/*- * BSD LICENSE * * Copyright (c) Intel Corporation. All rights reserved. * Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/bdev.h" #include "spdk/conf.h" #include "spdk/config.h" #include "spdk/env.h" #include "spdk/thread.h" #include "spdk/likely.h" #include "spdk/queue.h" #include "spdk/nvme_spec.h" #include "spdk/scsi_spec.h" #include "spdk/notify.h" #include "spdk/util.h" #include "spdk/trace.h" #include "spdk/bdev_module.h" #include "spdk_internal/log.h" #include "spdk/string.h" #include "bdev_internal.h" #ifdef SPDK_CONFIG_VTUNE #include "ittnotify.h" #include "ittnotify_types.h" int __itt_init_ittlib(const char *, __itt_group_id); #endif #define SPDK_BDEV_IO_POOL_SIZE (64 * 1024 - 1) #define SPDK_BDEV_IO_CACHE_SIZE 256 #define SPDK_BDEV_AUTO_EXAMINE true #define BUF_SMALL_POOL_SIZE 8191 #define BUF_LARGE_POOL_SIZE 1023 #define NOMEM_THRESHOLD_COUNT 8 #define ZERO_BUFFER_SIZE 0x100000 #define OWNER_BDEV 0x2 #define OBJECT_BDEV_IO 0x2 #define TRACE_GROUP_BDEV 0x3 #define TRACE_BDEV_IO_START SPDK_TPOINT_ID(TRACE_GROUP_BDEV, 0x0) #define TRACE_BDEV_IO_DONE SPDK_TPOINT_ID(TRACE_GROUP_BDEV, 0x1) #define SPDK_BDEV_QOS_TIMESLICE_IN_USEC 1000 #define SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE 1 #define SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE 512 #define SPDK_BDEV_QOS_MIN_IOS_PER_SEC 1000 #define SPDK_BDEV_QOS_MIN_BYTES_PER_SEC (1024 * 1024) #define SPDK_BDEV_QOS_LIMIT_NOT_DEFINED UINT64_MAX #define SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC 1000 #define SPDK_BDEV_POOL_ALIGNMENT 512 static const char *qos_conf_type[] = {"Limit_IOPS", "Limit_BPS", "Limit_Read_BPS", "Limit_Write_BPS" }; static const char *qos_rpc_type[] = {"rw_ios_per_sec", "rw_mbytes_per_sec", "r_mbytes_per_sec", "w_mbytes_per_sec" }; TAILQ_HEAD(spdk_bdev_list, spdk_bdev); struct spdk_bdev_mgr { struct spdk_mempool *bdev_io_pool; struct spdk_mempool *buf_small_pool; struct spdk_mempool *buf_large_pool; void *zero_buffer; TAILQ_HEAD(bdev_module_list, spdk_bdev_module) bdev_modules; struct spdk_bdev_list bdevs; bool init_complete; bool module_init_complete; pthread_mutex_t mutex; #ifdef SPDK_CONFIG_VTUNE __itt_domain *domain; #endif }; static struct spdk_bdev_mgr g_bdev_mgr = { .bdev_modules = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdev_modules), .bdevs = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdevs), .init_complete = false, .module_init_complete = false, .mutex = PTHREAD_MUTEX_INITIALIZER, }; typedef void (*lock_range_cb)(void *ctx, int status); struct lba_range { uint64_t offset; uint64_t length; void *locked_ctx; struct spdk_bdev_channel *owner_ch; TAILQ_ENTRY(lba_range) tailq; }; static struct spdk_bdev_opts g_bdev_opts = { .bdev_io_pool_size = SPDK_BDEV_IO_POOL_SIZE, .bdev_io_cache_size = SPDK_BDEV_IO_CACHE_SIZE, .bdev_auto_examine = SPDK_BDEV_AUTO_EXAMINE, }; static spdk_bdev_init_cb g_init_cb_fn = NULL; static void *g_init_cb_arg = NULL; static spdk_bdev_fini_cb g_fini_cb_fn = NULL; static void *g_fini_cb_arg = NULL; static struct spdk_thread *g_fini_thread = NULL; struct spdk_bdev_qos_limit { /** IOs or bytes allowed per second (i.e., 1s). */ uint64_t limit; /** Remaining IOs or bytes allowed in current timeslice (e.g., 1ms). * For remaining bytes, allowed to run negative if an I/O is submitted when * some bytes are remaining, but the I/O is bigger than that amount. The * excess will be deducted from the next timeslice. */ int64_t remaining_this_timeslice; /** Minimum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */ uint32_t min_per_timeslice; /** Maximum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */ uint32_t max_per_timeslice; /** Function to check whether to queue the IO. */ bool (*queue_io)(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io); /** Function to update for the submitted IO. */ void (*update_quota)(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io); }; struct spdk_bdev_qos { /** Types of structure of rate limits. */ struct spdk_bdev_qos_limit rate_limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES]; /** The channel that all I/O are funneled through. */ struct spdk_bdev_channel *ch; /** The thread on which the poller is running. */ struct spdk_thread *thread; /** Queue of I/O waiting to be issued. */ bdev_io_tailq_t queued; /** Size of a timeslice in tsc ticks. */ uint64_t timeslice_size; /** Timestamp of start of last timeslice. */ uint64_t last_timeslice; /** Poller that processes queued I/O commands each time slice. */ struct spdk_poller *poller; }; struct spdk_bdev_mgmt_channel { bdev_io_stailq_t need_buf_small; bdev_io_stailq_t need_buf_large; /* * Each thread keeps a cache of bdev_io - this allows * bdev threads which are *not* DPDK threads to still * benefit from a per-thread bdev_io cache. Without * this, non-DPDK threads fetching from the mempool * incur a cmpxchg on get and put. */ bdev_io_stailq_t per_thread_cache; uint32_t per_thread_cache_count; uint32_t bdev_io_cache_size; TAILQ_HEAD(, spdk_bdev_shared_resource) shared_resources; TAILQ_HEAD(, spdk_bdev_io_wait_entry) io_wait_queue; }; /* * Per-module (or per-io_device) data. Multiple bdevs built on the same io_device * will queue here their IO that awaits retry. It makes it possible to retry sending * IO to one bdev after IO from other bdev completes. */ struct spdk_bdev_shared_resource { /* The bdev management channel */ struct spdk_bdev_mgmt_channel *mgmt_ch; /* * Count of I/O submitted to bdev module and waiting for completion. * Incremented before submit_request() is called on an spdk_bdev_io. */ uint64_t io_outstanding; /* * Queue of IO awaiting retry because of a previous NOMEM status returned * on this channel. */ bdev_io_tailq_t nomem_io; /* * Threshold which io_outstanding must drop to before retrying nomem_io. */ uint64_t nomem_threshold; /* I/O channel allocated by a bdev module */ struct spdk_io_channel *shared_ch; /* Refcount of bdev channels using this resource */ uint32_t ref; TAILQ_ENTRY(spdk_bdev_shared_resource) link; }; #define BDEV_CH_RESET_IN_PROGRESS (1 << 0) #define BDEV_CH_QOS_ENABLED (1 << 1) struct spdk_bdev_channel { struct spdk_bdev *bdev; /* The channel for the underlying device */ struct spdk_io_channel *channel; /* Per io_device per thread data */ struct spdk_bdev_shared_resource *shared_resource; struct spdk_bdev_io_stat stat; /* * Count of I/O submitted to the underlying dev module through this channel * and waiting for completion. */ uint64_t io_outstanding; /* * List of all submitted I/Os including I/O that are generated via splitting. */ bdev_io_tailq_t io_submitted; /* * List of spdk_bdev_io that are currently queued because they write to a locked * LBA range. */ bdev_io_tailq_t io_locked; uint32_t flags; struct spdk_histogram_data *histogram; #ifdef SPDK_CONFIG_VTUNE uint64_t start_tsc; uint64_t interval_tsc; __itt_string_handle *handle; struct spdk_bdev_io_stat prev_stat; #endif bdev_io_tailq_t queued_resets; lba_range_tailq_t locked_ranges; }; struct media_event_entry { struct spdk_bdev_media_event event; TAILQ_ENTRY(media_event_entry) tailq; }; #define MEDIA_EVENT_POOL_SIZE 64 struct spdk_bdev_desc { struct spdk_bdev *bdev; struct spdk_thread *thread; struct { bool open_with_ext; union { spdk_bdev_remove_cb_t remove_fn; spdk_bdev_event_cb_t event_fn; }; void *ctx; } callback; bool closed; bool write; pthread_mutex_t mutex; uint32_t refs; TAILQ_HEAD(, media_event_entry) pending_media_events; TAILQ_HEAD(, media_event_entry) free_media_events; struct media_event_entry *media_events_buffer; TAILQ_ENTRY(spdk_bdev_desc) link; uint64_t timeout_in_sec; spdk_bdev_io_timeout_cb cb_fn; void *cb_arg; struct spdk_poller *io_timeout_poller; }; struct spdk_bdev_iostat_ctx { struct spdk_bdev_io_stat *stat; spdk_bdev_get_device_stat_cb cb; void *cb_arg; }; struct set_qos_limit_ctx { void (*cb_fn)(void *cb_arg, int status); void *cb_arg; struct spdk_bdev *bdev; }; #define __bdev_to_io_dev(bdev) (((char *)bdev) + 1) #define __bdev_from_io_dev(io_dev) ((struct spdk_bdev *)(((char *)io_dev) - 1)) static void bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg); static void bdev_write_zero_buffer_next(void *_bdev_io); static void bdev_enable_qos_msg(struct spdk_io_channel_iter *i); static void bdev_enable_qos_done(struct spdk_io_channel_iter *i, int status); static int bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg); static int bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg); static int bdev_lock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, uint64_t offset, uint64_t length, lock_range_cb cb_fn, void *cb_arg); static int bdev_unlock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, uint64_t offset, uint64_t length, lock_range_cb cb_fn, void *cb_arg); static inline void bdev_io_complete(void *ctx); static bool bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_io *bio_to_abort); static bool bdev_abort_buf_io(bdev_io_stailq_t *queue, struct spdk_bdev_io *bio_to_abort); void spdk_bdev_get_opts(struct spdk_bdev_opts *opts) { *opts = g_bdev_opts; } int spdk_bdev_set_opts(struct spdk_bdev_opts *opts) { uint32_t min_pool_size; /* * Add 1 to the thread count to account for the extra mgmt_ch that gets created during subsystem * initialization. A second mgmt_ch will be created on the same thread when the application starts * but before the deferred put_io_channel event is executed for the first mgmt_ch. */ min_pool_size = opts->bdev_io_cache_size * (spdk_thread_get_count() + 1); if (opts->bdev_io_pool_size < min_pool_size) { SPDK_ERRLOG("bdev_io_pool_size %" PRIu32 " is not compatible with bdev_io_cache_size %" PRIu32 " and %" PRIu32 " threads\n", opts->bdev_io_pool_size, opts->bdev_io_cache_size, spdk_thread_get_count()); SPDK_ERRLOG("bdev_io_pool_size must be at least %" PRIu32 "\n", min_pool_size); return -1; } g_bdev_opts = *opts; return 0; } struct spdk_bdev_examine_item { char *name; TAILQ_ENTRY(spdk_bdev_examine_item) link; }; TAILQ_HEAD(spdk_bdev_examine_allowlist, spdk_bdev_examine_item); struct spdk_bdev_examine_allowlist g_bdev_examine_allowlist = TAILQ_HEAD_INITIALIZER( g_bdev_examine_allowlist); static inline bool bdev_examine_allowlist_check(const char *name) { struct spdk_bdev_examine_item *item; TAILQ_FOREACH(item, &g_bdev_examine_allowlist, link) { if (strcmp(name, item->name) == 0) { return true; } } return false; } static inline bool bdev_in_examine_allowlist(struct spdk_bdev *bdev) { struct spdk_bdev_alias *tmp; if (bdev_examine_allowlist_check(bdev->name)) { return true; } TAILQ_FOREACH(tmp, &bdev->aliases, tailq) { if (bdev_examine_allowlist_check(tmp->alias)) { return true; } } return false; } static inline bool bdev_ok_to_examine(struct spdk_bdev *bdev) { if (g_bdev_opts.bdev_auto_examine) { return true; } else { return bdev_in_examine_allowlist(bdev); } } static void bdev_examine(struct spdk_bdev *bdev) { struct spdk_bdev_module *module; uint32_t action; TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { if (module->examine_config && bdev_ok_to_examine(bdev)) { action = module->internal.action_in_progress; module->internal.action_in_progress++; module->examine_config(bdev); if (action != module->internal.action_in_progress) { SPDK_ERRLOG("examine_config for module %s did not call spdk_bdev_module_examine_done()\n", module->name); } } } if (bdev->internal.claim_module && bdev_ok_to_examine(bdev)) { if (bdev->internal.claim_module->examine_disk) { bdev->internal.claim_module->internal.action_in_progress++; bdev->internal.claim_module->examine_disk(bdev); } return; } TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { if (module->examine_disk && bdev_ok_to_examine(bdev)) { module->internal.action_in_progress++; module->examine_disk(bdev); } } } struct spdk_bdev * spdk_bdev_first(void) { struct spdk_bdev *bdev; bdev = TAILQ_FIRST(&g_bdev_mgr.bdevs); if (bdev) { SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Starting bdev iteration at %s\n", bdev->name); } return bdev; } struct spdk_bdev * spdk_bdev_next(struct spdk_bdev *prev) { struct spdk_bdev *bdev; bdev = TAILQ_NEXT(prev, internal.link); if (bdev) { SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Continuing bdev iteration at %s\n", bdev->name); } return bdev; } static struct spdk_bdev * _bdev_next_leaf(struct spdk_bdev *bdev) { while (bdev != NULL) { if (bdev->internal.claim_module == NULL) { return bdev; } else { bdev = TAILQ_NEXT(bdev, internal.link); } } return bdev; } struct spdk_bdev * spdk_bdev_first_leaf(void) { struct spdk_bdev *bdev; bdev = _bdev_next_leaf(TAILQ_FIRST(&g_bdev_mgr.bdevs)); if (bdev) { SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Starting bdev iteration at %s\n", bdev->name); } return bdev; } struct spdk_bdev * spdk_bdev_next_leaf(struct spdk_bdev *prev) { struct spdk_bdev *bdev; bdev = _bdev_next_leaf(TAILQ_NEXT(prev, internal.link)); if (bdev) { SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Continuing bdev iteration at %s\n", bdev->name); } return bdev; } struct spdk_bdev * spdk_bdev_get_by_name(const char *bdev_name) { struct spdk_bdev_alias *tmp; struct spdk_bdev *bdev = spdk_bdev_first(); while (bdev != NULL) { if (strcmp(bdev_name, bdev->name) == 0) { return bdev; } TAILQ_FOREACH(tmp, &bdev->aliases, tailq) { if (strcmp(bdev_name, tmp->alias) == 0) { return bdev; } } bdev = spdk_bdev_next(bdev); } return NULL; } void spdk_bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len) { struct iovec *iovs; if (bdev_io->u.bdev.iovs == NULL) { bdev_io->u.bdev.iovs = &bdev_io->iov; bdev_io->u.bdev.iovcnt = 1; } iovs = bdev_io->u.bdev.iovs; assert(iovs != NULL); assert(bdev_io->u.bdev.iovcnt >= 1); iovs[0].iov_base = buf; iovs[0].iov_len = len; } void spdk_bdev_io_set_md_buf(struct spdk_bdev_io *bdev_io, void *md_buf, size_t len) { assert((len / spdk_bdev_get_md_size(bdev_io->bdev)) >= bdev_io->u.bdev.num_blocks); bdev_io->u.bdev.md_buf = md_buf; } static bool _is_buf_allocated(const struct iovec *iovs) { if (iovs == NULL) { return false; } return iovs[0].iov_base != NULL; } static bool _are_iovs_aligned(struct iovec *iovs, int iovcnt, uint32_t alignment) { int i; uintptr_t iov_base; if (spdk_likely(alignment == 1)) { return true; } for (i = 0; i < iovcnt; i++) { iov_base = (uintptr_t)iovs[i].iov_base; if ((iov_base & (alignment - 1)) != 0) { return false; } } return true; } static void _copy_iovs_to_buf(void *buf, size_t buf_len, struct iovec *iovs, int iovcnt) { int i; size_t len; for (i = 0; i < iovcnt; i++) { len = spdk_min(iovs[i].iov_len, buf_len); memcpy(buf, iovs[i].iov_base, len); buf += len; buf_len -= len; } } static void _copy_buf_to_iovs(struct iovec *iovs, int iovcnt, void *buf, size_t buf_len) { int i; size_t len; for (i = 0; i < iovcnt; i++) { len = spdk_min(iovs[i].iov_len, buf_len); memcpy(iovs[i].iov_base, buf, len); buf += len; buf_len -= len; } } static void _bdev_io_set_bounce_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len) { /* save original iovec */ bdev_io->internal.orig_iovs = bdev_io->u.bdev.iovs; bdev_io->internal.orig_iovcnt = bdev_io->u.bdev.iovcnt; /* set bounce iov */ bdev_io->u.bdev.iovs = &bdev_io->internal.bounce_iov; bdev_io->u.bdev.iovcnt = 1; /* set bounce buffer for this operation */ bdev_io->u.bdev.iovs[0].iov_base = buf; bdev_io->u.bdev.iovs[0].iov_len = len; /* if this is write path, copy data from original buffer to bounce buffer */ if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { _copy_iovs_to_buf(buf, len, bdev_io->internal.orig_iovs, bdev_io->internal.orig_iovcnt); } } static void _bdev_io_set_bounce_md_buf(struct spdk_bdev_io *bdev_io, void *md_buf, size_t len) { /* save original md_buf */ bdev_io->internal.orig_md_buf = bdev_io->u.bdev.md_buf; /* set bounce md_buf */ bdev_io->u.bdev.md_buf = md_buf; if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { memcpy(md_buf, bdev_io->internal.orig_md_buf, len); } } static void bdev_io_get_buf_complete(struct spdk_bdev_io *bdev_io, void *buf, bool status) { struct spdk_io_channel *ch = spdk_bdev_io_get_io_channel(bdev_io); if (spdk_unlikely(bdev_io->internal.get_aux_buf_cb != NULL)) { bdev_io->internal.get_aux_buf_cb(ch, bdev_io, buf); bdev_io->internal.get_aux_buf_cb = NULL; } else { assert(bdev_io->internal.get_buf_cb != NULL); bdev_io->internal.buf = buf; bdev_io->internal.get_buf_cb(ch, bdev_io, status); bdev_io->internal.get_buf_cb = NULL; } } static void _bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf, uint64_t len) { struct spdk_bdev *bdev = bdev_io->bdev; bool buf_allocated; uint64_t md_len, alignment; void *aligned_buf; if (spdk_unlikely(bdev_io->internal.get_aux_buf_cb != NULL)) { bdev_io_get_buf_complete(bdev_io, buf, true); return; } alignment = spdk_bdev_get_buf_align(bdev); buf_allocated = _is_buf_allocated(bdev_io->u.bdev.iovs); aligned_buf = (void *)(((uintptr_t)buf + (alignment - 1)) & ~(alignment - 1)); if (buf_allocated) { _bdev_io_set_bounce_buf(bdev_io, aligned_buf, len); } else { spdk_bdev_io_set_buf(bdev_io, aligned_buf, len); } if (spdk_bdev_is_md_separate(bdev)) { aligned_buf = (char *)aligned_buf + len; md_len = bdev_io->u.bdev.num_blocks * bdev->md_len; assert(((uintptr_t)aligned_buf & (alignment - 1)) == 0); if (bdev_io->u.bdev.md_buf != NULL) { _bdev_io_set_bounce_md_buf(bdev_io, aligned_buf, md_len); } else { spdk_bdev_io_set_md_buf(bdev_io, aligned_buf, md_len); } } bdev_io_get_buf_complete(bdev_io, buf, true); } static void _bdev_io_put_buf(struct spdk_bdev_io *bdev_io, void *buf, uint64_t buf_len) { struct spdk_bdev *bdev = bdev_io->bdev; struct spdk_mempool *pool; struct spdk_bdev_io *tmp; bdev_io_stailq_t *stailq; struct spdk_bdev_mgmt_channel *ch; uint64_t md_len, alignment; md_len = spdk_bdev_is_md_separate(bdev) ? bdev_io->u.bdev.num_blocks * bdev->md_len : 0; alignment = spdk_bdev_get_buf_align(bdev); ch = bdev_io->internal.ch->shared_resource->mgmt_ch; if (buf_len + alignment + md_len <= SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_SMALL_BUF_MAX_SIZE) + SPDK_BDEV_POOL_ALIGNMENT) { pool = g_bdev_mgr.buf_small_pool; stailq = &ch->need_buf_small; } else { pool = g_bdev_mgr.buf_large_pool; stailq = &ch->need_buf_large; } if (STAILQ_EMPTY(stailq)) { spdk_mempool_put(pool, buf); } else { tmp = STAILQ_FIRST(stailq); STAILQ_REMOVE_HEAD(stailq, internal.buf_link); _bdev_io_set_buf(tmp, buf, tmp->internal.buf_len); } } static void bdev_io_put_buf(struct spdk_bdev_io *bdev_io) { assert(bdev_io->internal.buf != NULL); _bdev_io_put_buf(bdev_io, bdev_io->internal.buf, bdev_io->internal.buf_len); bdev_io->internal.buf = NULL; } void spdk_bdev_io_put_aux_buf(struct spdk_bdev_io *bdev_io, void *buf) { uint64_t len = bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; assert(buf != NULL); _bdev_io_put_buf(bdev_io, buf, len); } static void _bdev_io_unset_bounce_buf(struct spdk_bdev_io *bdev_io) { if (spdk_likely(bdev_io->internal.orig_iovcnt == 0)) { assert(bdev_io->internal.orig_md_buf == NULL); return; } /* if this is read path, copy data from bounce buffer to original buffer */ if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ && bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { _copy_buf_to_iovs(bdev_io->internal.orig_iovs, bdev_io->internal.orig_iovcnt, bdev_io->internal.bounce_iov.iov_base, bdev_io->internal.bounce_iov.iov_len); } /* set original buffer for this io */ bdev_io->u.bdev.iovcnt = bdev_io->internal.orig_iovcnt; bdev_io->u.bdev.iovs = bdev_io->internal.orig_iovs; /* disable bouncing buffer for this io */ bdev_io->internal.orig_iovcnt = 0; bdev_io->internal.orig_iovs = NULL; /* do the same for metadata buffer */ if (spdk_unlikely(bdev_io->internal.orig_md_buf != NULL)) { assert(spdk_bdev_is_md_separate(bdev_io->bdev)); if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ && bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { memcpy(bdev_io->internal.orig_md_buf, bdev_io->u.bdev.md_buf, bdev_io->u.bdev.num_blocks * spdk_bdev_get_md_size(bdev_io->bdev)); } bdev_io->u.bdev.md_buf = bdev_io->internal.orig_md_buf; bdev_io->internal.orig_md_buf = NULL; } /* We want to free the bounce buffer here since we know we're done with it (as opposed * to waiting for the conditional free of internal.buf in spdk_bdev_free_io()). */ bdev_io_put_buf(bdev_io); } static void bdev_io_get_buf(struct spdk_bdev_io *bdev_io, uint64_t len) { struct spdk_bdev *bdev = bdev_io->bdev; struct spdk_mempool *pool; bdev_io_stailq_t *stailq; struct spdk_bdev_mgmt_channel *mgmt_ch; uint64_t alignment, md_len; void *buf; alignment = spdk_bdev_get_buf_align(bdev); md_len = spdk_bdev_is_md_separate(bdev) ? bdev_io->u.bdev.num_blocks * bdev->md_len : 0; if (len + alignment + md_len > SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_LARGE_BUF_MAX_SIZE) + SPDK_BDEV_POOL_ALIGNMENT) { SPDK_ERRLOG("Length + alignment %" PRIu64 " is larger than allowed\n", len + alignment); bdev_io_get_buf_complete(bdev_io, NULL, false); return; } mgmt_ch = bdev_io->internal.ch->shared_resource->mgmt_ch; bdev_io->internal.buf_len = len; if (len + alignment + md_len <= SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_SMALL_BUF_MAX_SIZE) + SPDK_BDEV_POOL_ALIGNMENT) { pool = g_bdev_mgr.buf_small_pool; stailq = &mgmt_ch->need_buf_small; } else { pool = g_bdev_mgr.buf_large_pool; stailq = &mgmt_ch->need_buf_large; } buf = spdk_mempool_get(pool); if (!buf) { STAILQ_INSERT_TAIL(stailq, bdev_io, internal.buf_link); } else { _bdev_io_set_buf(bdev_io, buf, len); } } void spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len) { struct spdk_bdev *bdev = bdev_io->bdev; uint64_t alignment; assert(cb != NULL); bdev_io->internal.get_buf_cb = cb; alignment = spdk_bdev_get_buf_align(bdev); if (_is_buf_allocated(bdev_io->u.bdev.iovs) && _are_iovs_aligned(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, alignment)) { /* Buffer already present and aligned */ cb(spdk_bdev_io_get_io_channel(bdev_io), bdev_io, true); return; } bdev_io_get_buf(bdev_io, len); } void spdk_bdev_io_get_aux_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_aux_buf_cb cb) { uint64_t len = bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; assert(cb != NULL); assert(bdev_io->internal.get_aux_buf_cb == NULL); bdev_io->internal.get_aux_buf_cb = cb; bdev_io_get_buf(bdev_io, len); } static int bdev_module_get_max_ctx_size(void) { struct spdk_bdev_module *bdev_module; int max_bdev_module_size = 0; TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { if (bdev_module->get_ctx_size && bdev_module->get_ctx_size() > max_bdev_module_size) { max_bdev_module_size = bdev_module->get_ctx_size(); } } return max_bdev_module_size; } void spdk_bdev_config_text(FILE *fp) { struct spdk_bdev_module *bdev_module; TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { if (bdev_module->config_text) { bdev_module->config_text(fp); } } } static void bdev_qos_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) { int i; struct spdk_bdev_qos *qos = bdev->internal.qos; uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES]; if (!qos) { return; } spdk_bdev_get_qos_rate_limits(bdev, limits); spdk_json_write_object_begin(w); spdk_json_write_named_string(w, "method", "bdev_set_qos_limit"); spdk_json_write_named_object_begin(w, "params"); spdk_json_write_named_string(w, "name", bdev->name); for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { if (limits[i] > 0) { spdk_json_write_named_uint64(w, qos_rpc_type[i], limits[i]); } } spdk_json_write_object_end(w); spdk_json_write_object_end(w); } void spdk_bdev_subsystem_config_json(struct spdk_json_write_ctx *w) { struct spdk_bdev_module *bdev_module; struct spdk_bdev *bdev; assert(w != NULL); spdk_json_write_array_begin(w); spdk_json_write_object_begin(w); spdk_json_write_named_string(w, "method", "bdev_set_options"); spdk_json_write_named_object_begin(w, "params"); spdk_json_write_named_uint32(w, "bdev_io_pool_size", g_bdev_opts.bdev_io_pool_size); spdk_json_write_named_uint32(w, "bdev_io_cache_size", g_bdev_opts.bdev_io_cache_size); spdk_json_write_named_bool(w, "bdev_auto_examine", g_bdev_opts.bdev_auto_examine); spdk_json_write_object_end(w); spdk_json_write_object_end(w); TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { if (bdev_module->config_json) { bdev_module->config_json(w); } } pthread_mutex_lock(&g_bdev_mgr.mutex); TAILQ_FOREACH(bdev, &g_bdev_mgr.bdevs, internal.link) { if (bdev->fn_table->write_config_json) { bdev->fn_table->write_config_json(bdev, w); } bdev_qos_config_json(bdev, w); } pthread_mutex_unlock(&g_bdev_mgr.mutex); spdk_json_write_array_end(w); } static int bdev_mgmt_channel_create(void *io_device, void *ctx_buf) { struct spdk_bdev_mgmt_channel *ch = ctx_buf; struct spdk_bdev_io *bdev_io; uint32_t i; STAILQ_INIT(&ch->need_buf_small); STAILQ_INIT(&ch->need_buf_large); STAILQ_INIT(&ch->per_thread_cache); ch->bdev_io_cache_size = g_bdev_opts.bdev_io_cache_size; /* Pre-populate bdev_io cache to ensure this thread cannot be starved. */ ch->per_thread_cache_count = 0; for (i = 0; i < ch->bdev_io_cache_size; i++) { bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool); assert(bdev_io != NULL); ch->per_thread_cache_count++; STAILQ_INSERT_HEAD(&ch->per_thread_cache, bdev_io, internal.buf_link); } TAILQ_INIT(&ch->shared_resources); TAILQ_INIT(&ch->io_wait_queue); return 0; } static void bdev_mgmt_channel_destroy(void *io_device, void *ctx_buf) { struct spdk_bdev_mgmt_channel *ch = ctx_buf; struct spdk_bdev_io *bdev_io; if (!STAILQ_EMPTY(&ch->need_buf_small) || !STAILQ_EMPTY(&ch->need_buf_large)) { SPDK_ERRLOG("Pending I/O list wasn't empty on mgmt channel free\n"); } if (!TAILQ_EMPTY(&ch->shared_resources)) { SPDK_ERRLOG("Module channel list wasn't empty on mgmt channel free\n"); } while (!STAILQ_EMPTY(&ch->per_thread_cache)) { bdev_io = STAILQ_FIRST(&ch->per_thread_cache); STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link); ch->per_thread_cache_count--; spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io); } assert(ch->per_thread_cache_count == 0); } static void bdev_init_complete(int rc) { spdk_bdev_init_cb cb_fn = g_init_cb_fn; void *cb_arg = g_init_cb_arg; struct spdk_bdev_module *m; g_bdev_mgr.init_complete = true; g_init_cb_fn = NULL; g_init_cb_arg = NULL; /* * For modules that need to know when subsystem init is complete, * inform them now. */ if (rc == 0) { TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) { if (m->init_complete) { m->init_complete(); } } } cb_fn(cb_arg, rc); } static void bdev_module_action_complete(void) { struct spdk_bdev_module *m; /* * Don't finish bdev subsystem initialization if * module pre-initialization is still in progress, or * the subsystem been already initialized. */ if (!g_bdev_mgr.module_init_complete || g_bdev_mgr.init_complete) { return; } /* * Check all bdev modules for inits/examinations in progress. If any * exist, return immediately since we cannot finish bdev subsystem * initialization until all are completed. */ TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) { if (m->internal.action_in_progress > 0) { return; } } /* * Modules already finished initialization - now that all * the bdev modules have finished their asynchronous I/O * processing, the entire bdev layer can be marked as complete. */ bdev_init_complete(0); } static void bdev_module_action_done(struct spdk_bdev_module *module) { assert(module->internal.action_in_progress > 0); module->internal.action_in_progress--; bdev_module_action_complete(); } void spdk_bdev_module_init_done(struct spdk_bdev_module *module) { bdev_module_action_done(module); } void spdk_bdev_module_examine_done(struct spdk_bdev_module *module) { bdev_module_action_done(module); } /** The last initialized bdev module */ static struct spdk_bdev_module *g_resume_bdev_module = NULL; static void bdev_init_failed(void *cb_arg) { struct spdk_bdev_module *module = cb_arg; module->internal.action_in_progress--; bdev_init_complete(-1); } static int bdev_modules_init(void) { struct spdk_bdev_module *module; int rc = 0; TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) { g_resume_bdev_module = module; if (module->async_init) { module->internal.action_in_progress = 1; } rc = module->module_init(); if (rc != 0) { /* Bump action_in_progress to prevent other modules from completion of modules_init * Send message to defer application shutdown until resources are cleaned up */ module->internal.action_in_progress = 1; spdk_thread_send_msg(spdk_get_thread(), bdev_init_failed, module); return rc; } } g_resume_bdev_module = NULL; return 0; } void spdk_bdev_initialize(spdk_bdev_init_cb cb_fn, void *cb_arg) { struct spdk_conf_section *sp; struct spdk_bdev_opts bdev_opts; int32_t bdev_io_pool_size, bdev_io_cache_size; int cache_size; int rc = 0; char mempool_name[32]; assert(cb_fn != NULL); sp = spdk_conf_find_section(NULL, "Bdev"); if (sp != NULL) { spdk_bdev_get_opts(&bdev_opts); bdev_io_pool_size = spdk_conf_section_get_intval(sp, "BdevIoPoolSize"); if (bdev_io_pool_size >= 0) { bdev_opts.bdev_io_pool_size = bdev_io_pool_size; } bdev_io_cache_size = spdk_conf_section_get_intval(sp, "BdevIoCacheSize"); if (bdev_io_cache_size >= 0) { bdev_opts.bdev_io_cache_size = bdev_io_cache_size; } if (spdk_bdev_set_opts(&bdev_opts)) { bdev_init_complete(-1); return; } assert(memcmp(&bdev_opts, &g_bdev_opts, sizeof(bdev_opts)) == 0); } g_init_cb_fn = cb_fn; g_init_cb_arg = cb_arg; spdk_notify_type_register("bdev_register"); spdk_notify_type_register("bdev_unregister"); snprintf(mempool_name, sizeof(mempool_name), "bdev_io_%d", getpid()); g_bdev_mgr.bdev_io_pool = spdk_mempool_create(mempool_name, g_bdev_opts.bdev_io_pool_size, sizeof(struct spdk_bdev_io) + bdev_module_get_max_ctx_size(), 0, SPDK_ENV_SOCKET_ID_ANY); if (g_bdev_mgr.bdev_io_pool == NULL) { SPDK_ERRLOG("could not allocate spdk_bdev_io pool\n"); bdev_init_complete(-1); return; } /** * Ensure no more than half of the total buffers end up local caches, by * using spdk_env_get_core_count() to determine how many local caches we need * to account for. */ cache_size = BUF_SMALL_POOL_SIZE / (2 * spdk_env_get_core_count()); snprintf(mempool_name, sizeof(mempool_name), "buf_small_pool_%d", getpid()); g_bdev_mgr.buf_small_pool = spdk_mempool_create(mempool_name, BUF_SMALL_POOL_SIZE, SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_SMALL_BUF_MAX_SIZE) + SPDK_BDEV_POOL_ALIGNMENT, cache_size, SPDK_ENV_SOCKET_ID_ANY); if (!g_bdev_mgr.buf_small_pool) { SPDK_ERRLOG("create rbuf small pool failed\n"); bdev_init_complete(-1); return; } cache_size = BUF_LARGE_POOL_SIZE / (2 * spdk_env_get_core_count()); snprintf(mempool_name, sizeof(mempool_name), "buf_large_pool_%d", getpid()); g_bdev_mgr.buf_large_pool = spdk_mempool_create(mempool_name, BUF_LARGE_POOL_SIZE, SPDK_BDEV_BUF_SIZE_WITH_MD(SPDK_BDEV_LARGE_BUF_MAX_SIZE) + SPDK_BDEV_POOL_ALIGNMENT, cache_size, SPDK_ENV_SOCKET_ID_ANY); if (!g_bdev_mgr.buf_large_pool) { SPDK_ERRLOG("create rbuf large pool failed\n"); bdev_init_complete(-1); return; } g_bdev_mgr.zero_buffer = spdk_zmalloc(ZERO_BUFFER_SIZE, ZERO_BUFFER_SIZE, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); if (!g_bdev_mgr.zero_buffer) { SPDK_ERRLOG("create bdev zero buffer failed\n"); bdev_init_complete(-1); return; } #ifdef SPDK_CONFIG_VTUNE g_bdev_mgr.domain = __itt_domain_create("spdk_bdev"); #endif spdk_io_device_register(&g_bdev_mgr, bdev_mgmt_channel_create, bdev_mgmt_channel_destroy, sizeof(struct spdk_bdev_mgmt_channel), "bdev_mgr"); rc = bdev_modules_init(); g_bdev_mgr.module_init_complete = true; if (rc != 0) { SPDK_ERRLOG("bdev modules init failed\n"); return; } bdev_module_action_complete(); } static void bdev_mgr_unregister_cb(void *io_device) { spdk_bdev_fini_cb cb_fn = g_fini_cb_fn; if (g_bdev_mgr.bdev_io_pool) { if (spdk_mempool_count(g_bdev_mgr.bdev_io_pool) != g_bdev_opts.bdev_io_pool_size) { SPDK_ERRLOG("bdev IO pool count is %zu but should be %u\n", spdk_mempool_count(g_bdev_mgr.bdev_io_pool), g_bdev_opts.bdev_io_pool_size); } spdk_mempool_free(g_bdev_mgr.bdev_io_pool); } if (g_bdev_mgr.buf_small_pool) { if (spdk_mempool_count(g_bdev_mgr.buf_small_pool) != BUF_SMALL_POOL_SIZE) { SPDK_ERRLOG("Small buffer pool count is %zu but should be %u\n", spdk_mempool_count(g_bdev_mgr.buf_small_pool), BUF_SMALL_POOL_SIZE); assert(false); } spdk_mempool_free(g_bdev_mgr.buf_small_pool); } if (g_bdev_mgr.buf_large_pool) { if (spdk_mempool_count(g_bdev_mgr.buf_large_pool) != BUF_LARGE_POOL_SIZE) { SPDK_ERRLOG("Large buffer pool count is %zu but should be %u\n", spdk_mempool_count(g_bdev_mgr.buf_large_pool), BUF_LARGE_POOL_SIZE); assert(false); } spdk_mempool_free(g_bdev_mgr.buf_large_pool); } spdk_free(g_bdev_mgr.zero_buffer); cb_fn(g_fini_cb_arg); g_fini_cb_fn = NULL; g_fini_cb_arg = NULL; g_bdev_mgr.init_complete = false; g_bdev_mgr.module_init_complete = false; pthread_mutex_destroy(&g_bdev_mgr.mutex); } static void bdev_module_finish_iter(void *arg) { struct spdk_bdev_module *bdev_module; /* FIXME: Handling initialization failures is broken now, * so we won't even try cleaning up after successfully * initialized modules. if module_init_complete is false, * just call spdk_bdev_mgr_unregister_cb */ if (!g_bdev_mgr.module_init_complete) { bdev_mgr_unregister_cb(NULL); return; } /* Start iterating from the last touched module */ if (!g_resume_bdev_module) { bdev_module = TAILQ_LAST(&g_bdev_mgr.bdev_modules, bdev_module_list); } else { bdev_module = TAILQ_PREV(g_resume_bdev_module, bdev_module_list, internal.tailq); } while (bdev_module) { if (bdev_module->async_fini) { /* Save our place so we can resume later. We must * save the variable here, before calling module_fini() * below, because in some cases the module may immediately * call spdk_bdev_module_finish_done() and re-enter * this function to continue iterating. */ g_resume_bdev_module = bdev_module; } if (bdev_module->module_fini) { bdev_module->module_fini(); } if (bdev_module->async_fini) { return; } bdev_module = TAILQ_PREV(bdev_module, bdev_module_list, internal.tailq); } g_resume_bdev_module = NULL; spdk_io_device_unregister(&g_bdev_mgr, bdev_mgr_unregister_cb); } void spdk_bdev_module_finish_done(void) { if (spdk_get_thread() != g_fini_thread) { spdk_thread_send_msg(g_fini_thread, bdev_module_finish_iter, NULL); } else { bdev_module_finish_iter(NULL); } } static void bdev_finish_unregister_bdevs_iter(void *cb_arg, int bdeverrno) { struct spdk_bdev *bdev = cb_arg; if (bdeverrno && bdev) { SPDK_WARNLOG("Unable to unregister bdev '%s' during spdk_bdev_finish()\n", bdev->name); /* * Since the call to spdk_bdev_unregister() failed, we have no way to free this * bdev; try to continue by manually removing this bdev from the list and continue * with the next bdev in the list. */ TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link); } if (TAILQ_EMPTY(&g_bdev_mgr.bdevs)) { SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Done unregistering bdevs\n"); /* * Bdev module finish need to be deferred as we might be in the middle of some context * (like bdev part free) that will use this bdev (or private bdev driver ctx data) * after returning. */ spdk_thread_send_msg(spdk_get_thread(), bdev_module_finish_iter, NULL); return; } /* * Unregister last unclaimed bdev in the list, to ensure that bdev subsystem * shutdown proceeds top-down. The goal is to give virtual bdevs an opportunity * to detect clean shutdown as opposed to run-time hot removal of the underlying * base bdevs. * * Also, walk the list in the reverse order. */ for (bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list); bdev; bdev = TAILQ_PREV(bdev, spdk_bdev_list, internal.link)) { if (bdev->internal.claim_module != NULL) { SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Skipping claimed bdev '%s'(<-'%s').