; DP_INFO(edev, "Link - Speed %u Mode %u AN %u Status %u\n", link.link_speed, link.link_duplex, link.link_autoneg, link.link_status); return rte_eth_linkstatus_set(eth_dev, &link); } static void qede_promiscuous_enable(struct rte_eth_dev *eth_dev) { struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; enum qed_filter_rx_mode_type type = QED_FILTER_RX_MODE_TYPE_PROMISC; PMD_INIT_FUNC_TRACE(edev); if (rte_eth_allmulticast_get(eth_dev->data->port_id) == 1) type |= QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC; qed_configure_filter_rx_mode(eth_dev, type); } static void qede_promiscuous_disable(struct rte_eth_dev *eth_dev) { struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; PMD_INIT_FUNC_TRACE(edev); if (rte_eth_allmulticast_get(eth_dev->data->port_id) == 1) qed_configure_filter_rx_mode(eth_dev, QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC); else qed_configure_filter_rx_mode(eth_dev, QED_FILTER_RX_MODE_TYPE_REGULAR); } static void qede_poll_sp_sb_cb(void *param) { struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param; struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); int rc; qede_interrupt_action(ECORE_LEADING_HWFN(edev)); qede_interrupt_action(&edev->hwfns[1]); rc = rte_eal_alarm_set(QEDE_SP_TIMER_PERIOD, qede_poll_sp_sb_cb, (void *)eth_dev); if (rc != 0) { DP_ERR(edev, "Unable to start periodic" " timer rc %d\n", rc); assert(false && "Unable to start periodic timer"); } } static void qede_dev_close(struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); PMD_INIT_FUNC_TRACE(edev); /* dev_stop() shall cleanup fp resources in hw but without releasing * dma memories and sw structures so that dev_start() can be called * by the app without reconfiguration. However, in dev_close() we * can release all the resources and device can be brought up newly */ if (eth_dev->data->dev_started) qede_dev_stop(eth_dev); qede_stop_vport(edev); qdev->vport_started = false; qede_fdir_dealloc_resc(eth_dev); qede_dealloc_fp_resc(eth_dev); eth_dev->data->nb_rx_queues = 0; eth_dev->data->nb_tx_queues = 0; /* Bring the link down */ qede_dev_set_link_state(eth_dev, false); qdev->ops->common->slowpath_stop(edev); qdev->ops->common->remove(edev); rte_intr_disable(&pci_dev->intr_handle); switch (pci_dev->intr_handle.type) { case RTE_INTR_HANDLE_UIO_INTX: case RTE_INTR_HANDLE_VFIO_LEGACY: rte_intr_callback_unregister(&pci_dev->intr_handle, qede_interrupt_handler_intx, (void *)eth_dev); break; default: rte_intr_callback_unregister(&pci_dev->intr_handle, qede_interrupt_handler, (void *)eth_dev); } if (ECORE_IS_CMT(edev)) rte_eal_alarm_cancel(qede_poll_sp_sb_cb, (void *)eth_dev); } static int qede_get_stats(struct rte_eth_dev *eth_dev, struct rte_eth_stats *eth_stats) { struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; struct ecore_eth_stats stats; unsigned int i = 0, j = 0, qid; unsigned int rxq_stat_cntrs, txq_stat_cntrs; struct qede_tx_queue *txq; ecore_get_vport_stats(edev, &stats); /* RX Stats */ eth_stats->ipackets = stats.common.rx_ucast_pkts + stats.common.rx_mcast_pkts + stats.common.rx_bcast_pkts; eth_stats->ibytes = stats.common.rx_ucast_bytes + stats.common.rx_mcast_bytes + stats.common.rx_bcast_bytes; eth_stats->ierrors = stats.common.rx_crc_errors + stats.common.rx_align_errors + stats.common.rx_carrier_errors + stats.common.rx_oversize_packets + stats.common.rx_jabbers + stats.common.rx_undersize_packets; eth_stats->rx_nombuf = stats.common.no_buff_discards; eth_stats->imissed = stats.common.mftag_filter_discards + stats.common.mac_filter_discards + stats.common.no_buff_discards + stats.common.brb_truncates + stats.common.brb_discards; /* TX stats */ eth_stats->opackets = stats.common.tx_ucast_pkts + stats.common.tx_mcast_pkts + stats.common.tx_bcast_pkts; eth_stats->obytes = stats.common.tx_ucast_bytes + stats.common.tx_mcast_bytes + stats.common.tx_bcast_bytes; eth_stats->oerrors = stats.common.tx_err_drop_pkts; /* Queue stats */ rxq_stat_cntrs = RTE_MIN(QEDE_RSS_COUNT(qdev), RTE_ETHDEV_QUEUE_STAT_CNTRS); txq_stat_cntrs = RTE_MIN(QEDE_TSS_COUNT(qdev), RTE_ETHDEV_QUEUE_STAT_CNTRS); if ((rxq_stat_cntrs != (unsigned int)QEDE_RSS_COUNT(qdev)) || (txq_stat_cntrs != (unsigned int)QEDE_TSS_COUNT(qdev))) DP_VERBOSE(edev, ECORE_MSG_DEBUG, "Not all the queue stats will be displayed. Set" " RTE_ETHDEV_QUEUE_STAT_CNTRS config param" " appropriately and retry.