/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include "cfg_file.h" #include "main.h" /** when we resize a file structure, how many extra entries * for new sections do we add in */ #define CFG_ALLOC_SECTION_BATCH 8 /** when we resize a section structure, how many extra entries * for new entries do we add in */ #define CFG_ALLOC_ENTRY_BATCH 16 int cfg_load_port(struct rte_cfgfile *cfg, struct rte_sched_port_params *port_params) { const char *entry; int j; if (!cfg || !port_params) return -1; entry = rte_cfgfile_get_entry(cfg, "port", "frame overhead"); if (entry) port_params->frame_overhead = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, "port", "number of subports per port"); if (entry) port_params->n_subports_per_port = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, "port", "number of pipes per subport"); if (entry) port_params->n_pipes_per_subport = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, "port", "queue sizes"); if (entry) { char *next; for(j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j++) { port_params->qsize[j] = (uint16_t)strtol(entry, &next, 10); if (next == NULL) break; entry = next; } } #ifdef RTE_SCHED_RED for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j++) { char str[32]; /* Parse WRED min thresholds */ snprintf(str, sizeof(str), "tc %d wred min", j); entry = rte_cfgfile_get_entry(cfg, "red", str); if (entry) { char *next; int k; /* for each packet colour (green, yellow, red) */ for (k = 0; k < RTE_COLORS; k++) { port_params->red_params[j][k].min_th = (uint16_t)strtol(entry, &next, 10); if (next == NULL) break; entry = next; } } /* Parse WRED max thresholds */ snprintf(str, sizeof(str), "tc %d wred max", j); entry = rte_cfgfile_get_entry(cfg, "red", str); if (entry) { char *next; int k; /* for each packet colour (green, yellow, red) */ for (k = 0; k < RTE_COLORS; k++) { port_params->red_params[j][k].max_th = (uint16_t)strtol(entry, &next, 10); if (next == NULL) break; entry = next; } } /* Parse WRED inverse mark probabilities */ snprintf(str, sizeof(str), "tc %d wred inv prob", j); entry = rte_cfgfile_get_entry(cfg, "red", str); if (entry) { char *next; int k; /* for each packet colour (green, yellow, red) */ for (k = 0; k < RTE_COLORS; k++) { port_params->red_params[j][k].maxp_inv = (uint8_t)strtol(entry, &next, 10); if (next == NULL) break; entry = next; } } /* Parse WRED EWMA filter weights */ snprintf(str, sizeof(str), "tc %d wred weight", j); entry = rte_cfgfile_get_entry(cfg, "red", str); if (entry) { char *next; int k; /* for each packet colour (green, yellow, red) */ for (k = 0; k < RTE_COLORS; k++) { port_params->red_params[j][k].wq_log2 = (uint8_t)strtol(entry, &next, 10); if (next == NULL) break; entry = next; } } } #endif /* RTE_SCHED_RED */ return 0; } int cfg_load_pipe(struct rte_cfgfile *cfg, struct rte_sched_pipe_params *pipe_params) { int i, j; char *next; const char *entry; int profiles; if (!cfg || !pipe_params) return -1; profiles = rte_cfgfile_num_sections(cfg, "pipe profile", sizeof("pipe profile") - 1); port_params.n_pipe_profiles = profiles; for (j = 0; j < profiles; j++) { char pipe_name[32]; snprintf(pipe_name, sizeof(pipe_name), "pipe profile %d", j); entry = rte_cfgfile_get_entry(cfg, pipe_name, "tb rate"); if (entry) pipe_params[j].tb_rate = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, pipe_name, "tb size"); if (entry) pipe_params[j].tb_size = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, pipe_name, "tc period"); if (entry) pipe_params[j].tc_period = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, pipe_name, "tc 0 rate"); if (entry) pipe_params[j].tc_rate[0] = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, pipe_name, "tc 1 rate"); if (entry) pipe_params[j].tc_rate[1] = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, pipe_name, "tc 2 rate"); if (entry) pipe_params[j].tc_rate[2] = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, pipe_name, "tc 3 rate"); if (entry) pipe_params[j].tc_rate[3] = (uint32_t)atoi(entry); #ifdef RTE_SCHED_SUBPORT_TC_OV entry = rte_cfgfile_get_entry(cfg, pipe_name, "tc 3 oversubscription weight"); if (entry) pipe_params[j].tc_ov_weight = (uint8_t)atoi(entry); #endif entry = rte_cfgfile_get_entry(cfg, pipe_name, "tc 0 wrr weights"); if (entry) { for(i = 0; i < RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS; i++) { pipe_params[j].wrr_weights[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE*0 + i] = (uint8_t)strtol(entry, &next, 10); if (next == NULL) break; entry = next; } } entry = rte_cfgfile_get_entry(cfg, pipe_name, "tc 1 wrr weights"); if (entry) { for(i = 0; i < RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS; i++) { pipe_params[j].wrr_weights[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE*1 + i] = (uint8_t)strtol(entry, &next, 10); if (next == NULL) break; entry = next; } } entry = rte_cfgfile_get_entry(cfg, pipe_name, "tc 2 wrr weights"); if (entry) { for(i = 0; i < RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS; i++) { pipe_params[j].wrr_weights[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE*2 + i] = (uint8_t)strtol(entry, &next, 10); if (next == NULL) break; entry = next; } } entry = rte_cfgfile_get_entry(cfg, pipe_name, "tc 3 wrr weights"); if (entry) { for(i = 0; i < RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS; i++) { pipe_params[j].wrr_weights[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE*3 + i] = (uint8_t)strtol(entry, &next, 10); if (next == NULL) break; entry = next; } } } return 0; } int cfg_load_subport(struct rte_cfgfile *cfg, struct rte_sched_subport_params *subport_params) { const char *entry; int i, j, k; if (!cfg || !subport_params) return -1; memset(app_pipe_to_profile, -1, sizeof(app_pipe_to_profile)); for (i = 0; i < MAX_SCHED_SUBPORTS; i++) { char sec_name[CFG_NAME_LEN]; snprintf(sec_name, sizeof(sec_name), "subport %d", i); if (rte_cfgfile_has_section(cfg, sec_name)) { entry = rte_cfgfile_get_entry(cfg, sec_name, "tb rate"); if (entry) subport_params[i].tb_rate = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, sec_name, "tb size"); if (entry) subport_params[i].tb_size = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, sec_name, "tc period"); if (entry) subport_params[i].tc_period = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, sec_name, "tc 0 rate"); if (entry) subport_params[i].tc_rate[0] = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, sec_name, "tc 1 rate"); if (entry) subport_params[i].tc_rate[1] = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, sec_name, "tc 2 rate"); if (entry) subport_params[i].tc_rate[2] = (uint32_t)atoi(entry); entry = rte_cfgfile_get_entry(cfg, sec_name, "tc 3 rate"); if (entry) subport_params[i].tc_rate[3] = (uint32_t)atoi(entry); int n_entries = rte_cfgfile_section_num_entries(cfg, sec_name); struct rte_cfgfile_entry entries[n_entries]; rte_cfgfile_section_entries(cfg, sec_name, entries, n_entries); for (j = 0; j < n_entries; j++) { if (strncmp("pipe", entries[j].name, sizeof("pipe") - 1) == 0) { int profile; char *tokens[2] = {NULL, NULL}; int n_tokens; int begin, end; profile = atoi(entries[j].value); n_tokens = rte_strsplit(&entries[j].name[sizeof("pipe")], strnlen(entries[j].name, CFG_NAME_LEN), tokens, 2, '-'); begin = atoi(tokens[0]); if (n_tokens == 2) end = atoi(tokens[1]); else end = begin; if (end >= MAX_SCHED_PIPES || begin > end) return -1; for (k = begin; k <= end; k++) { char profile_name[CFG_NAME_LEN]; snprintf(profile_name, sizeof(profile_name), "pipe profile %d", profile); if (rte_cfgfile_has_section(cfg, profile_name)) app_pipe_to_profile[i][k] = profile; else rte_exit(EXIT_FAILURE, "Wrong pipe profile %s\n", entries[j].value); } } } } } return 0; }