;; ;; Copyright (c) 2012-2018, Intel Corporation ;; ;; Redistribution and use in source and binary forms, with or without ;; modification, are permitted provided that the following conditions are met: ;; ;; * Redistributions of source code must retain the above copyright notice, ;; this list of conditions and the following disclaimer. ;; * Redistributions in binary form must reproduce the above copyright ;; notice, this list of conditions and the following disclaimer in the ;; documentation and/or other materials provided with the distribution. ;; * Neither the name of Intel Corporation nor the names of its contributors ;; may be used to endorse or promote products derived from this software ;; without specific prior written permission. ;; ;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ;; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ;; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ;; DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE ;; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ;; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ;; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ;; CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ;; OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ;; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;; ; This code schedules 1 blocks at a time, with 4 lanes per block ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %include "include/os.asm" %define VMOVDQ vmovdqu ;; assume buffers not aligned %ifndef FUNC %define FUNC sha512_block_avx %endif ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Define Macros %macro MY_ROR 2 shld %1,%1,(64-(%2)) %endm ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask ; Load xmm with mem and byte swap each dword %macro COPY_XMM_AND_BSWAP 3 VMOVDQ %1, %2 vpshufb %1, %3 %endmacro ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %define X0 xmm4 %define X1 xmm5 %define X2 xmm6 %define X3 xmm7 %define X4 xmm8 %define X5 xmm9 %define X6 xmm10 %define X7 xmm11 %define XTMP0 xmm0 %define XTMP1 xmm1 %define XTMP2 xmm2 %define XTMP3 xmm3 %define XFER xmm13 %define BYTE_FLIP_MASK xmm12 %ifdef LINUX %define CTX rsi ; 2nd arg %define INP rdi ; 1st arg %define SRND rdi ; clobbers INP %define c rcx %define d r8 %define e rdx %else %define CTX rdx ; 2nd arg %define INP rcx ; 1st arg %define SRND rcx ; clobbers INP %define c rdi %define d rsi %define e r8 %endif %define TBL rbp %define a rax %define b rbx %define f r9 %define g r10 %define h r11 %define y0 r13 %define y1 r14 %define y2 r15 struc STACK %ifndef LINUX _XMM_SAVE: reso 8 %endif _XFER: reso 1 endstruc ; rotate_Xs ; Rotate values of symbols X0...X7 %macro rotate_Xs 0 %xdefine X_ X0 %xdefine X0 X1 %xdefine X1 X2 %xdefine X2 X3 %xdefine X3 X4 %xdefine X4 X5 %xdefine X5 X6 %xdefine X6 X7 %xdefine X7 X_ %endm ; ROTATE_ARGS ; Rotate values of symbols a...h %macro ROTATE_ARGS 0 %xdefine TMP_ h %xdefine h g %xdefine g f %xdefine f e %xdefine e d %xdefine d c %xdefine c b %xdefine b a %xdefine a TMP_ %endm %macro TWO_ROUNDS_AND_SCHED 0 vpalignr XTMP0, X5, X4, 