\n", bdev->name, bdev->internal.claim_module->name); continue; } SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Unregistering bdev '%s'\n", bdev->name); spdk_bdev_unregister(bdev, bdev_finish_unregister_bdevs_iter, bdev); return; } /* * If any bdev fails to unclaim underlying bdev properly, we may face the * case of bdev list consisting of claimed bdevs only (if claims are managed * correctly, this would mean there's a loop in the claims graph which is * clearly impossible). Warn and unregister last bdev on the list then. */ for (bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list); bdev; bdev = TAILQ_PREV(bdev, spdk_bdev_list, internal.link)) { SPDK_WARNLOG("Unregistering claimed bdev '%s'!\n", bdev->name); spdk_bdev_unregister(bdev, bdev_finish_unregister_bdevs_iter, bdev); return; } } void spdk_bdev_finish(spdk_bdev_fini_cb cb_fn, void *cb_arg) { struct spdk_bdev_module *m; assert(cb_fn != NULL); g_fini_thread = spdk_get_thread(); g_fini_cb_fn = cb_fn; g_fini_cb_arg = cb_arg; TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) { if (m->fini_start) { m->fini_start(); } } bdev_finish_unregister_bdevs_iter(NULL, 0); } struct spdk_bdev_io * bdev_channel_get_io(struct spdk_bdev_channel *channel) { struct spdk_bdev_mgmt_channel *ch = channel->shared_resource->mgmt_ch; struct spdk_bdev_io *bdev_io; if (ch->per_thread_cache_count > 0) { bdev_io = STAILQ_FIRST(&ch->per_thread_cache); STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link); ch->per_thread_cache_count--; } else if (spdk_unlikely(!TAILQ_EMPTY(&ch->io_wait_queue))) { /* * Don't try to look for bdev_ios in the global pool if there are * waiters on bdev_ios - we don't want this caller to jump the line. */ bdev_io = NULL; } else { bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool); } return bdev_io; } void spdk_bdev_free_io(struct spdk_bdev_io *bdev_io) { struct spdk_bdev_mgmt_channel *ch; assert(bdev_io != NULL); assert(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_PENDING); ch = bdev_io->internal.ch->shared_resource->mgmt_ch; if (bdev_io->internal.buf != NULL) { bdev_io_put_buf(bdev_io); } if (ch->per_thread_cache_count < ch->bdev_io_cache_size) { ch->per_thread_cache_count++; STAILQ_INSERT_HEAD(&ch->per_thread_cache, bdev_io, internal.buf_link); while (ch->per_thread_cache_count > 0 && !TAILQ_EMPTY(&ch->io_wait_queue)) { struct spdk_bdev_io_wait_entry *entry; entry = TAILQ_FIRST(&ch->io_wait_queue); TAILQ_REMOVE(&ch->io_wait_queue, entry, link); entry->cb_fn(entry->cb_arg); } } else { /* We should never have a full cache with entries on the io wait queue. */ assert(TAILQ_EMPTY(&ch->io_wait_queue)); spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io); } } static bool bdev_qos_is_iops_rate_limit(enum spdk_bdev_qos_rate_limit_type limit) { assert(limit != SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES); switch (limit) { case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT: return true; case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT: case SPDK_BDEV_QOS_R_BPS_RATE_LIMIT: case SPDK_BDEV_QOS_W_BPS_RATE_LIMIT: return false; case SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES: default: return false; } } static bool bdev_qos_io_to_limit(struct spdk_bdev_io *bdev_io) { switch (bdev_io->type) { case SPDK_BDEV_IO_TYPE_NVME_IO: case SPDK_BDEV_IO_TYPE_NVME_IO_MD: case SPDK_BDEV_IO_TYPE_READ: case SPDK_BDEV_IO_TYPE_WRITE: return true; case SPDK_BDEV_IO_TYPE_ZCOPY: if (bdev_io->u.bdev.zcopy.start) { return true; } else { return false; } default: return false; } } static bool bdev_is_read_io(struct spdk_bdev_io *bdev_io) { switch (bdev_io->type) { case SPDK_BDEV_IO_TYPE_NVME_IO: case SPDK_BDEV_IO_TYPE_NVME_IO_MD: /* Bit 1 (0x2) set for read operation */ if (bdev_io->u.nvme_passthru.cmd.opc & SPDK_NVME_OPC_READ) { return true; } else { return false; } case SPDK_BDEV_IO_TYPE_READ: return true; case SPDK_BDEV_IO_TYPE_ZCOPY: /* Populate to read from disk */ if (bdev_io->u.bdev.zcopy.populate) { return true; } else { return false; } default: return false; } } static uint64_t bdev_get_io_size_in_byte(struct spdk_bdev_io *bdev_io) { struct spdk_bdev *bdev = bdev_io->bdev; switch (bdev_io->type) { case SPDK_BDEV_IO_TYPE_NVME_IO: case SPDK_BDEV_IO_TYPE_NVME_IO_MD: return bdev_io->u.nvme_passthru.nbytes; case SPDK_BDEV_IO_TYPE_READ: case SPDK_BDEV_IO_TYPE_WRITE: return bdev_io->u.bdev.num_blocks * bdev->blocklen; case SPDK_BDEV_IO_TYPE_ZCOPY: /* Track the data in the start phase only */ if (bdev_io->u.bdev.zcopy.start) { return bdev_io->u.bdev.num_blocks * bdev->blocklen; } else { return 0; } default: return 0; } } static bool bdev_qos_rw_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) { if (limit->max_per_timeslice > 0 && limit->remaining_this_timeslice <= 0) { return true; } else { return false; } } static bool bdev_qos_r_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) { if (bdev_is_read_io(io) == false) { return false; } return bdev_qos_rw_queue_io(limit, io); } static bool bdev_qos_w_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) { if (bdev_is_read_io(io) == true) { return false; } return bdev_qos_rw_queue_io(limit, io); } static void bdev_qos_rw_iops_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) { limit->remaining_this_timeslice--; } static void bdev_qos_rw_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) { limit->remaining_this_timeslice -= bdev_get_io_size_in_byte(io); } static void bdev_qos_r_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) { if (bdev_is_read_io(io) == false) { return; } return bdev_qos_rw_bps_update_quota(limit, io); } static void bdev_qos_w_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io) { if (bdev_is_read_io(io) == true) { return; } return bdev_qos_rw_bps_update_quota(limit, io); } static void bdev_qos_set_ops(struct spdk_bdev_qos *qos) { int i; for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { qos->rate_limits[i].queue_io = NULL; qos->rate_limits[i].update_quota = NULL; continue; } switch (i) { case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT: qos->rate_limits[i].queue_io = bdev_qos_rw_queue_io; qos->rate_limits[i].update_quota = bdev_qos_rw_iops_update_quota; break; case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT: qos->rate_limits[i].queue_io = bdev_qos_rw_queue_io; qos->rate_limits[i].update_quota = bdev_qos_rw_bps_update_quota; break; case SPDK_BDEV_QOS_R_BPS_RATE_LIMIT: qos->rate_limits[i].queue_io = bdev_qos_r_queue_io; qos->rate_limits[i].update_quota = bdev_qos_r_bps_update_quota; break; case SPDK_BDEV_QOS_W_BPS_RATE_LIMIT: qos->rate_limits[i].queue_io = bdev_qos_w_queue_io; qos->rate_limits[i].update_quota = bdev_qos_w_bps_update_quota; break; default: break; } } } static void _bdev_io_complete_in_submit(struct spdk_bdev_channel *bdev_ch, struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status) { struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; bdev_io->internal.in_submit_request = true; bdev_ch->io_outstanding++; shared_resource->io_outstanding++; spdk_bdev_io_complete(bdev_io, status); bdev_io->internal.in_submit_request = false; } static inline void bdev_io_do_submit(struct spdk_bdev_channel *bdev_ch, struct spdk_bdev_io *bdev_io) { struct spdk_bdev *bdev = bdev_io->bdev; struct spdk_io_channel *ch = bdev_ch->channel; struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT)) { struct spdk_bdev_mgmt_channel *mgmt_channel = shared_resource->mgmt_ch; struct spdk_bdev_io *bio_to_abort = bdev_io->u.abort.bio_to_abort; if (bdev_abort_queued_io(&shared_resource->nomem_io, bio_to_abort) || bdev_abort_buf_io(&mgmt_channel->need_buf_small, bio_to_abort) || bdev_abort_buf_io(&mgmt_channel->need_buf_large, bio_to_abort)) { _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS); return; } } if (spdk_likely(TAILQ_EMPTY(&shared_resource->nomem_io))) { bdev_ch->io_outstanding++; shared_resource->io_outstanding++; bdev_io->internal.in_submit_request = true; bdev->fn_table->submit_request(ch, bdev_io); bdev_io->internal.in_submit_request = false; } else { TAILQ_INSERT_TAIL(&shared_resource->nomem_io, bdev_io, internal.link); } } static int bdev_qos_io_submit(struct spdk_bdev_channel *ch, struct spdk_bdev_qos *qos) { struct spdk_bdev_io *bdev_io = NULL, *tmp = NULL; int i, submitted_ios = 0; TAILQ_FOREACH_SAFE(bdev_io, &qos->queued, internal.link, tmp) { if (bdev_qos_io_to_limit(bdev_io) == true) { for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { if (!qos->rate_limits[i].queue_io) { continue; } if (qos->rate_limits[i].queue_io(&qos->rate_limits[i], bdev_io) == true) { return submitted_ios; } } for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { if (!qos->rate_limits[i].update_quota) { continue; } qos->rate_limits[i].update_quota(&qos->rate_limits[i], bdev_io); } } TAILQ_REMOVE(&qos->queued, bdev_io, internal.link); bdev_io_do_submit(ch, bdev_io); submitted_ios++; } return submitted_ios; } static void bdev_queue_io_wait_with_cb(struct spdk_bdev_io *bdev_io, spdk_bdev_io_wait_cb cb_fn) { int rc; bdev_io->internal.waitq_entry.bdev = bdev_io->bdev; bdev_io->internal.waitq_entry.cb_fn = cb_fn; bdev_io->internal.waitq_entry.cb_arg = bdev_io; rc = spdk_bdev_queue_io_wait(bdev_io->bdev, spdk_io_channel_from_ctx(bdev_io->internal.ch), &bdev_io->internal.waitq_entry); if (rc != 0) { SPDK_ERRLOG("Queue IO failed, rc=%d\n", rc); bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); } } static bool bdev_io_type_can_split(uint8_t type) { assert(type != SPDK_BDEV_IO_TYPE_INVALID); assert(type < SPDK_BDEV_NUM_IO_TYPES); /* Only split READ and WRITE I/O. Theoretically other types of I/O like * UNMAP could be split, but these types of I/O are typically much larger * in size (sometimes the size of the entire block device), and the bdev * module can more efficiently split these types of I/O. Plus those types * of I/O do not have a payload, which makes the splitting process simpler. */ if (type == SPDK_BDEV_IO_TYPE_READ || type == SPDK_BDEV_IO_TYPE_WRITE) { return true; } else { return false; } } static bool bdev_io_should_split(struct spdk_bdev_io *bdev_io) { uint64_t start_stripe, end_stripe; uint32_t io_boundary = bdev_io->bdev->optimal_io_boundary; if (io_boundary == 0) { return false; } if (!bdev_io_type_can_split(bdev_io->type)) { return false; } start_stripe = bdev_io->u.bdev.offset_blocks; end_stripe = start_stripe + bdev_io->u.bdev.num_blocks - 1; /* Avoid expensive div operations if possible. These spdk_u32 functions are very cheap. */ if (spdk_likely(spdk_u32_is_pow2(io_boundary))) { start_stripe >>= spdk_u32log2(io_boundary); end_stripe >>= spdk_u32log2(io_boundary); } else { start_stripe /= io_boundary; end_stripe /= io_boundary; } return (start_stripe != end_stripe); } static uint32_t _to_next_boundary(uint64_t offset, uint32_t boundary) { return (boundary - (offset % boundary)); } static void bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg); static void _bdev_io_split(void *_bdev_io) { struct spdk_bdev_io *bdev_io = _bdev_io; uint64_t current_offset, remaining; uint32_t blocklen, to_next_boundary, to_next_boundary_bytes, to_last_block_bytes; struct iovec *parent_iov, *iov; uint64_t parent_iov_offset, iov_len; uint32_t parent_iovpos, parent_iovcnt, child_iovcnt, iovcnt; void *md_buf = NULL; int rc; remaining = bdev_io->u.bdev.split_remaining_num_blocks; current_offset = bdev_io->u.bdev.split_current_offset_blocks; blocklen = bdev_io->bdev->blocklen; parent_iov_offset = (current_offset - bdev_io->u.bdev.offset_blocks) * blocklen; parent_iovcnt = bdev_io->u.bdev.iovcnt; for (parent_iovpos = 0; parent_iovpos < parent_iovcnt; parent_iovpos++) { parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos]; if (parent_iov_offset < parent_iov->iov_len) { break; } parent_iov_offset -= parent_iov->iov_len; } child_iovcnt = 0; while (remaining > 0 && parent_iovpos < parent_iovcnt && child_iovcnt < BDEV_IO_NUM_CHILD_IOV) { to_next_boundary = _to_next_boundary(current_offset, bdev_io->bdev->optimal_io_boundary); to_next_boundary = spdk_min(remaining, to_next_boundary); to_next_boundary_bytes = to_next_boundary * blocklen; iov = &bdev_io->child_iov[child_iovcnt]; iovcnt = 0; if (bdev_io->u.bdev.md_buf) { assert((parent_iov_offset % blocklen) > 0); md_buf = (char *)bdev_io->u.bdev.md_buf + (parent_iov_offset / blocklen) * spdk_bdev_get_md_size(bdev_io->bdev); } while (to_next_boundary_bytes > 0 && parent_iovpos < parent_iovcnt && child_iovcnt < BDEV_IO_NUM_CHILD_IOV) { parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos]; iov_len = spdk_min(to_next_boundary_bytes, parent_iov->iov_len - parent_iov_offset); to_next_boundary_bytes -= iov_len; bdev_io->child_iov[child_iovcnt].iov_base = parent_iov->iov_base + parent_iov_offset; bdev_io->child_iov[child_iovcnt].iov_len = iov_len; if (iov_len < parent_iov->iov_len - parent_iov_offset) { parent_iov_offset += iov_len; } else { parent_iovpos++; parent_iov_offset = 0; } child_iovcnt++; iovcnt++; } if (to_next_boundary_bytes > 0) { /* We had to stop this child I/O early because we ran out of * child_iov space. Ensure the iovs to be aligned with block * size and then adjust to_next_boundary before starting the * child I/O. */ assert(child_iovcnt == BDEV_IO_NUM_CHILD_IOV); to_last_block_bytes = to_next_boundary_bytes % blocklen; if (to_last_block_bytes != 0) { uint32_t child_iovpos = child_iovcnt - 1; /* don't decrease child_iovcnt so the loop will naturally end */ to_last_block_bytes = blocklen - to_last_block_bytes; to_next_boundary_bytes += to_last_block_bytes; while (to_last_block_bytes > 0 && iovcnt > 0) { iov_len = spdk_min(to_last_block_bytes, bdev_io->child_iov[child_iovpos].iov_len); bdev_io->child_iov[child_iovpos].iov_len -= iov_len; if (bdev_io->child_iov[child_iovpos].iov_len == 0) { child_iovpos--; if (--iovcnt == 0) { return; } } to_last_block_bytes -= iov_len; } assert(to_last_block_bytes == 0); } to_next_boundary -= to_next_boundary_bytes / blocklen; } bdev_io->u.bdev.split_outstanding++; if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) { rc = bdev_readv_blocks_with_md(bdev_io->internal.desc, spdk_io_channel_from_ctx(bdev_io->internal.ch), iov, iovcnt, md_buf, current_offset, to_next_boundary, bdev_io_split_done, bdev_io); } else { rc = bdev_writev_blocks_with_md(bdev_io->internal.desc, spdk_io_channel_from_ctx(bdev_io->internal.ch), iov, iovcnt, md_buf, current_offset, to_next_boundary, bdev_io_split_done, bdev_io); } if (rc == 0) { current_offset += to_next_boundary; remaining -= to_next_boundary; bdev_io->u.bdev.split_current_offset_blocks = current_offset; bdev_io->u.bdev.split_remaining_num_blocks = remaining; } else { bdev_io->u.bdev.split_outstanding--; if (rc == -ENOMEM) { if (bdev_io->u.bdev.split_outstanding == 0) { /* No I/O is outstanding. Hence we should wait here. */ bdev_queue_io_wait_with_cb(bdev_io, _bdev_io_split); } } else { bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; if (bdev_io->u.bdev.split_outstanding == 0) { spdk_trace_record_tsc(spdk_get_ticks(), TRACE_BDEV_IO_DONE, 0, 0, (uintptr_t)bdev_io, 0); TAILQ_REMOVE(&bdev_io->internal.ch->io_submitted, bdev_io, internal.ch_link); bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); } } return; } } } static void bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) { struct spdk_bdev_io *parent_io = cb_arg; spdk_bdev_free_io(bdev_io); if (!success) { parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; /* If any child I/O failed, stop further splitting process. */ parent_io->u.bdev.split_current_offset_blocks += parent_io->u.bdev.split_remaining_num_blocks; parent_io->u.bdev.split_remaining_num_blocks = 0; } parent_io->u.bdev.split_outstanding--; if (parent_io->u.bdev.split_outstanding != 0) { return; } /* * Parent I/O finishes when all blocks are consumed. */ if (parent_io->u.bdev.split_remaining_num_blocks == 0) { assert(parent_io->internal.cb != bdev_io_split_done); spdk_trace_record_tsc(spdk_get_ticks(), TRACE_BDEV_IO_DONE, 0, 0, (uintptr_t)parent_io, 0); TAILQ_REMOVE(&parent_io->internal.ch->io_submitted, parent_io, internal.ch_link); parent_io->internal.cb(parent_io, parent_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS, parent_io->internal.caller_ctx); return; } /* * Continue with the splitting process. This function will complete the parent I/O if the * splitting is done. */ _bdev_io_split(parent_io); } static void bdev_io_split_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success); static void bdev_io_split(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io) { assert(bdev_io_type_can_split(bdev_io->type)); bdev_io->u.bdev.split_current_offset_blocks = bdev_io->u.bdev.offset_blocks; bdev_io->u.bdev.split_remaining_num_blocks = bdev_io->u.bdev.num_blocks; bdev_io->u.bdev.split_outstanding = 0; bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; if (_is_buf_allocated(bdev_io->u.bdev.iovs)) { _bdev_io_split(bdev_io); } else { assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ); spdk_bdev_io_get_buf(bdev_io, bdev_io_split_get_buf_cb, bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen); } } static void bdev_io_split_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success) { if (!success) { spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); return; } bdev_io_split(ch, bdev_io); } /* Explicitly mark this inline, since it's used as a function pointer and otherwise won't * be inlined, at least on some compilers. */ static inline void _bdev_io_submit(void *ctx) { struct spdk_bdev_io *bdev_io = ctx; struct spdk_bdev *bdev = bdev_io->bdev; struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; uint64_t tsc; tsc = spdk_get_ticks(); bdev_io->internal.submit_tsc = tsc; spdk_trace_record_tsc(tsc, TRACE_BDEV_IO_START, 0, 0, (uintptr_t)bdev_io, bdev_io->type); if (spdk_likely(bdev_ch->flags == 0)) { bdev_io_do_submit(bdev_ch, bdev_io); return; } if (bdev_ch->flags & BDEV_CH_RESET_IN_PROGRESS) { _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); } else if (bdev_ch->flags & BDEV_CH_QOS_ENABLED) { if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) && bdev_abort_queued_io(&bdev->internal.qos->queued, bdev_io->u.abort.bio_to_abort)) { _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS); } else { TAILQ_INSERT_TAIL(&bdev->internal.qos->queued, bdev_io, internal.link); bdev_qos_io_submit(bdev_ch, bdev->internal.qos); } } else { SPDK_ERRLOG("unknown bdev_ch flag %x found\n", bdev_ch->flags); _bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_FAILED); } } bool bdev_lba_range_overlapped(struct lba_range *range1, struct lba_range *range2); bool bdev_lba_range_overlapped(struct lba_range *range1, struct lba_range *range2) { if (range1->length == 0 || range2->length == 0) { return false; } if (range1->offset + range1->length <= range2->offset) { return false; } if (range2->offset + range2->length <= range1->offset) { return false; } return true; } static bool bdev_io_range_is_locked(struct spdk_bdev_io *bdev_io, struct lba_range *range) { struct spdk_bdev_channel *ch = bdev_io->internal.ch; struct lba_range r; switch (bdev_io->type) { case SPDK_BDEV_IO_TYPE_NVME_IO: case SPDK_BDEV_IO_TYPE_NVME_IO_MD: /* Don't try to decode the NVMe command - just assume worst-case and that * it overlaps a locked range. */ return true; case SPDK_BDEV_IO_TYPE_WRITE: case SPDK_BDEV_IO_TYPE_UNMAP: case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: case SPDK_BDEV_IO_TYPE_ZCOPY: r.offset = bdev_io->u.bdev.offset_blocks; r.length = bdev_io->u.bdev.num_blocks; if (!bdev_lba_range_overlapped(range, &r)) { /* This I/O doesn't overlap the specified LBA range. */ return false; } else if (range->owner_ch == ch && range->locked_ctx == bdev_io->internal.caller_ctx) { /* This I/O overlaps, but the I/O is on the same channel that locked this * range, and the caller_ctx is the same as the locked_ctx. This means * that this I/O is associated with the lock, and is allowed to execute. */ return false; } else { return true; } default: return false; } } void bdev_io_submit(struct spdk_bdev_io *bdev_io) { struct spdk_bdev *bdev = bdev_io->bdev; struct spdk_thread *thread = spdk_bdev_io_get_thread(bdev_io); struct spdk_bdev_channel *ch = bdev_io->internal.ch; assert(thread != NULL); assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING); if (!TAILQ_EMPTY(&ch->locked_ranges)) { struct lba_range *range; TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { if (bdev_io_range_is_locked(bdev_io, range)) { TAILQ_INSERT_TAIL(&ch->io_locked, bdev_io, internal.ch_link); return; } } } TAILQ_INSERT_TAIL(&ch->io_submitted, bdev_io, internal.ch_link); if (bdev->split_on_optimal_io_boundary && bdev_io_should_split(bdev_io)) { bdev_io->internal.submit_tsc = spdk_get_ticks(); spdk_trace_record_tsc(bdev_io->internal.submit_tsc, TRACE_BDEV_IO_START, 0, 0, (uintptr_t)bdev_io, bdev_io->type); bdev_io_split(NULL, bdev_io); return; } if (ch->flags & BDEV_CH_QOS_ENABLED) { if ((thread == bdev->internal.qos->thread) || !bdev->internal.qos->thread) { _bdev_io_submit(bdev_io); } else { bdev_io->internal.io_submit_ch = ch; bdev_io->internal.ch = bdev->internal.qos->ch; spdk_thread_send_msg(bdev->internal.qos->thread, _bdev_io_submit, bdev_io); } } else { _bdev_io_submit(bdev_io); } } static void bdev_io_submit_reset(struct spdk_bdev_io *bdev_io) { struct spdk_bdev *bdev = bdev_io->bdev; struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; struct spdk_io_channel *ch = bdev_ch->channel; assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING); bdev_io->internal.in_submit_request = true; bdev->fn_table->submit_request(ch, bdev_io); bdev_io->internal.in_submit_request = false; } void bdev_io_init(struct spdk_bdev_io *bdev_io, struct spdk_bdev *bdev, void *cb_arg, spdk_bdev_io_completion_cb cb) { bdev_io->bdev = bdev; bdev_io->internal.caller_ctx = cb_arg; bdev_io->internal.cb = cb; bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; bdev_io->internal.in_submit_request = false; bdev_io->internal.buf = NULL; bdev_io->internal.io_submit_ch = NULL; bdev_io->internal.orig_iovs = NULL; bdev_io->internal.orig_iovcnt = 0; bdev_io->internal.orig_md_buf = NULL; bdev_io->internal.error.nvme.cdw0 = 0; bdev_io->num_retries = 0; bdev_io->internal.get_buf_cb = NULL; bdev_io->internal.get_aux_buf_cb = NULL; } static bool bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type) { return bdev->fn_table->io_type_supported(bdev->ctxt, io_type); } bool spdk_bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type) { bool supported; supported = bdev_io_type_supported(bdev, io_type); if (!supported) { switch (io_type) { case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: /* The bdev layer will emulate write zeroes as long as write is supported. */ supported = bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE); break; case SPDK_BDEV_IO_TYPE_ZCOPY: /* Zero copy can be emulated with regular read and write */ supported = bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_READ) && bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE); break; default: break; } } return supported; } int spdk_bdev_dump_info_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) { if (bdev->fn_table->dump_info_json) { return bdev->fn_table->dump_info_json(bdev->ctxt, w); } return 0; } static void bdev_qos_update_max_quota_per_timeslice(struct