\n"); for_each_rss(qid) { eth_stats->q_ipackets[i] = *(uint64_t *)( ((char *)(qdev->fp_array[qid].rxq)) + offsetof(struct qede_rx_queue, rcv_pkts)); eth_stats->q_errors[i] = *(uint64_t *)( ((char *)(qdev->fp_array[qid].rxq)) + offsetof(struct qede_rx_queue, rx_hw_errors)) + *(uint64_t *)( ((char *)(qdev->fp_array[qid].rxq)) + offsetof(struct qede_rx_queue, rx_alloc_errors)); i++; if (i == rxq_stat_cntrs) break; } for_each_tss(qid) { txq = qdev->fp_array[qid].txq; eth_stats->q_opackets[j] = *((uint64_t *)(uintptr_t) (((uint64_t)(uintptr_t)(txq)) + offsetof(struct qede_tx_queue, xmit_pkts))); j++; if (j == txq_stat_cntrs) break; } return 0; } static unsigned qede_get_xstats_count(struct qede_dev *qdev) { if (ECORE_IS_BB(&qdev->edev)) return RTE_DIM(qede_xstats_strings) + RTE_DIM(qede_bb_xstats_strings) + (RTE_DIM(qede_rxq_xstats_strings) * RTE_MIN(QEDE_RSS_COUNT(qdev), RTE_ETHDEV_QUEUE_STAT_CNTRS)); else return RTE_DIM(qede_xstats_strings) + RTE_DIM(qede_ah_xstats_strings) + (RTE_DIM(qede_rxq_xstats_strings) * RTE_MIN(QEDE_RSS_COUNT(qdev), RTE_ETHDEV_QUEUE_STAT_CNTRS)); } static int qede_get_xstats_names(struct rte_eth_dev *dev, struct rte_eth_xstat_name *xstats_names, __rte_unused unsigned int limit) { struct qede_dev *qdev = dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; const unsigned int stat_cnt = qede_get_xstats_count(qdev); unsigned int i, qid, stat_idx = 0; unsigned int rxq_stat_cntrs; if (xstats_names != NULL) { for (i = 0; i < RTE_DIM(qede_xstats_strings); i++) { strlcpy(xstats_names[stat_idx].name, qede_xstats_strings[i].name, sizeof(xstats_names[stat_idx].name)); stat_idx++; } if (ECORE_IS_BB(edev)) { for (i = 0; i < RTE_DIM(qede_bb_xstats_strings); i++) { strlcpy(xstats_names[stat_idx].name, qede_bb_xstats_strings[i].name, sizeof(xstats_names[stat_idx].name)); stat_idx++; } } else { for (i = 0; i < RTE_DIM(qede_ah_xstats_strings); i++) { strlcpy(xstats_names[stat_idx].name, qede_ah_xstats_strings[i].name, sizeof(xstats_names[stat_idx].name)); stat_idx++; } } rxq_stat_cntrs = RTE_MIN(QEDE_RSS_COUNT(qdev), RTE_ETHDEV_QUEUE_STAT_CNTRS); for (qid = 0; qid < rxq_stat_cntrs; qid++) { for (i = 0; i < RTE_DIM(qede_rxq_xstats_strings); i++) { snprintf(xstats_names[stat_idx].name, sizeof(xstats_names[stat_idx].name), "%.4s%d%s", qede_rxq_xstats_strings[i].name, qid, qede_rxq_xstats_strings[i].name + 4); stat_idx++; } } } return stat_cnt; } static int qede_get_xstats(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, unsigned int n) { struct qede_dev *qdev = dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; struct ecore_eth_stats stats; const unsigned int num = qede_get_xstats_count(qdev); unsigned int i, qid, stat_idx = 0; unsigned int rxq_stat_cntrs; if (n < num) return num; ecore_get_vport_stats(edev, &stats); for (i = 0; i < RTE_DIM(qede_xstats_strings); i++) { xstats[stat_idx].value = *(uint64_t *)(((char *)&stats) + qede_xstats_strings[i].offset); xstats[stat_idx].id = stat_idx; stat_idx++; } if (ECORE_IS_BB(edev)) { for (i = 0; i < RTE_DIM(qede_bb_xstats_strings); i++) { xstats[stat_idx].value = *(uint64_t *)(((char *)&stats) + qede_bb_xstats_strings[i].offset); xstats[stat_idx].id = stat_idx; stat_idx++; } } else { for (i = 0; i < RTE_DIM(qede_ah_xstats_strings); i++) { xstats[stat_idx].value = *(uint64_t *)(((char *)&stats) + qede_ah_xstats_strings[i].offset); xstats[stat_idx].id = stat_idx; stat_idx++; } } rxq_stat_cntrs = RTE_MIN(QEDE_RSS_COUNT(qdev), RTE_ETHDEV_QUEUE_STAT_CNTRS); for (qid = 0; qid < rxq_stat_cntrs; qid++) { for_each_rss(qid) { for (i = 0; i < RTE_DIM(qede_rxq_xstats_strings); i++) { xstats[stat_idx].value = *(uint64_t *)( ((char *)(qdev->fp_array[qid].rxq)) + qede_rxq_xstats_strings[i].offset); xstats[stat_idx].id = stat_idx; stat_idx++; } } } return stat_idx; } static void qede_reset_xstats(struct rte_eth_dev *dev) { struct qede_dev *qdev = dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; ecore_reset_vport_stats(edev); qede_reset_queue_stats(qdev, true); } int qede_dev_set_link_state(struct rte_eth_dev *eth_dev, bool link_up) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct qed_link_params link_params; int rc; DP_INFO(edev, "setting link state %d\n", link_up); memset(&link_params, 0, sizeof(link_params)); link_params.link_up = link_up; rc = qdev->ops->common->set_link(edev, &link_params); if (rc != ECORE_SUCCESS) DP_ERR(edev, "Unable to set link state %d\n", link_up); return rc; } static int qede_dev_set_link_up(struct rte_eth_dev *eth_dev) { return qede_dev_set_link_state(eth_dev, true); } static int qede_dev_set_link_down(struct rte_eth_dev *eth_dev) { return qede_dev_set_link_state(eth_dev, false); } static void qede_reset_stats(struct rte_eth_dev *eth_dev) { struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; ecore_reset_vport_stats(edev); qede_reset_queue_stats(qdev, false); } static void qede_allmulticast_enable(struct rte_eth_dev *eth_dev) { enum qed_filter_rx_mode_type type = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC; if (rte_eth_promiscuous_get(eth_dev->data->port_id) == 1) type |= QED_FILTER_RX_MODE_TYPE_PROMISC; qed_configure_filter_rx_mode(eth_dev, type); } static void qede_allmulticast_disable(struct rte_eth_dev *eth_dev) { if (rte_eth_promiscuous_get(eth_dev->data->port_id) == 1) qed_configure_filter_rx_mode(eth_dev, QED_FILTER_RX_MODE_TYPE_PROMISC); else qed_configure_filter_rx_mode(eth_dev, QED_FILTER_RX_MODE_TYPE_REGULAR); } static int qede_set_mc_addr_list(struct rte_eth_dev *eth_dev, struct ether_addr *mc_addrs, uint32_t mc_addrs_num) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); uint8_t i; if (mc_addrs_num > ECORE_MAX_MC_ADDRS) { DP_ERR(edev, "Reached max multicast filters limit," "Please enable multicast promisc mode\n"); return -ENOSPC; } for (i = 0; i < mc_addrs_num; i++) { if (!is_multicast_ether_addr(&mc_addrs[i])) { DP_ERR(edev, "Not a valid multicast MAC\n"); return -EINVAL; } } /* Flush all existing entries */ if (qede_del_mcast_filters(eth_dev)) return -1; /* Set new mcast list */ return qede_add_mcast_filters(eth_dev, mc_addrs, mc_addrs_num); } /* Update MTU via vport-update without doing port restart. * The vport must be deactivated before calling this API. */ int qede_update_mtu(struct rte_eth_dev *eth_dev, uint16_t mtu) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct ecore_hwfn *p_hwfn; int rc; int i; if (IS_PF(edev)) { struct ecore_sp_vport_update_params params; memset(¶ms, 0, sizeof(struct ecore_sp_vport_update_params)); params.vport_id = 0; params.mtu = mtu; params.vport_id = 0; for_each_hwfn(edev, i) { p_hwfn = &edev->hwfns[i]; params.opaque_fid = p_hwfn->hw_info.opaque_fid; rc = ecore_sp_vport_update(p_hwfn, ¶ms, ECORE_SPQ_MODE_EBLOCK, NULL); if (rc != ECORE_SUCCESS) goto err; } } else { for_each_hwfn(edev, i) { p_hwfn = &edev->hwfns[i]; rc = ecore_vf_pf_update_mtu(p_hwfn, mtu); if (rc == ECORE_INVAL) { DP_INFO(edev, "VF MTU Update TLV not supported\n"); /* Recreate vport */ rc = qede_start_vport(qdev, mtu); if (rc != ECORE_SUCCESS) goto err; /* Restore config lost due to vport stop */ if (eth_dev->data->promiscuous) qede_promiscuous_enable(eth_dev); else qede_promiscuous_disable(eth_dev); if (eth_dev->data->all_multicast) qede_allmulticast_enable(eth_dev); else qede_allmulticast_disable(eth_dev); qede_vlan_offload_set(eth_dev, qdev->vlan_offload_mask); } else if (rc != ECORE_SUCCESS) { goto err; } } } DP_INFO(edev, "%s MTU updated to %u\n", IS_PF(edev) ? "PF" : "VF", mtu); return 0; err: DP_ERR(edev, "Failed to update MTU\n"); return -1; } static int qede_flow_ctrl_set(struct rte_eth_dev *eth_dev, struct rte_eth_fc_conf *fc_conf) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct qed_link_output current_link; struct qed_link_params params; memset(¤t_link, 0, sizeof(current_link)); qdev->ops->common->get_link(edev, ¤t_link); memset(¶ms, 0, sizeof(params)); params.override_flags |= QED_LINK_OVERRIDE_PAUSE_CONFIG; if (fc_conf->autoneg) { if (!(current_link.supported_caps & QEDE_SUPPORTED_AUTONEG)) { DP_ERR(edev, "Autoneg not supported\n"); return -EINVAL; } params.pause_config |= QED_LINK_PAUSE_AUTONEG_ENABLE; } /* Pause is assumed to be supported (SUPPORTED_Pause) */ if (fc_conf->mode == RTE_FC_FULL) params.pause_config |= (QED_LINK_PAUSE_TX_ENABLE | QED_LINK_PAUSE_RX_ENABLE); if (fc_conf->mode == RTE_FC_TX_PAUSE) params.pause_config |= QED_LINK_PAUSE_TX_ENABLE; if (fc_conf->mode == RTE_FC_RX_PAUSE) params.pause_config |= QED_LINK_PAUSE_RX_ENABLE; params.link_up = true; (void)qdev->ops->common->set_link(edev, ¶ms); return 0; } static int qede_flow_ctrl_get(struct rte_eth_dev *eth_dev, struct rte_eth_fc_conf *fc_conf) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct qed_link_output current_link; memset(¤t_link, 0, sizeof(current_link)); qdev->ops->common->get_link(edev, ¤t_link); if (current_link.pause_config & QED_LINK_PAUSE_AUTONEG_ENABLE) fc_conf->autoneg = true; if (current_link.pause_config & (QED_LINK_PAUSE_RX_ENABLE | QED_LINK_PAUSE_TX_ENABLE)) fc_conf->mode = RTE_FC_FULL; else if (current_link.pause_config & QED_LINK_PAUSE_RX_ENABLE) fc_conf->mode = RTE_FC_RX_PAUSE; else if (current_link.pause_config & QED_LINK_PAUSE_TX_ENABLE) fc_conf->mode = RTE_FC_TX_PAUSE; else fc_conf->mode = RTE_FC_NONE; return 0; } static const uint32_t * qede_dev_supported_ptypes_get(struct rte_eth_dev *eth_dev) { static const uint32_t ptypes[] = { RTE_PTYPE_L2_ETHER, RTE_PTYPE_L2_ETHER_VLAN, RTE_PTYPE_L3_IPV4, RTE_PTYPE_L3_IPV6, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_TUNNEL_VXLAN, RTE_PTYPE_L4_FRAG, RTE_PTYPE_TUNNEL_GENEVE, RTE_PTYPE_TUNNEL_GRE, /* Inner */ RTE_PTYPE_INNER_L2_ETHER, RTE_PTYPE_INNER_L2_ETHER_VLAN, RTE_PTYPE_INNER_L3_IPV4, RTE_PTYPE_INNER_L3_IPV6, RTE_PTYPE_INNER_L4_TCP, RTE_PTYPE_INNER_L4_UDP, RTE_PTYPE_INNER_L4_FRAG, RTE_PTYPE_UNKNOWN }; if (eth_dev->rx_pkt_burst == qede_recv_pkts) return ptypes; return NULL; } static void qede_init_rss_caps(uint8_t *rss_caps, uint64_t hf) { *rss_caps = 0; *rss_caps |= (hf & ETH_RSS_IPV4) ? ECORE_RSS_IPV4 : 0; *rss_caps |= (hf & ETH_RSS_IPV6) ? ECORE_RSS_IPV6 : 0; *rss_caps |= (hf & ETH_RSS_IPV6_EX) ? ECORE_RSS_IPV6 : 0; *rss_caps |= (hf & ETH_RSS_NONFRAG_IPV4_TCP) ? ECORE_RSS_IPV4_TCP : 0; *rss_caps |= (hf & ETH_RSS_NONFRAG_IPV6_TCP) ? ECORE_RSS_IPV6_TCP : 0; *rss_caps |= (hf & ETH_RSS_IPV6_TCP_EX) ? ECORE_RSS_IPV6_TCP : 0; *rss_caps |= (hf & ETH_RSS_NONFRAG_IPV4_UDP) ? ECORE_RSS_IPV4_UDP : 0; *rss_caps |= (hf & ETH_RSS_NONFRAG_IPV6_UDP) ? ECORE_RSS_IPV6_UDP : 0; } int qede_rss_hash_update(struct rte_eth_dev *eth_dev, struct rte_eth_rss_conf *rss_conf) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct ecore_sp_vport_update_params vport_update_params; struct ecore_rss_params rss_params; struct ecore_hwfn *p_hwfn; uint32_t *key = (uint32_t *)rss_conf->rss_key; uint64_t hf = rss_conf->rss_hf; uint8_t len = rss_conf->rss_key_len; uint8_t idx; uint8_t i; int rc; memset(&vport_update_params, 0, sizeof(vport_update_params)); memset(&rss_params, 0, sizeof(rss_params)); DP_INFO(edev, "RSS hf = 0x%lx len = %u key = %p\n", (unsigned long)hf, len, key); if (hf != 0) { /* Enabling RSS */ DP_INFO(edev, "Enabling rss\n"); /* RSS caps */ qede_init_rss_caps(&rss_params.rss_caps, hf); rss_params.update_rss_capabilities = 1; /* RSS hash key */ if (key) { if (len > (ECORE_RSS_KEY_SIZE * sizeof(uint32_t))) { DP_ERR(edev, "RSS key length exceeds limit\n"); return -EINVAL; } DP_INFO(edev, "Applying user supplied hash key\n"); rss_params.update_rss_key = 1; memcpy(&rss_params.rss_key, key, len); } rss_params.rss_enable = 1; } rss_params.update_rss_config = 1; /* tbl_size has to be set with capabilities */ rss_params.rss_table_size_log = 7; vport_update_params.vport_id = 0; /* pass the L2 handles instead of qids */ for (i = 0 ; i < ECORE_RSS_IND_TABLE_SIZE ; i++) { idx = i % QEDE_RSS_COUNT(qdev); rss_params.rss_ind_table[i] = qdev->fp_array[idx].rxq->handle; } vport_update_params.rss_params = &rss_params; for_each_hwfn(edev, i) { p_hwfn = &edev->hwfns[i]; vport_update_params.opaque_fid = p_hwfn->hw_info.opaque_fid; rc = ecore_sp_vport_update(p_hwfn, &vport_update_params, ECORE_SPQ_MODE_EBLOCK, NULL); if (rc) { DP_ERR(edev, "vport-update for RSS failed\n"); return rc; } } qdev->rss_enable = rss_params.rss_enable; /* Update local structure for hash query */ qdev->rss_conf.rss_hf = hf; qdev->rss_conf.rss_key_len = len; if (qdev->rss_enable) { if (qdev->rss_conf.rss_key == NULL) { qdev->rss_conf.rss_key = (uint8_t *)malloc(len); if (qdev->rss_conf.rss_key == NULL) { DP_ERR(edev, "No memory to store RSS key\n"); return -ENOMEM; } } if (key && len) { DP_INFO(edev, "Storing RSS key\n"); memcpy(qdev->rss_conf.rss_key, key, len); } } else if (!qdev->rss_enable && len == 0) { if (qdev->rss_conf.rss_key) { free(qdev->rss_conf.rss_key); qdev->rss_conf.rss_key = NULL; DP_INFO(edev, "Free RSS key\n"); } } return 0; } static int qede_rss_hash_conf_get(struct rte_eth_dev *eth_dev, struct rte_eth_rss_conf *rss_conf) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); rss_conf->rss_hf = qdev->rss_conf.rss_hf; rss_conf->rss_key_len = qdev->rss_conf.rss_key_len; if (rss_conf->rss_key && qdev->rss_conf.rss_key) memcpy(rss_conf->rss_key, qdev->rss_conf.rss_key, rss_conf->rss_key_len); return 0; } static bool qede_update_rss_parm_cmt(struct ecore_dev *edev, struct ecore_rss_params *rss) { int i, fn; bool rss_mode = 1; /* enable */ struct ecore_queue_cid *cid; struct ecore_rss_params *t_rss; /* In regular scenario, we'd simply need to take input handlers. * But in CMT, we'd have to split the handlers according to the * engine they were configured on. We'd then have to understand * whether RSS is really required, since 2-queues on CMT doesn't * require RSS. */ /* CMT should be round-robin */ for (i = 0; i < ECORE_RSS_IND_TABLE_SIZE; i++) { cid = rss->rss_ind_table[i]; if (cid->p_owner == ECORE_LEADING_HWFN(edev)) t_rss = &rss[0]; else t_rss = &rss[1]; t_rss->rss_ind_table[i / edev->num_hwfns] = cid; } t_rss = &rss[1]; t_rss->update_rss_ind_table = 1; t_rss->rss_table_size_log = 7; t_rss->update_rss_config = 1; /* Make sure RSS is actually required */ for_each_hwfn(edev, fn) { for (i = 1; i < ECORE_RSS_IND_TABLE_SIZE / edev->num_hwfns; i++) { if (rss[fn].rss_ind_table[i] != rss[fn].rss_ind_table[0]) break; } if (i == ECORE_RSS_IND_TABLE_SIZE / edev->num_hwfns) { DP_INFO(edev, "CMT - 1 queue per-hwfn; Disabling RSS\n"); rss_mode = 0; goto out; } } out: t_rss->rss_enable = rss_mode; return rss_mode; } int qede_rss_reta_update(struct rte_eth_dev *eth_dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct ecore_sp_vport_update_params vport_update_params; struct ecore_rss_params *params; struct ecore_hwfn *p_hwfn; uint16_t i, idx, shift; uint8_t entry; int rc = 0; if (reta_size > ETH_RSS_RETA_SIZE_128) { DP_ERR(edev, "reta_size %d is not supported by hardware\n", reta_size); return -EINVAL; } memset(&vport_update_params, 0, sizeof(vport_update_params)); params = rte_zmalloc("qede_rss", sizeof(*params) * edev->num_hwfns, RTE_CACHE_LINE_SIZE); if (params == NULL) { DP_ERR(edev, "failed to allocate memory\n"); return -ENOMEM; } for (i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) { entry = reta_conf[idx].reta[shift]; /* Pass rxq handles to ecore */ params->rss_ind_table[i] = qdev->fp_array[entry].rxq->handle; /* Update the local copy for RETA query command */ qdev->rss_ind_table[i] = entry; } } params->update_rss_ind_table = 1; params->rss_table_size_log = 7; params->update_rss_config = 1; /* Fix up RETA for CMT mode device */ if (ECORE_IS_CMT(edev)) qdev->rss_enable = qede_update_rss_parm_cmt(edev, params); vport_update_params.vport_id = 0; /* Use the current value of rss_enable */ params->rss_enable = qdev->rss_enable; vport_update_params.rss_params = params; for_each_hwfn(edev, i) { p_hwfn = &edev->hwfns[i]; vport_update_params.opaque_fid = p_hwfn->hw_info.opaque_fid; rc = ecore_sp_vport_update(p_hwfn, &vport_update_params, ECORE_SPQ_MODE_EBLOCK, NULL); if (rc) { DP_ERR(edev, "vport-update for RSS failed\n"); goto out; } } out: rte_free(params); return rc; } static int qede_rss_reta_query(struct rte_eth_dev *eth_dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; uint16_t i, idx, shift; uint8_t entry; if (reta_size > ETH_RSS_RETA_SIZE_128) { DP_ERR(edev, "reta_size %d is not supported\n", reta_size); return -EINVAL; } for (i = 0; i < reta_size; i++) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; if (reta_conf[idx].mask & (1ULL << shift)) { entry = qdev->rss_ind_table[i]; reta_conf[idx].reta[shift] = entry; } } return 0; } static int qede_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) { struct qede_dev *qdev = QEDE_INIT_QDEV(dev); struct ecore_dev *edev = QEDE_INIT_EDEV(qdev); struct rte_eth_dev_info dev_info = {0}; struct qede_fastpath *fp; uint32_t max_rx_pkt_len; uint32_t frame_size; uint16_t bufsz; bool restart = false; int i, rc; PMD_INIT_FUNC_TRACE(edev); qede_dev_info_get(dev, &dev_info); max_rx_pkt_len = mtu + QEDE_MAX_ETHER_HDR_LEN; frame_size = max_rx_pkt_len; if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen)) { DP_ERR(edev, "MTU %u out of range, %u is maximum allowable\n", mtu, dev_info.max_rx_pktlen - ETHER_HDR_LEN - QEDE_ETH_OVERHEAD); return -EINVAL; } if (!dev->data->scattered_rx && frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) { DP_INFO(edev, "MTU greater than minimum RX buffer size of %u\n", dev->data->min_rx_buf_size); return -EINVAL; } /* Temporarily replace I/O functions with dummy ones. It cannot * be set to NULL because rte_eth_rx_burst() doesn't check for NULL. */ dev->rx_pkt_burst = qede_rxtx_pkts_dummy; dev->tx_pkt_burst = qede_rxtx_pkts_dummy; if (dev->data->dev_started) { dev->data->dev_started = 0; qede_dev_stop(dev); restart = true; } rte_delay_ms(1000); qdev->mtu = mtu; /* Fix up RX buf size for all queues of the port */ for_each_rss(i) { fp = &qdev->fp_array[i]; if (fp->rxq != NULL) { bufsz = (uint16_t)rte_pktmbuf_data_room_size( fp->rxq->mb_pool) - RTE_PKTMBUF_HEADROOM; /* cache align the mbuf size to simplfy rx_buf_size * calculation */ bufsz = QEDE_FLOOR_TO_CACHE_LINE_SIZE(bufsz); rc = qede_calc_rx_buf_size(dev, bufsz, frame_size); if (rc < 0) return rc; fp->rxq->rx_buf_size = rc; } } if (max_rx_pkt_len > ETHER_MAX_LEN) dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; else dev->data->dev_conf.rxmode.offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; if (!dev->data->dev_started && restart) { qede_dev_start(dev); dev->data->dev_started = 1; } /* update max frame size */ dev->data->dev_conf.rxmode.max_rx_pkt_len = max_rx_pkt_len; /* Reassign back */ dev->rx_pkt_burst = qede_recv_pkts; dev->tx_pkt_burst = qede_xmit_pkts; return 0; } static int qede_dev_reset(struct rte_eth_dev *dev) { int ret; ret = qede_eth_dev_uninit(dev); if (ret) return ret; return qede_eth_dev_init(dev); } static const struct eth_dev_ops qede_eth_dev_ops = { .dev_configure = qede_dev_configure, .dev_infos_get = qede_dev_info_get, .rx_queue_setup = qede_rx_queue_setup, .rx_queue_release = qede_rx_queue_release, .rx_descriptor_status = qede_rx_descriptor_status, .tx_queue_setup = qede_tx_queue_setup, .tx_queue_release = qede_tx_queue_release, .dev_start = qede_dev_start, .dev_reset = qede_dev_reset, .dev_set_link_up = qede_dev_set_link_up, .dev_set_link_down = qede_dev_set_link_down, .link_update = qede_link_update, .promiscuous_enable = qede_promiscuous_enable, .promiscuous_disable = qede_promiscuous_disable, .allmulticast_enable = qede_allmulticast_enable, .allmulticast_disable = qede_allmulticast_disable, .set_mc_addr_list = qede_set_mc_addr_list, .dev_stop = qede_dev_stop, .dev_close = qede_dev_close, .stats_get = qede_get_stats, .stats_reset = qede_reset_stats, .xstats_get = qede_get_xstats, .xstats_reset = qede_reset_xstats, .xstats_get_names = qede_get_xstats_names, .mac_addr_add = qede_mac_addr_add, .mac_addr_remove = qede_mac_addr_remove, .mac_addr_set = qede_mac_addr_set, .vlan_offload_set = qede_vlan_offload_set, .vlan_filter_set = qede_vlan_filter_set, .flow_ctrl_set = qede_flow_ctrl_set, .flow_ctrl_get = qede_flow_ctrl_get, .dev_supported_ptypes_get = qede_dev_supported_ptypes_get, .rss_hash_update = qede_rss_hash_update, .rss_hash_conf_get = qede_rss_hash_conf_get, .reta_update = qede_rss_reta_update, .reta_query = qede_rss_reta_query, .mtu_set = qede_set_mtu, .filter_ctrl = qede_dev_filter_ctrl, .udp_tunnel_port_add = qede_udp_dst_port_add, .udp_tunnel_port_del = qede_udp_dst_port_del, }; static const struct eth_dev_ops qede_eth_vf_dev_ops = { .dev_configure = qede_dev_configure, .dev_infos_get = qede_dev_info_get, .rx_queue_setup = qede_rx_queue_setup, .rx_queue_release = qede_rx_queue_release, .rx_descriptor_status = qede_rx_descriptor_status, .tx_queue_setup = qede_tx_queue_setup, .tx_queue_release = qede_tx_queue_release, .dev_start = qede_dev_start, .dev_reset = qede_dev_reset, .dev_set_link_up = qede_dev_set_link_up, .dev_set_link_down = qede_dev_set_link_down, .link_update = qede_link_update, .promiscuous_enable = qede_promiscuous_enable, .promiscuous_disable = qede_promiscuous_disable, .allmulticast_enable = qede_allmulticast_enable, .allmulticast_disable = qede_allmulticast_disable, .set_mc_addr_list = qede_set_mc_addr_list, .dev_stop = qede_dev_stop, .dev_close = qede_dev_close, .stats_get = qede_get_stats, .stats_reset = qede_reset_stats, .xstats_get = qede_get_xstats, .xstats_reset = qede_reset_xstats, .xstats_get_names = qede_get_xstats_names, .vlan_offload_set = qede_vlan_offload_set, .vlan_filter_set = qede_vlan_filter_set, .dev_supported_ptypes_get = qede_dev_supported_ptypes_get, .rss_hash_update = qede_rss_hash_update, .rss_hash_conf_get = qede_rss_hash_conf_get, .reta_update = qede_rss_reta_update, .reta_query = qede_rss_reta_query, .mtu_set = qede_set_mtu, .udp_tunnel_port_add = qede_udp_dst_port_add, .udp_tunnel_port_del = qede_udp_dst_port_del, .mac_addr_add = qede_mac_addr_add, .mac_addr_remove = qede_mac_addr_remove, .mac_addr_set = qede_mac_addr_set, }; static void qede_update_pf_params(struct ecore_dev *edev) { struct ecore_pf_params pf_params; memset(&pf_params, 0, sizeof(struct ecore_pf_params)); pf_params.eth_pf_params.num_cons = QEDE_PF_NUM_CONNS; pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; qed_ops->common->update_pf_params(edev, &pf_params); } static int qede_common_dev_init(struct rte_eth_dev *eth_dev, bool is_vf) { struct rte_pci_device *pci_dev; struct rte_pci_addr pci_addr; struct qede_dev *adapter; struct ecore_dev *edev; struct qed_dev_eth_info dev_info; struct qed_slowpath_params params; static bool do_once = true; uint8_t bulletin_change; uint8_t vf_mac[ETHER_ADDR_LEN]; uint8_t is_mac_forced; bool is_mac_exist; /* Fix up ecore debug level */ uint32_t dp_module = ~0 & ~ECORE_MSG_HW; uint8_t dp_level = ECORE_LEVEL_VERBOSE; uint32_t int_mode; int rc; /* Extract key data structures */ adapter = eth_dev->data->dev_private; adapter->ethdev = eth_dev; edev = &adapter->edev; pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); pci_addr = pci_dev->addr; PMD_INIT_FUNC_TRACE(edev); snprintf(edev->name, NAME_SIZE, PCI_SHORT_PRI_FMT ":dpdk-port-%u", pci_addr.bus, pci_addr.devid, pci_addr.function, eth_dev->data->port_id); eth_dev->rx_pkt_burst = qede_recv_pkts; eth_dev->tx_pkt_burst = qede_xmit_pkts; eth_dev->tx_pkt_prepare = qede_xmit_prep_pkts; if (rte_eal_process_type() != RTE_PROC_PRIMARY) { DP_ERR(edev, "Skipping device init from secondary process\n"); return 0; } rte_eth_copy_pci_info(eth_dev, pci_dev); /* @DPDK */ edev->vendor_id = pci_dev->id.vendor_id; edev->device_id = pci_dev->id.device_id; qed_ops = qed_get_eth_ops(); if (!qed_ops) { DP_ERR(edev, "Failed to get qed_eth_ops_pass\n"); return -EINVAL; } DP_INFO(edev, "Starting qede probe\n"); rc = qed_ops->common->probe(edev, pci_dev, dp_module, dp_level, is_vf); if (rc != 0) { DP_ERR(edev, "qede probe failed rc %d\n", rc); return -ENODEV; } qede_update_pf_params(edev); switch (pci_dev->intr_handle.type) { case RTE_INTR_HANDLE_UIO_INTX: case RTE_INTR_HANDLE_VFIO_LEGACY: int_mode = ECORE_INT_MODE_INTA; rte_intr_callback_register(&pci_dev->intr_handle, qede_interrupt_handler_intx, (void *)eth_dev); break; default: int_mode = ECORE_INT_MODE_MSIX; rte_intr_callback_register(&pci_dev->intr_handle, qede_interrupt_handler, (void *)eth_dev); } if (rte_intr_enable(&pci_dev->intr_handle)) { DP_ERR(edev, "rte_intr_enable() failed\n"); return -ENODEV; } /* Start the Slowpath-process */ memset(¶ms, 0, sizeof(struct qed_slowpath_params)); params.int_mode = int_mode; params.drv_major = QEDE_PMD_VERSION_MAJOR; params.drv_minor = QEDE_PMD_VERSION_MINOR; params.drv_rev = QEDE_PMD_VERSION_REVISION; params.drv_eng = QEDE_PMD_VERSION_PATCH; strncpy((char *)params.name, QEDE_PMD_VER_PREFIX, QEDE_PMD_DRV_VER_STR_SIZE); /* For CMT mode device do periodic polling for slowpath events. * This is required since uio device uses only one MSI-x * interrupt vector but we need one for each engine. */ if (ECORE_IS_CMT(edev) && IS_PF(edev)) { rc = rte_eal_alarm_set(QEDE_SP_TIMER_PERIOD, qede_poll_sp_sb_cb, (void *)eth_dev); if (rc != 0) { DP_ERR(edev, "Unable to start periodic" " timer rc %d\n", rc); return -EINVAL; } } rc = qed_ops->common->slowpath_start(edev, ¶ms); if (rc) { DP_ERR(edev, "Cannot start slowpath rc = %d\n", rc); rte_eal_alarm_cancel(qede_poll_sp_sb_cb, (void *)eth_dev); return -ENODEV; } rc = qed_ops->fill_dev_info(edev, &dev_info); if (rc) { DP_ERR(edev, "Cannot get device_info rc %d\n", rc); qed_ops->common->slowpath_stop(edev); qed_ops->common->remove(edev); rte_eal_alarm_cancel(qede_poll_sp_sb_cb, (void *)eth_dev); return -ENODEV; } qede_alloc_etherdev(adapter, &dev_info); adapter->ops->common->set_name(edev, edev->name); if (!is_vf) adapter->dev_info.num_mac_filters = (uint32_t)RESC_NUM(ECORE_LEADING_HWFN(edev), ECORE_MAC); else ecore_vf_get_num_mac_filters(ECORE_LEADING_HWFN(edev), (uint32_t *)&adapter->dev_info.num_mac_filters); /* Allocate memory for storing MAC addr */ eth_dev->data->mac_addrs = rte_zmalloc(edev->name, (ETHER_ADDR_LEN * adapter->dev_info.num_mac_filters), RTE_CACHE_LINE_SIZE); if (eth_dev->data->mac_addrs == NULL) { DP_ERR(edev, "Failed to allocate MAC address\n"); qed_ops->common->slowpath_stop(edev); qed_ops->common->remove(edev); rte_eal_alarm_cancel(qede_poll_sp_sb_cb, (void *)eth_dev); return -ENOMEM; } if (!is_vf) { ether_addr_copy((struct ether_addr *)edev->hwfns[0]. hw_info.hw_mac_addr, ð_dev->data->mac_addrs[0]); ether_addr_copy(ð_dev->data->mac_addrs[0], &adapter->primary_mac); } else { ecore_vf_read_bulletin(ECORE_LEADING_HWFN(edev), &bulletin_change); if (bulletin_change) { is_mac_exist = ecore_vf_bulletin_get_forced_mac( ECORE_LEADING_HWFN(edev), vf_mac, &is_mac_forced); if (is_mac_exist) { DP_INFO(edev, "VF macaddr received from PF\n"); ether_addr_copy((struct ether_addr *)&vf_mac, ð_dev->data->mac_addrs[0]); ether_addr_copy(ð_dev->data->mac_addrs[0], &adapter->primary_mac); } else { DP_ERR(edev, "No VF macaddr assigned\n"); } } } eth_dev->dev_ops = (is_vf) ? &qede_eth_vf_dev_ops : &qede_eth_dev_ops; if (do_once) { qede_print_adapter_info(adapter); do_once = false; } /* Bring-up the link */ qede_dev_set_link_state(eth_dev, true); adapter->num_tx_queues = 0; adapter->num_rx_queues = 0; SLIST_INIT(&adapter->arfs_info.arfs_list_head); SLIST_INIT(&adapter->vlan_list_head); SLIST_INIT(&adapter->uc_list_head); SLIST_INIT(&adapter->mc_list_head); adapter->mtu = ETHER_MTU; adapter->vport_started = false; /* VF tunnel offloads is enabled by default in PF driver */ adapter->vxlan.num_filters = 0; adapter->geneve.num_filters = 0; adapter->ipgre.num_filters = 0; if (is_vf) { adapter->vxlan.enable = true; adapter->vxlan.filter_type = ETH_TUNNEL_FILTER_IMAC | ETH_TUNNEL_FILTER_IVLAN; adapter->vxlan.udp_port = QEDE_VXLAN_DEF_PORT; adapter->geneve.enable = true; adapter->geneve.filter_type = ETH_TUNNEL_FILTER_IMAC | ETH_TUNNEL_FILTER_IVLAN; adapter->geneve.udp_port = QEDE_GENEVE_DEF_PORT; adapter->ipgre.enable = true; adapter->ipgre.filter_type = ETH_TUNNEL_FILTER_IMAC | ETH_TUNNEL_FILTER_IVLAN; } else { adapter->vxlan.enable = false; adapter->geneve.enable = false; adapter->ipgre.enable = false; } DP_INFO(edev, "MAC address : %02x:%02x:%02x:%02x:%02x:%02x\n", adapter->primary_mac.addr_bytes[0], adapter->primary_mac.addr_bytes[1], adapter->primary_mac.addr_bytes[2], adapter->primary_mac.addr_bytes[3], adapter->primary_mac.addr_bytes[4], adapter->primary_mac.addr_bytes[5]); DP_INFO(edev, "Device initialized\n"); return 0; } static int qedevf_eth_dev_init(struct rte_eth_dev *eth_dev) { return qede_common_dev_init(eth_dev, 1); } static int qede_eth_dev_init(struct rte_eth_dev *eth_dev) { return qede_common_dev_init(eth_dev, 0); } static int qede_dev_common_uninit(struct rte_eth_dev *eth_dev) { struct qede_dev *qdev = eth_dev->data->dev_private; struct ecore_dev *edev = &qdev->edev; PMD_INIT_FUNC_TRACE(edev); /* only uninitialize in the primary process */ if (rte_eal_process_type() != RTE_PROC_PRIMARY) return 0; /* safe to close dev here */ qede_dev_close(eth_dev); eth_dev->dev_ops = NULL; eth_dev->rx_pkt_burst = NULL; eth_dev->tx_pkt_burst = NULL; return 0; } static int qede_eth_dev_uninit(struct rte_eth_dev *eth_dev) { return qede_dev_common_uninit(eth_dev); } static int qedevf_eth_dev_uninit(struct rte_eth_dev *eth_dev) { return qede_dev_common_uninit(eth_dev); } static const struct rte_pci_id pci_id_qedevf_map[] = { #define QEDEVF_RTE_PCI_DEVICE(dev) RTE_PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, dev) { QEDEVF_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_NX2_VF) }, { QEDEVF_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_IOV) }, { QEDEVF_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_IOV) }, {.vendor_id = 0,} }; static const struct rte_pci_id pci_id_qede_map[] = { #define QEDE_RTE_PCI_DEVICE(dev) RTE_PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, dev) { QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_NX2_57980E) }, { QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_NX2_57980S) }, { QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_40) }, { QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_25) }, { QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_100) }, { QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_50) }, { QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_50G) }, { QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_10G) }, { QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_40G) }, { QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_25G) }, {.vendor_id = 0,} }; static int qedevf_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct qede_dev), qedevf_eth_dev_init); } static int qedevf_eth_dev_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, qedevf_eth_dev_uninit); } static struct rte_pci_driver rte_qedevf_pmd = { .id_table = pci_id_qedevf_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC | RTE_PCI_DRV_IOVA_AS_VA, .probe = qedevf_eth_dev_pci_probe, .remove = qedevf_eth_dev_pci_remove, }; static int qede_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct qede_dev), qede_eth_dev_init); } static int qede_eth_dev_pci_remove(struct rte_pci_device *pci_dev) { return rte_eth_dev_pci_generic_remove(pci_dev, qede_eth_dev_uninit); } static struct rte_pci_driver rte_qede_pmd = { .id_table = pci_id_qede_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC | RTE_PCI_DRV_IOVA_AS_VA, .probe = qede_eth_dev_pci_probe, .remove = qede_eth_dev_pci_remove, }; RTE_PMD_REGISTER_PCI(net_qede, rte_qede_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_qede, pci_id_qede_map); RTE_PMD_REGISTER_KMOD_DEP(net_qede, "* igb_uio | uio_pci_generic | vfio-pci"); RTE_PMD_REGISTER_PCI(net_qede_vf, rte_qedevf_pmd); RTE_PMD_REGISTER_PCI_TABLE(net_qede_vf, pci_id_qedevf_map); RTE_PMD_REGISTER_KMOD_DEP(net_qede_vf, "* igb_uio | vfio-pci"); RTE_INIT(qede_init_log) { qede_logtype_init = rte_log_register("pmd.net.qede.init"); if (qede_logtype_init >= 0) rte_log_set_level(qede_logtype_init, RTE_LOG_NOTICE); qede_logtype_driver = rte_log_register("pmd.net.qede.driver"); if (qede_logtype_driver >= 0) rte_log_set_level(qede_logtype_driver, RTE_LOG_NOTICE); }