8 ; XTMP0 = W[-7] ;; compute s0 four at a time and s1 two at a time ;; compute W[-16] + W[-7] 4 at a time mov y0, e ; y0 = e mov y1, a ; y1 = a MY_ROR y0, (41-18) ; y0 = e >> (41-18) vpaddq XTMP0, XTMP0, X0 ; XTMP0 = W[-7] + W[-16] xor y0, e ; y0 = e ^ (e >> (41-18)) mov y2, f ; y2 = f MY_ROR y1, (39-34) ; y1 = a >> (39-34) ;; compute s0 vpalignr XTMP1, X1, X0, 8 ; XTMP1 = W[-15] xor y1, a ; y1 = a ^ (a >> (39-34) MY_ROR y0, (18-14) ; y0 = (e >> (18-14)) ^ (e >> (41-14)) vpsllq XTMP2, XTMP1, (64-1) xor y2, g ; y2 = f^g MY_ROR y1, (34-28) ; y1 = (a >> (34-28)) ^ (a >> (39-28)) vpsrlq XTMP3, XTMP1, 1 xor y0, e ; y0 = e ^ (e >> (18-14)) ^ (e >> (41-14)) and y2, e ; y2 = (f^g)&e MY_ROR y0, 14 ; y0 = S1 = (e>>14) & (e>>18) ^ (e>>41) vpor XTMP2, XTMP2, XTMP3 ; XTMP2 = W[-15] ror 1 xor y1, a ; y1 = a ^ (a >> (34-28)) ^ (a >> (39-28)) xor y2, g ; y2 = CH = ((f^g)&e)^g add y2, y0 ; y2 = S1 + CH vpsrlq XTMP3, XTMP1, 8 add y2, [rsp + _XFER + 0*8] ; y2 = k + w + S1 + CH MY_ROR y1, 28 ; y1 = S0 = (a>>28) ^ (a>>34) ^ (a>>39) mov y0, a ; y0 = a vpsllq X0, XTMP1, (64-8) add h, y2 ; h = h + S1 + CH + k + w mov y2, a ; y2 = a or y0, c ; y0 = a|c vpor X0, X0, XTMP3 add d, h ; d = d + t1 and y2, c ; y2 = a&c and y0, b ; y0 = (a|c)&b vpsrlq XTMP1, XTMP1, 7 ; X0 = W[-15] >> 7 add h, y1 ; h = t1 + S0 or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c) vpxor XTMP1, XTMP1, XTMP2 ; XTMP1 = W[-15] ror 1 ^ W[-15] ror 8 add h, y0 ; h = t1 + S0 + MAJ vpxor XTMP1, XTMP1, X0 ; XTMP1 = s0 ROTATE_ARGS ;; compute s1 vpaddq XTMP0, XTMP0, XTMP1 ; XTMP0 = W[-16] + W[-7] + s0 mov y0, e ; y0 = e mov y1, a ; y1 = a MY_ROR y0, (41-18) ; y0 = e >> (41-18) vpsllq XTMP3, X7, (64-19) xor y0, e ; y0 = e ^ (e >> (41-18)) mov y2, f ; y2 = f MY_ROR y1, (39-34) ; y1 = a >> (39-34) vpsrlq X0, X7, 19 xor y1, a ; y1 = a ^ (a >> (39-34) MY_ROR y0, (18-14) ; y0 = (e >> (18-14)) ^ (e >> (41-14)) vpor XTMP3, XTMP3, X0 ; XTMP3 = W[-2] ror 19 xor y2, g ; y2 = f^g MY_ROR y1, (34-28) ; y1 = (a >> (34-28)) ^ (a >> (39-28)) vpsllq XTMP2, X7, (64-61) xor y0, e ; y0 = e ^ (e >> (18-14)) ^ (e >> (41-14)) and y2, e ; y2 = (f^g)&e MY_ROR y0, 14 ; y0 = S1 = (e>>14) & (e>>18) ^ (e>>41) vpsrlq XTMP1, X7, 61 xor y1, a ; y1 = a ^ (a >> (34-28)) ^ (a >> (39-28)) xor y2, g ; y2 = CH = ((f^g)&e)^g add y2, y0 ; y2 = S1 + CH vpor XTMP2, XTMP2, XTMP1 ; XTMP2 = W[-2] ror 61 add y2, [rsp + _XFER + 1*8] ; y2 = k + w + S1 + CH MY_ROR y1, 28 ; y1 = S0 = (a>>28) ^ (a>>34) ^ (a>>39) mov y0, a ; y0 = a vpsrlq XTMP1, X7, 6 ; XTMP1 = W[-2] >> 6 add h, y2 ; h = h + S1 + CH + k + w mov y2, a ; y2 = a or y0, c ; y0 = a|c vpxor XTMP1, XTMP1, XTMP2 add d, h ; d = d + t1 and y2, c ; y2 = a&c and y0, b ; y0 = (a|c)&b vpxor X0, XTMP3, XTMP1 ; X0 = s1 add h, y1 ; h = t1 + S0 or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c) add h, y0 ; h = t1 + S0 + MAJ vpaddq X0, X0, XTMP0 ; X0 = {W[1], W[0]} ROTATE_ARGS rotate_Xs %endm ;; input is [rsp + _XFER + %1 * 8] %macro DO_ROUND 1 mov y0, e ; y0 = e MY_ROR y0, (41-18) ; y0 = e >> (41-18) mov y1, a ; y1 = a xor y0, e ; y0 = e ^ (e >> (41-18)) MY_ROR y1, (39-34) ; y1 = a >> (39-34) mov y2, f ; y2 = f xor y1, a ; y1 = a ^ (a >> (39-34) MY_ROR y0, (18-14) ; y0 = (e >> (18-14)) ^ (e >> (41-14)) xor y2, g ; y2 = f^g xor y0, e ; y0 = e ^ (e >> (18-14)) ^ (e >> (25-6)) MY_ROR y1, (34-28) ; y1 = (a >> (34-28)) ^ (a >> (39-28)) and y2, e ; y2 = (f^g)&e xor y1, a ; y1 = a ^ (a >> (34-28)) ^ (a >> (39-28)) MY_ROR y0, 14 ; y0 = S1 = (e>>14) & (e>>18) ^ (e>>41) xor y2, g ; y2 = CH = ((f^g)&e)^g add y2, y0 ; y2 = S1 + CH MY_ROR y1, 28 ; y1 = S0 = (a>>28) ^ (a>>34) ^ (a>>39) add y2, [rsp + _XFER + %1*8] ; y2 = k + w + S1 + CH mov y0, a ; y0 = a add h, y2 ; h = h + S1 + CH + k + w mov y2, a ; y2 = a or y0, c ; y0 = a|c add d, h ; d = d + t1 and y2, c ; y2 = a&c and y0, b ; y0 = (a|c)&b add h, y1 ; h = t1 + S0 or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c) add h, y0 ; h = t1 + S0 + MAJ ROTATE_ARGS %endm section .data default rel align 64 K512: dq 0x428a2f98d728ae22,0x7137449123ef65cd dq 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc dq 0x3956c25bf348b538,0x59f111f1b605d019 dq 0x923f82a4af194f9b,0xab1c5ed5da6d8118 dq 0xd807aa98a3030242,0x12835b0145706fbe dq 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 dq 0x72be5d74f27b896f,0x80deb1fe3b1696b1 dq 0x9bdc06a725c71235,0xc19bf174cf692694 dq 0xe49b69c19ef14ad2,0xefbe4786384f25e3 dq 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 dq 0x2de92c6f592b0275,0x4a7484aa6ea6e483 dq 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 dq 0x983e5152ee66dfab,0xa831c66d2db43210 dq 0xb00327c898fb213f,0xbf597fc7beef0ee4 dq 0xc6e00bf33da88fc2,0xd5a79147930aa725 dq 0x06ca6351e003826f,0x142929670a0e6e70 dq 0x27b70a8546d22ffc,0x2e1b21385c26c926 dq 0x4d2c6dfc5ac42aed,0x53380d139d95b3df dq 0x650a73548baf63de,0x766a0abb3c77b2a8 dq 0x81c2c92e47edaee6,0x92722c851482353b dq 0xa2bfe8a14cf10364,0xa81a664bbc423001 dq 0xc24b8b70d0f89791,0xc76c51a30654be30 dq 0xd192e819d6ef5218,0xd69906245565a910 dq 0xf40e35855771202a,0x106aa07032bbd1b8 dq 0x19a4c116b8d2d0c8,0x1e376c085141ab53 dq 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 dq 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb dq 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 dq 0x748f82ee5defb2fc,0x78a5636f43172f60 dq 0x84c87814a1f0ab72,0x8cc702081a6439ec dq 0x90befffa23631e28,0xa4506cebde82bde9 dq 0xbef9a3f7b2c67915,0xc67178f2e372532b dq 0xca273eceea26619c,0xd186b8c721c0c207 dq 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 dq 0x06f067aa72176fba,0x0a637dc5a2c898a6 dq 0x113f9804bef90dae,0x1b710b35131c471b dq 0x28db77f523047d84,0x32caab7b40c72493 dq 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c dq 0x4cc5d4becb3e42b6,0x597f299cfc657e2a dq 0x5fcb6fab3ad6faec,0x6c44198c4a475817 align 16 PSHUFFLE_BYTE_FLIP_MASK: ;ddq 0x08090a0b0c0d0e0f0001020304050607 dq 0x0001020304050607, 0x08090a0b0c0d0e0f ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; void FUNC(void *input_data, UINT64 digest[8]) ;; arg 1 : pointer to input data ;; arg 2 : pointer to digest section .text MKGLOBAL(FUNC,function,internal) align 32 FUNC: push rbx %ifndef LINUX push rsi push rdi %endif push