spdk_bdev_qos *qos) { uint32_t max_per_timeslice = 0; int i; for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { qos->rate_limits[i].max_per_timeslice = 0; continue; } max_per_timeslice = qos->rate_limits[i].limit * SPDK_BDEV_QOS_TIMESLICE_IN_USEC / SPDK_SEC_TO_USEC; qos->rate_limits[i].max_per_timeslice = spdk_max(max_per_timeslice, qos->rate_limits[i].min_per_timeslice); qos->rate_limits[i].remaining_this_timeslice = qos->rate_limits[i].max_per_timeslice; } bdev_qos_set_ops(qos); } static int bdev_channel_poll_qos(void *arg) { struct spdk_bdev_qos *qos = arg; uint64_t now = spdk_get_ticks(); int i; if (now < (qos->last_timeslice + qos->timeslice_size)) { /* We received our callback earlier than expected - return * immediately and wait to do accounting until at least one * timeslice has actually expired. This should never happen * with a well-behaved timer implementation. */ return SPDK_POLLER_IDLE; } /* Reset for next round of rate limiting */ for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { /* We may have allowed the IOs or bytes to slightly overrun in the last * timeslice. remaining_this_timeslice is signed, so if it's negative * here, we'll account for the overrun so that the next timeslice will * be appropriately reduced. */ if (qos->rate_limits[i].remaining_this_timeslice > 0) { qos->rate_limits[i].remaining_this_timeslice = 0; } } while (now >= (qos->last_timeslice + qos->timeslice_size)) { qos->last_timeslice += qos->timeslice_size; for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { qos->rate_limits[i].remaining_this_timeslice += qos->rate_limits[i].max_per_timeslice; } } return bdev_qos_io_submit(qos->ch, qos); } static void bdev_channel_destroy_resource(struct spdk_bdev_channel *ch) { struct spdk_bdev_shared_resource *shared_resource; struct lba_range *range; while (!TAILQ_EMPTY(&ch->locked_ranges)) { range = TAILQ_FIRST(&ch->locked_ranges); TAILQ_REMOVE(&ch->locked_ranges, range, tailq); free(range); } spdk_put_io_channel(ch->channel); shared_resource = ch->shared_resource; assert(TAILQ_EMPTY(&ch->io_locked)); assert(TAILQ_EMPTY(&ch->io_submitted)); assert(ch->io_outstanding == 0); assert(shared_resource->ref > 0); shared_resource->ref--; if (shared_resource->ref == 0) { assert(shared_resource->io_outstanding == 0); TAILQ_REMOVE(&shared_resource->mgmt_ch->shared_resources, shared_resource, link); spdk_put_io_channel(spdk_io_channel_from_ctx(shared_resource->mgmt_ch)); free(shared_resource); } } /* Caller must hold bdev->internal.mutex. */ static void bdev_enable_qos(struct spdk_bdev *bdev, struct spdk_bdev_channel *ch) { struct spdk_bdev_qos *qos = bdev->internal.qos; int i; /* Rate limiting on this bdev enabled */ if (qos) { if (qos->ch == NULL) { struct spdk_io_channel *io_ch; SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Selecting channel %p as QoS channel for bdev %s on thread %p\n", ch, bdev->name, spdk_get_thread()); /* No qos channel has been selected, so set one up */ /* Take another reference to ch */ io_ch = spdk_get_io_channel(__bdev_to_io_dev(bdev)); assert(io_ch != NULL); qos->ch = ch; qos->thread = spdk_io_channel_get_thread(io_ch); TAILQ_INIT(&qos->queued); for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { if (bdev_qos_is_iops_rate_limit(i) == true) { qos->rate_limits[i].min_per_timeslice = SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE; } else { qos->rate_limits[i].min_per_timeslice = SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE; } if (qos->rate_limits[i].limit == 0) { qos->rate_limits[i].limit = SPDK_BDEV_QOS_LIMIT_NOT_DEFINED; } } bdev_qos_update_max_quota_per_timeslice(qos); qos->timeslice_size = SPDK_BDEV_QOS_TIMESLICE_IN_USEC * spdk_get_ticks_hz() / SPDK_SEC_TO_USEC; qos->last_timeslice = spdk_get_ticks(); qos->poller = SPDK_POLLER_REGISTER(bdev_channel_poll_qos, qos, SPDK_BDEV_QOS_TIMESLICE_IN_USEC); } ch->flags |= BDEV_CH_QOS_ENABLED; } } struct poll_timeout_ctx { struct spdk_bdev_desc *desc; uint64_t timeout_in_sec; spdk_bdev_io_timeout_cb cb_fn; void *cb_arg; }; static void bdev_desc_free(struct spdk_bdev_desc *desc) { pthread_mutex_destroy(&desc->mutex); free(desc->media_events_buffer); free(desc); } static void bdev_channel_poll_timeout_io_done(struct spdk_io_channel_iter *i, int status) { struct poll_timeout_ctx *ctx = spdk_io_channel_iter_get_ctx(i); struct spdk_bdev_desc *desc = ctx->desc; free(ctx); pthread_mutex_lock(&desc->mutex); desc->refs--; if (desc->closed == true && desc->refs == 0) { pthread_mutex_unlock(&desc->mutex); bdev_desc_free(desc); return; } pthread_mutex_unlock(&desc->mutex); } static void bdev_channel_poll_timeout_io(struct spdk_io_channel_iter *i) { struct poll_timeout_ctx *ctx = spdk_io_channel_iter_get_ctx(i); struct spdk_io_channel *io_ch = spdk_io_channel_iter_get_channel(i); struct spdk_bdev_channel *bdev_ch = spdk_io_channel_get_ctx(io_ch); struct spdk_bdev_desc *desc = ctx->desc; struct spdk_bdev_io *bdev_io; uint64_t now; pthread_mutex_lock(&desc->mutex); if (desc->closed == true) { pthread_mutex_unlock(&desc->mutex); spdk_for_each_channel_continue(i, -1); return; } pthread_mutex_unlock(&desc->mutex); now = spdk_get_ticks(); TAILQ_FOREACH(bdev_io, &bdev_ch->io_submitted, internal.ch_link) { /* Exclude any I/O that are generated via splitting. */ if (bdev_io->internal.cb == bdev_io_split_done) { continue; } /* Once we find an I/O that has not timed out, we can immediately * exit the loop. */ if (now < (bdev_io->internal.submit_tsc + ctx->timeout_in_sec * spdk_get_ticks_hz())) { goto end; } if (bdev_io->internal.desc == desc) { ctx->cb_fn(ctx->cb_arg, bdev_io); } } end: spdk_for_each_channel_continue(i, 0); } static int bdev_poll_timeout_io(void *arg) { struct spdk_bdev_desc *desc = arg; struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct poll_timeout_ctx *ctx; ctx = calloc(1, sizeof(struct poll_timeout_ctx)); if (!ctx) { SPDK_ERRLOG("failed to allocate memory\n"); return SPDK_POLLER_BUSY; } ctx->desc = desc; ctx->cb_arg = desc->cb_arg; ctx->cb_fn = desc->cb_fn; ctx->timeout_in_sec = desc->timeout_in_sec; /* Take a ref on the descriptor in case it gets closed while we are checking * all of the channels. */ pthread_mutex_lock(&desc->mutex); desc->refs++; pthread_mutex_unlock(&desc->mutex); spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_channel_poll_timeout_io, ctx, bdev_channel_poll_timeout_io_done); return SPDK_POLLER_BUSY; } int spdk_bdev_set_timeout(struct spdk_bdev_desc *desc, uint64_t timeout_in_sec, spdk_bdev_io_timeout_cb cb_fn, void *cb_arg) { assert(desc->thread == spdk_get_thread()); spdk_poller_unregister(&desc->io_timeout_poller); if (timeout_in_sec) { assert(cb_fn != NULL); desc->io_timeout_poller = SPDK_POLLER_REGISTER(bdev_poll_timeout_io, desc, SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC * SPDK_SEC_TO_USEC / 1000); if (desc->io_timeout_poller == NULL) { SPDK_ERRLOG("can not register the desc timeout IO poller\n"); return -1; } } desc->cb_fn = cb_fn; desc->cb_arg = cb_arg; desc->timeout_in_sec = timeout_in_sec; return 0; } static int bdev_channel_create(void *io_device, void *ctx_buf) { struct spdk_bdev *bdev = __bdev_from_io_dev(io_device); struct spdk_bdev_channel *ch = ctx_buf; struct spdk_io_channel *mgmt_io_ch; struct spdk_bdev_mgmt_channel *mgmt_ch; struct spdk_bdev_shared_resource *shared_resource; struct lba_range *range; ch->bdev = bdev; ch->channel = bdev->fn_table->get_io_channel(bdev->ctxt); if (!ch->channel) { return -1; } assert(ch->histogram == NULL); if (bdev->internal.histogram_enabled) { ch->histogram = spdk_histogram_data_alloc(); if (ch->histogram == NULL) { SPDK_ERRLOG("Could not allocate histogram\n"); } } mgmt_io_ch = spdk_get_io_channel(&g_bdev_mgr); if (!mgmt_io_ch) { spdk_put_io_channel(ch->channel); return -1; } mgmt_ch = spdk_io_channel_get_ctx(mgmt_io_ch); TAILQ_FOREACH(shared_resource, &mgmt_ch->shared_resources, link) { if (shared_resource->shared_ch == ch->channel) { spdk_put_io_channel(mgmt_io_ch); shared_resource->ref++; break; } } if (shared_resource == NULL) { shared_resource = calloc(1, sizeof(*shared_resource)); if (shared_resource == NULL) { spdk_put_io_channel(ch->channel); spdk_put_io_channel(mgmt_io_ch); return -1; } shared_resource->mgmt_ch = mgmt_ch; shared_resource->io_outstanding = 0; TAILQ_INIT(&shared_resource->nomem_io); shared_resource->nomem_threshold = 0; shared_resource->shared_ch = ch->channel; shared_resource->ref = 1; TAILQ_INSERT_TAIL(&mgmt_ch->shared_resources, shared_resource, link); } memset(&ch->stat, 0, sizeof(ch->stat)); ch->stat.ticks_rate = spdk_get_ticks_hz(); ch->io_outstanding = 0; TAILQ_INIT(&ch->queued_resets); TAILQ_INIT(&ch->locked_ranges); ch->flags = 0; ch->shared_resource = shared_resource; TAILQ_INIT(&ch->io_submitted); TAILQ_INIT(&ch->io_locked); #ifdef SPDK_CONFIG_VTUNE { char *name; __itt_init_ittlib(NULL, 0); name = spdk_sprintf_alloc("spdk_bdev_%s_%p", ch->bdev->name, ch); if (!name) { bdev_channel_destroy_resource(ch); return -1; } ch->handle = __itt_string_handle_create(name); free(name); ch->start_tsc = spdk_get_ticks(); ch->interval_tsc = spdk_get_ticks_hz() / 100; memset(&ch->prev_stat, 0, sizeof(ch->prev_stat)); } #endif pthread_mutex_lock(&bdev->internal.mutex); bdev_enable_qos(bdev, ch); TAILQ_FOREACH(range, &bdev->internal.locked_ranges, tailq) { struct lba_range *new_range; new_range = calloc(1, sizeof(*new_range)); if (new_range == NULL) { pthread_mutex_unlock(&bdev->internal.mutex); bdev_channel_destroy_resource(ch); return -1; } new_range->length = range->length; new_range->offset = range->offset; new_range->locked_ctx = range->locked_ctx; TAILQ_INSERT_TAIL(&ch->locked_ranges, new_range, tailq); } pthread_mutex_unlock(&bdev->internal.mutex); return 0; } /* * Abort I/O that are waiting on a data buffer. These types of I/O are * linked using the spdk_bdev_io internal.buf_link TAILQ_ENTRY. */ static void bdev_abort_all_buf_io(bdev_io_stailq_t *queue, struct spdk_bdev_channel *ch) { bdev_io_stailq_t tmp; struct spdk_bdev_io *bdev_io; STAILQ_INIT(&tmp); while (!STAILQ_EMPTY(queue)) { bdev_io = STAILQ_FIRST(queue); STAILQ_REMOVE_HEAD(queue, internal.buf_link); if (bdev_io->internal.ch == ch) { spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); } else { STAILQ_INSERT_TAIL(&tmp, bdev_io, internal.buf_link); } } STAILQ_SWAP(&tmp, queue, spdk_bdev_io); } /* * Abort I/O that are queued waiting for submission. These types of I/O are * linked using the spdk_bdev_io link TAILQ_ENTRY. */ static void bdev_abort_all_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_channel *ch) { struct spdk_bdev_io *bdev_io, *tmp; TAILQ_FOREACH_SAFE(bdev_io, queue, internal.link, tmp) { if (bdev_io->internal.ch == ch) { TAILQ_REMOVE(queue, bdev_io, internal.link); /* * spdk_bdev_io_complete() assumes that the completed I/O had * been submitted to the bdev module. Since in this case it * hadn't, bump io_outstanding to account for the decrement * that spdk_bdev_io_complete() will do. */ if (bdev_io->type != SPDK_BDEV_IO_TYPE_RESET) { ch->io_outstanding++; ch->shared_resource->io_outstanding++; } spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED); } } } static bool bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_io *bio_to_abort) { struct spdk_bdev_io *bdev_io; TAILQ_FOREACH(bdev_io, queue, internal.link) { if (bdev_io == bio_to_abort) { TAILQ_REMOVE(queue, bio_to_abort, internal.link); spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_ABORTED); return true; } } return false; } static bool bdev_abort_buf_io(bdev_io_stailq_t *queue, struct spdk_bdev_io *bio_to_abort) { struct spdk_bdev_io *bdev_io; STAILQ_FOREACH(bdev_io, queue, internal.buf_link) { if (bdev_io == bio_to_abort) { STAILQ_REMOVE(queue, bio_to_abort, spdk_bdev_io, internal.buf_link); spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_ABORTED); return true; } } return false; } static void bdev_qos_channel_destroy(void *cb_arg) { struct spdk_bdev_qos *qos = cb_arg; spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch)); spdk_poller_unregister(&qos->poller); SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Free QoS %p.