rbp push r13 push r14 push r15 sub rsp,STACK_size %ifndef LINUX vmovdqa [rsp + _XMM_SAVE + 0*16],xmm6 vmovdqa [rsp + _XMM_SAVE + 1*16],xmm7 vmovdqa [rsp + _XMM_SAVE + 2*16],xmm8 vmovdqa [rsp + _XMM_SAVE + 3*16],xmm9 vmovdqa [rsp + _XMM_SAVE + 4*16],xmm10 vmovdqa [rsp + _XMM_SAVE + 5*16],xmm11 vmovdqa [rsp + _XMM_SAVE + 6*16],xmm12 vmovdqa [rsp + _XMM_SAVE + 7*16],xmm13 %endif ;; load initial digest mov a, [8*0 + CTX] mov b, [8*1 + CTX] mov c, [8*2 + CTX] mov d, [8*3 + CTX] mov e, [8*4 + CTX] mov f, [8*5 + CTX] mov g, [8*6 + CTX] mov h, [8*7 + CTX] vmovdqa BYTE_FLIP_MASK, [rel PSHUFFLE_BYTE_FLIP_MASK] lea TBL,[rel K512] ;; byte swap first 16 qwords COPY_XMM_AND_BSWAP X0, [INP + 0*16], BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X1, [INP + 1*16], BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X2, [INP + 2*16], BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X3, [INP + 3*16], BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X4, [INP + 4*16], BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X5, [INP + 5*16], BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X6, [INP + 6*16], BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X7, [INP + 7*16], BYTE_FLIP_MASK ;; schedule 64 input qwords, by doing 4 iterations of 16 rounds mov SRND, 4 align 16 loop1: %assign i 0 %rep 7 vpaddq XFER, X0, [TBL + i*16] vmovdqa [rsp + _XFER], XFER TWO_ROUNDS_AND_SCHED %assign i (i+1) %endrep vpaddq XFER, X0, [TBL + 7*16] vmovdqa [rsp + _XFER], XFER add TBL, 8*16 TWO_ROUNDS_AND_SCHED sub SRND, 1 jne loop1 mov SRND, 2 jmp loop2a loop2: vmovdqa X0, X4 vmovdqa X1, X5 vmovdqa X2, X6 vmovdqa X3, X7 loop2a: vpaddq X0, X0, [TBL + 0*16] vmovdqa [rsp + _XFER], X0 DO_ROUND 0 DO_ROUND 1 vpaddq X1, X1, [TBL + 1*16] vmovdqa [rsp + _XFER], X1 DO_ROUND 0 DO_ROUND 1 vpaddq X2, X2, [TBL + 2*16] vmovdqa [rsp + _XFER], X2 DO_ROUND 0 DO_ROUND 1 vpaddq X3, X3, [TBL + 3*16] vmovdqa [rsp + _XFER], X3 add TBL, 4*16 DO_ROUND 0 DO_ROUND 1 sub SRND, 1 jne loop2 add [8*0 + CTX], a add [8*1 + CTX], b add [8*2 + CTX], c add [8*3 + CTX], d add [8*4 + CTX], e add [8*5 + CTX], f add [8*6 + CTX], g add [8*7 + CTX], h done_hash: %ifndef LINUX vmovdqa xmm6,[rsp + _XMM_SAVE + 0*16] vmovdqa xmm7,[rsp + _XMM_SAVE + 1*16] vmovdqa xmm8,[rsp + _XMM_SAVE + 2*16] vmovdqa xmm9,[rsp + _XMM_SAVE + 3*16] vmovdqa xmm10,[rsp + _XMM_SAVE + 4*16] vmovdqa xmm11,[rsp + _XMM_SAVE + 5*16] vmovdqa xmm12,[rsp + _XMM_SAVE + 6*16] vmovdqa xmm13,[rsp + _XMM_SAVE + 7*16] %ifdef SAFE_DATA ;; Clear potential sensitive data stored in stack vpxor xmm0, xmm0 vmovdqa [rsp + _XMM_SAVE + 0 * 16], xmm0 vmovdqa [rsp + _XMM_SAVE + 1 * 16], xmm0 vmovdqa [rsp + _XMM_SAVE + 2 * 16], xmm0 vmovdqa [rsp + _XMM_SAVE + 3 * 16], xmm0 vmovdqa [rsp + _XMM_SAVE + 4 * 16], xmm0 vmovdqa [rsp + _XMM_SAVE + 5 * 16], xmm0 vmovdqa [rsp + _XMM_SAVE + 6 * 16], xmm0 vmovdqa [rsp + _XMM_SAVE + 7 * 16], xmm0 %endif %endif ;; LINUX add rsp, STACK_size pop r15 pop r14 pop r13 pop rbp %ifndef LINUX pop rdi pop rsi %endif pop rbx ret %ifdef LINUX section .note.GNU-stack noalloc noexec nowrite progbits %endif