\n", qos); free(qos); } static int bdev_qos_destroy(struct spdk_bdev *bdev) { int i; /* * Cleanly shutting down the QoS poller is tricky, because * during the asynchronous operation the user could open * a new descriptor and create a new channel, spawning * a new QoS poller. * * The strategy is to create a new QoS structure here and swap it * in. The shutdown path then continues to refer to the old one * until it completes and then releases it. */ struct spdk_bdev_qos *new_qos, *old_qos; old_qos = bdev->internal.qos; new_qos = calloc(1, sizeof(*new_qos)); if (!new_qos) { SPDK_ERRLOG("Unable to allocate memory to shut down QoS.\n"); return -ENOMEM; } /* Copy the old QoS data into the newly allocated structure */ memcpy(new_qos, old_qos, sizeof(*new_qos)); /* Zero out the key parts of the QoS structure */ new_qos->ch = NULL; new_qos->thread = NULL; new_qos->poller = NULL; TAILQ_INIT(&new_qos->queued); /* * The limit member of spdk_bdev_qos_limit structure is not zeroed. * It will be used later for the new QoS structure. */ for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { new_qos->rate_limits[i].remaining_this_timeslice = 0; new_qos->rate_limits[i].min_per_timeslice = 0; new_qos->rate_limits[i].max_per_timeslice = 0; } bdev->internal.qos = new_qos; if (old_qos->thread == NULL) { free(old_qos); } else { spdk_thread_send_msg(old_qos->thread, bdev_qos_channel_destroy, old_qos); } /* It is safe to continue with destroying the bdev even though the QoS channel hasn't * been destroyed yet. The destruction path will end up waiting for the final * channel to be put before it releases resources. */ return 0; } static void bdev_io_stat_add(struct spdk_bdev_io_stat *total, struct spdk_bdev_io_stat *add) { total->bytes_read += add->bytes_read; total->num_read_ops += add->num_read_ops; total->bytes_written += add->bytes_written; total->num_write_ops += add->num_write_ops; total->bytes_unmapped += add->bytes_unmapped; total->num_unmap_ops += add->num_unmap_ops; total->read_latency_ticks += add->read_latency_ticks; total->write_latency_ticks += add->write_latency_ticks; total->unmap_latency_ticks += add->unmap_latency_ticks; } static void bdev_channel_destroy(void *io_device, void *ctx_buf) { struct spdk_bdev_channel *ch = ctx_buf; struct spdk_bdev_mgmt_channel *mgmt_ch; struct spdk_bdev_shared_resource *shared_resource = ch->shared_resource; SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Destroying channel %p for bdev %s on thread %p\n", ch, ch->bdev->name, spdk_get_thread()); /* This channel is going away, so add its statistics into the bdev so that they don't get lost. */ pthread_mutex_lock(&ch->bdev->internal.mutex); bdev_io_stat_add(&ch->bdev->internal.stat, &ch->stat); pthread_mutex_unlock(&ch->bdev->internal.mutex); mgmt_ch = shared_resource->mgmt_ch; bdev_abort_all_queued_io(&ch->queued_resets, ch); bdev_abort_all_queued_io(&shared_resource->nomem_io, ch); bdev_abort_all_buf_io(&mgmt_ch->need_buf_small, ch); bdev_abort_all_buf_io(&mgmt_ch->need_buf_large, ch); if (ch->histogram) { spdk_histogram_data_free(ch->histogram); } bdev_channel_destroy_resource(ch); } int spdk_bdev_alias_add(struct spdk_bdev *bdev, const char *alias) { struct spdk_bdev_alias *tmp; if (alias == NULL) { SPDK_ERRLOG("Empty alias passed\n"); return -EINVAL; } if (spdk_bdev_get_by_name(alias)) { SPDK_ERRLOG("Bdev name/alias: %s already exists\n", alias); return -EEXIST; } tmp = calloc(1, sizeof(*tmp)); if (tmp == NULL) { SPDK_ERRLOG("Unable to allocate alias\n"); return -ENOMEM; } tmp->alias = strdup(alias); if (tmp->alias == NULL) { free(tmp); SPDK_ERRLOG("Unable to allocate alias\n"); return -ENOMEM; } TAILQ_INSERT_TAIL(&bdev->aliases, tmp, tailq); return 0; } int spdk_bdev_alias_del(struct spdk_bdev *bdev, const char *alias) { struct spdk_bdev_alias *tmp; TAILQ_FOREACH(tmp, &bdev->aliases, tailq) { if (strcmp(alias, tmp->alias) == 0) { TAILQ_REMOVE(&bdev->aliases, tmp, tailq); free(tmp->alias); free(tmp); return 0; } } SPDK_INFOLOG(SPDK_LOG_BDEV, "Alias %s does not exists\n", alias); return -ENOENT; } void spdk_bdev_alias_del_all(struct spdk_bdev *bdev) { struct spdk_bdev_alias *p, *tmp; TAILQ_FOREACH_SAFE(p, &bdev->aliases, tailq, tmp) { TAILQ_REMOVE(&bdev->aliases, p, tailq); free(p->alias); free(p); } } struct spdk_io_channel * spdk_bdev_get_io_channel(struct spdk_bdev_desc *desc) { return spdk_get_io_channel(__bdev_to_io_dev(spdk_bdev_desc_get_bdev(desc))); } const char * spdk_bdev_get_name(const struct spdk_bdev *bdev) { return bdev->name; } const char * spdk_bdev_get_product_name(const struct spdk_bdev *bdev) { return bdev->product_name; } const struct spdk_bdev_aliases_list * spdk_bdev_get_aliases(const struct spdk_bdev *bdev) { return &bdev->aliases; } uint32_t spdk_bdev_get_block_size(const struct spdk_bdev *bdev) { return bdev->blocklen; } uint32_t spdk_bdev_get_write_unit_size(const struct spdk_bdev *bdev) { return bdev->write_unit_size; } uint64_t spdk_bdev_get_num_blocks(const struct spdk_bdev *bdev) { return bdev->blockcnt; } const char * spdk_bdev_get_qos_rpc_type(enum spdk_bdev_qos_rate_limit_type type) { return qos_rpc_type[type]; } void spdk_bdev_get_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits) { int i; memset(limits, 0, sizeof(*limits) * SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES); pthread_mutex_lock(&bdev->internal.mutex); if (bdev->internal.qos) { for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { if (bdev->internal.qos->rate_limits[i].limit != SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { limits[i] = bdev->internal.qos->rate_limits[i].limit; if (bdev_qos_is_iops_rate_limit(i) == false) { /* Change from Byte to Megabyte which is user visible. */ limits[i] = limits[i] / 1024 / 1024; } } } } pthread_mutex_unlock(&bdev->internal.mutex); } size_t spdk_bdev_get_buf_align(const struct spdk_bdev *bdev) { return 1 << bdev->required_alignment; } uint32_t spdk_bdev_get_optimal_io_boundary(const struct spdk_bdev *bdev) { return bdev->optimal_io_boundary; } bool spdk_bdev_has_write_cache(const struct spdk_bdev *bdev) { return bdev->write_cache; } const struct spdk_uuid * spdk_bdev_get_uuid(const struct spdk_bdev *bdev) { return &bdev->uuid; } uint16_t spdk_bdev_get_acwu(const struct spdk_bdev *bdev) { return bdev->acwu; } uint32_t spdk_bdev_get_md_size(const struct spdk_bdev *bdev) { return bdev->md_len; } bool spdk_bdev_is_md_interleaved(const struct spdk_bdev *bdev) { return (bdev->md_len != 0) && bdev->md_interleave; } bool spdk_bdev_is_md_separate(const struct spdk_bdev *bdev) { return (bdev->md_len != 0) && !bdev->md_interleave; } bool spdk_bdev_is_zoned(const struct spdk_bdev *bdev) { return bdev->zoned; } uint32_t spdk_bdev_get_data_block_size(const struct spdk_bdev *bdev) { if (spdk_bdev_is_md_interleaved(bdev)) { return bdev->blocklen - bdev->md_len; } else { return bdev->blocklen; } } static uint32_t _bdev_get_block_size_with_md(const struct spdk_bdev *bdev) { if (!spdk_bdev_is_md_interleaved(bdev)) { return bdev->blocklen + bdev->md_len; } else { return bdev->blocklen; } } enum spdk_dif_type spdk_bdev_get_dif_type(const struct spdk_bdev *bdev) { if (bdev->md_len != 0) { return bdev->dif_type; } else { return SPDK_DIF_DISABLE; } } bool spdk_bdev_is_dif_head_of_md(const struct spdk_bdev *bdev) { if (spdk_bdev_get_dif_type(bdev) != SPDK_DIF_DISABLE) { return bdev->dif_is_head_of_md; } else { return false; } } bool spdk_bdev_is_dif_check_enabled(const struct spdk_bdev *bdev, enum spdk_dif_check_type check_type) { if (spdk_bdev_get_dif_type(bdev) == SPDK_DIF_DISABLE) { return false; } switch (check_type) { case SPDK_DIF_CHECK_TYPE_REFTAG: return (bdev->dif_check_flags & SPDK_DIF_FLAGS_REFTAG_CHECK) != 0; case SPDK_DIF_CHECK_TYPE_APPTAG: return (bdev->dif_check_flags & SPDK_DIF_FLAGS_APPTAG_CHECK) != 0; case SPDK_DIF_CHECK_TYPE_GUARD: return (bdev->dif_check_flags & SPDK_DIF_FLAGS_GUARD_CHECK) != 0; default: return false; } } uint64_t spdk_bdev_get_qd(const struct spdk_bdev *bdev) { return bdev->internal.measured_queue_depth; } uint64_t spdk_bdev_get_qd_sampling_period(const struct spdk_bdev *bdev) { return bdev->internal.period; } uint64_t spdk_bdev_get_weighted_io_time(const struct spdk_bdev *bdev) { return bdev->internal.weighted_io_time; } uint64_t spdk_bdev_get_io_time(const struct spdk_bdev *bdev) { return bdev->internal.io_time; } static void _calculate_measured_qd_cpl(struct spdk_io_channel_iter *i, int status) { struct spdk_bdev *bdev = spdk_io_channel_iter_get_ctx(i); bdev->internal.measured_queue_depth = bdev->internal.temporary_queue_depth; if (bdev->internal.measured_queue_depth) { bdev->internal.io_time += bdev->internal.period; bdev->internal.weighted_io_time += bdev->internal.period * bdev->internal.measured_queue_depth; } } static void _calculate_measured_qd(struct spdk_io_channel_iter *i) { struct spdk_bdev *bdev = spdk_io_channel_iter_get_ctx(i); struct spdk_io_channel *io_ch = spdk_io_channel_iter_get_channel(i); struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(io_ch); bdev->internal.temporary_queue_depth += ch->io_outstanding; spdk_for_each_channel_continue(i, 0); } static int bdev_calculate_measured_queue_depth(void *ctx) { struct spdk_bdev *bdev = ctx; bdev->internal.temporary_queue_depth = 0; spdk_for_each_channel(__bdev_to_io_dev(bdev), _calculate_measured_qd, bdev, _calculate_measured_qd_cpl); return SPDK_POLLER_BUSY; } void spdk_bdev_set_qd_sampling_period(struct spdk_bdev *bdev, uint64_t period) { bdev->internal.period = period; if (bdev->internal.qd_poller != NULL) { spdk_poller_unregister(&bdev->internal.qd_poller); bdev->internal.measured_queue_depth = UINT64_MAX; } if (period != 0) { bdev->internal.qd_poller = SPDK_POLLER_REGISTER(bdev_calculate_measured_queue_depth, bdev, period); } } static void _resize_notify(void *arg) { struct spdk_bdev_desc *desc = arg; pthread_mutex_lock(&desc->mutex); desc->refs--; if (!desc->closed) { pthread_mutex_unlock(&desc->mutex); desc->callback.event_fn(SPDK_BDEV_EVENT_RESIZE, desc->bdev, desc->callback.ctx); return; } else if (0 == desc->refs) { /* This descriptor was closed after this resize_notify message was sent. * spdk_bdev_close() could not free the descriptor since this message was * in flight, so we free it now using bdev_desc_free(). */ pthread_mutex_unlock(&desc->mutex); bdev_desc_free(desc); return; } pthread_mutex_unlock(&desc->mutex); } int spdk_bdev_notify_blockcnt_change(struct spdk_bdev *bdev, uint64_t size) { struct spdk_bdev_desc *desc; int ret; pthread_mutex_lock(&bdev->internal.mutex); /* bdev has open descriptors */ if (!TAILQ_EMPTY(&bdev->internal.open_descs) && bdev->blockcnt > size) { ret = -EBUSY; } else { bdev->blockcnt = size; TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { pthread_mutex_lock(&desc->mutex); if (desc->callback.open_with_ext && !desc->closed) { desc->refs++; spdk_thread_send_msg(desc->thread, _resize_notify, desc); } pthread_mutex_unlock(&desc->mutex); } ret = 0; } pthread_mutex_unlock(&bdev->internal.mutex); return ret; } /* * Convert I/O offset and length from bytes to blocks. * * Returns zero on success or non-zero if the byte parameters aren't divisible by the block size. */ static uint64_t bdev_bytes_to_blocks(struct spdk_bdev *bdev, uint64_t offset_bytes, uint64_t *offset_blocks, uint64_t num_bytes, uint64_t *num_blocks) { uint32_t block_size = bdev->blocklen; uint8_t shift_cnt; /* Avoid expensive div operations if possible. These spdk_u32 functions are very cheap. */ if (spdk_likely(spdk_u32_is_pow2(block_size))) { shift_cnt = spdk_u32log2(block_size); *offset_blocks = offset_bytes >> shift_cnt; *num_blocks = num_bytes >> shift_cnt; return (offset_bytes - (*offset_blocks << shift_cnt)) | (num_bytes - (*num_blocks << shift_cnt)); } else { *offset_blocks = offset_bytes / block_size; *num_blocks = num_bytes / block_size; return (offset_bytes % block_size) | (num_bytes % block_size); } } static bool bdev_io_valid_blocks(struct spdk_bdev *bdev, uint64_t offset_blocks, uint64_t num_blocks) { /* Return failure if offset_blocks + num_blocks is less than offset_blocks; indicates there * has been an overflow and hence the offset has been wrapped around */ if (offset_blocks + num_blocks < offset_blocks) { return false; } /* Return failure if offset_blocks + num_blocks exceeds the size of the bdev */ if (offset_blocks + num_blocks > bdev->blockcnt) { return false; } return true; } static bool _bdev_io_check_md_buf(const struct iovec *iovs, const void *md_buf) { return _is_buf_allocated(iovs) == (md_buf != NULL); } static int bdev_read_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, void *md_buf, int64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { return -EINVAL; } bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->type = SPDK_BDEV_IO_TYPE_READ; bdev_io->u.bdev.iovs = &bdev_io->iov; bdev_io->u.bdev.iovs[0].iov_base = buf; bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; bdev_io->u.bdev.iovcnt = 1; bdev_io->u.bdev.md_buf = md_buf; bdev_io->u.bdev.num_blocks = num_blocks; bdev_io->u.bdev.offset_blocks = offset_blocks; bdev_io_init(bdev_io, bdev, cb_arg, cb); bdev_io_submit(bdev_io); return 0; } int spdk_bdev_read(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, uint64_t offset, uint64_t nbytes, spdk_bdev_io_completion_cb cb, void *cb_arg) { uint64_t offset_blocks, num_blocks; if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, nbytes, &num_blocks) != 0) { return -EINVAL; } return spdk_bdev_read_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg); } int spdk_bdev_read_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { return bdev_read_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, cb, cb_arg); } int spdk_bdev_read_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, void *md_buf, int64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct iovec iov = { .iov_base = buf, }; if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { return -EINVAL; } if (!_bdev_io_check_md_buf(&iov, md_buf)) { return -EINVAL; } return bdev_read_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, cb, cb_arg); } int spdk_bdev_readv(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, uint64_t offset, uint64_t nbytes, spdk_bdev_io_completion_cb cb, void *cb_arg) { uint64_t offset_blocks, num_blocks; if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, nbytes, &num_blocks) != 0) { return -EINVAL; } return spdk_bdev_readv_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg); } static int bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { return -EINVAL; } bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->type = SPDK_BDEV_IO_TYPE_READ; bdev_io->u.bdev.iovs = iov; bdev_io->u.bdev.iovcnt = iovcnt; bdev_io->u.bdev.md_buf = md_buf; bdev_io->u.bdev.num_blocks = num_blocks; bdev_io->u.bdev.offset_blocks = offset_blocks; bdev_io_init(bdev_io, bdev, cb_arg, cb); bdev_io_submit(bdev_io); return 0; } int spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, num_blocks, cb, cb_arg); } int spdk_bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { return -EINVAL; } if (!_bdev_io_check_md_buf(iov, md_buf)) { return -EINVAL; } return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, num_blocks, cb, cb_arg); } static int bdev_write_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); if (!desc->write) { return -EBADF; } if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { return -EINVAL; } bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; bdev_io->u.bdev.iovs = &bdev_io->iov; bdev_io->u.bdev.iovs[0].iov_base = buf; bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; bdev_io->u.bdev.iovcnt = 1; bdev_io->u.bdev.md_buf = md_buf; bdev_io->u.bdev.num_blocks = num_blocks; bdev_io->u.bdev.offset_blocks = offset_blocks; bdev_io_init(bdev_io, bdev, cb_arg, cb); bdev_io_submit(bdev_io); return 0; } int spdk_bdev_write(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, uint64_t offset, uint64_t nbytes, spdk_bdev_io_completion_cb cb, void *cb_arg) { uint64_t offset_blocks, num_blocks; if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, nbytes, &num_blocks) != 0) { return -EINVAL; } return spdk_bdev_write_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg); } int spdk_bdev_write_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { return bdev_write_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, cb, cb_arg); } int spdk_bdev_write_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct iovec iov = { .iov_base = buf, }; if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { return -EINVAL; } if (!_bdev_io_check_md_buf(&iov, md_buf)) { return -EINVAL; } return bdev_write_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, cb, cb_arg); } static int bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); if (!desc->write) { return -EBADF; } if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { return -EINVAL; } bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; bdev_io->u.bdev.iovs = iov; bdev_io->u.bdev.iovcnt = iovcnt; bdev_io->u.bdev.md_buf = md_buf; bdev_io->u.bdev.num_blocks = num_blocks; bdev_io->u.bdev.offset_blocks = offset_blocks; bdev_io_init(bdev_io, bdev, cb_arg, cb); bdev_io_submit(bdev_io); return 0; } int spdk_bdev_writev(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, uint64_t offset, uint64_t len, spdk_bdev_io_completion_cb cb, void *cb_arg) { uint64_t offset_blocks, num_blocks; if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, len, &num_blocks) != 0) { return -EINVAL; } return spdk_bdev_writev_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg); } int spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, num_blocks, cb, cb_arg); } int spdk_bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { return -EINVAL; } if (!_bdev_io_check_md_buf(iov, md_buf)) { return -EINVAL; } return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, num_blocks, cb, cb_arg); } static void bdev_compare_do_read_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) { struct spdk_bdev_io *parent_io = cb_arg; uint8_t *read_buf = bdev_io->u.bdev.iovs[0].iov_base; int i, rc = 0; if (!success) { parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); spdk_bdev_free_io(bdev_io); return; } for (i = 0; i < parent_io->u.bdev.iovcnt; i++) { rc = memcmp(read_buf, parent_io->u.bdev.iovs[i].iov_base, parent_io->u.bdev.iovs[i].iov_len); if (rc) { break; } read_buf += parent_io->u.bdev.iovs[i].iov_len; } spdk_bdev_free_io(bdev_io); if (rc == 0) { parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; parent_io->internal.cb(parent_io, true, parent_io->internal.caller_ctx); } else { parent_io->internal.status = SPDK_BDEV_IO_STATUS_MISCOMPARE; parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); } } static void bdev_compare_do_read(void *_bdev_io) { struct spdk_bdev_io *bdev_io = _bdev_io; int rc; rc = spdk_bdev_read_blocks(bdev_io->internal.desc, spdk_io_channel_from_ctx(bdev_io->internal.ch), NULL, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, bdev_compare_do_read_done, bdev_io); if (rc == -ENOMEM) { bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_do_read); } else if (rc != 0) { bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); } } static int bdev_comparev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { return -EINVAL; } bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE; bdev_io->u.bdev.iovs = iov; bdev_io->u.bdev.iovcnt = iovcnt; bdev_io->u.bdev.md_buf = md_buf; bdev_io->u.bdev.num_blocks = num_blocks; bdev_io->u.bdev.offset_blocks = offset_blocks; bdev_io_init(bdev_io, bdev, cb_arg, cb); if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE)) { bdev_io_submit(bdev_io); return 0; } bdev_compare_do_read(bdev_io); return 0; } int spdk_bdev_comparev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { return bdev_comparev_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks, num_blocks, cb, cb_arg); } int spdk_bdev_comparev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { return -EINVAL; } if (!_bdev_io_check_md_buf(iov, md_buf)) { return -EINVAL; } return bdev_comparev_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks, num_blocks, cb, cb_arg); } static int bdev_compare_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { return -EINVAL; } bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE; bdev_io->u.bdev.iovs = &bdev_io->iov; bdev_io->u.bdev.iovs[0].iov_base = buf; bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen; bdev_io->u.bdev.iovcnt = 1; bdev_io->u.bdev.md_buf = md_buf; bdev_io->u.bdev.num_blocks = num_blocks; bdev_io->u.bdev.offset_blocks = offset_blocks; bdev_io_init(bdev_io, bdev, cb_arg, cb); if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE)) { bdev_io_submit(bdev_io); return 0; } bdev_compare_do_read(bdev_io); return 0; } int spdk_bdev_compare_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { return bdev_compare_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, cb, cb_arg); } int spdk_bdev_compare_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct iovec iov = { .iov_base = buf, }; if (!spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) { return -EINVAL; } if (!_bdev_io_check_md_buf(&iov, md_buf)) { return -EINVAL; } return bdev_compare_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks, cb, cb_arg); } static void bdev_comparev_and_writev_blocks_unlocked(void *ctx, int unlock_status) { struct spdk_bdev_io *bdev_io = ctx; if (unlock_status) { SPDK_ERRLOG("LBA range unlock failed\n"); } bdev_io->internal.cb(bdev_io, bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS ? true : false, bdev_io->internal.caller_ctx); } static void bdev_comparev_and_writev_blocks_unlock(struct spdk_bdev_io *bdev_io, int status) { bdev_io->internal.status = status; bdev_unlock_lba_range(bdev_io->internal.desc, spdk_io_channel_from_ctx(bdev_io->internal.ch), bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, bdev_comparev_and_writev_blocks_unlocked, bdev_io); } static void bdev_compare_and_write_do_write_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) { struct spdk_bdev_io *parent_io = cb_arg; if (!success) { SPDK_ERRLOG("Compare and write operation failed\n"); } spdk_bdev_free_io(bdev_io); bdev_comparev_and_writev_blocks_unlock(parent_io, success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED); } static void bdev_compare_and_write_do_write(void *_bdev_io) { struct spdk_bdev_io *bdev_io = _bdev_io; int rc; rc = spdk_bdev_writev_blocks(bdev_io->internal.desc, spdk_io_channel_from_ctx(bdev_io->internal.ch), bdev_io->u.bdev.fused_iovs, bdev_io->u.bdev.fused_iovcnt, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, bdev_compare_and_write_do_write_done, bdev_io); if (rc == -ENOMEM) { bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_and_write_do_write); } else if (rc != 0) { bdev_comparev_and_writev_blocks_unlock(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); } } static void bdev_compare_and_write_do_compare_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) { struct spdk_bdev_io *parent_io = cb_arg; spdk_bdev_free_io(bdev_io); if (!success) { bdev_comparev_and_writev_blocks_unlock(parent_io, SPDK_BDEV_IO_STATUS_MISCOMPARE); return; } bdev_compare_and_write_do_write(parent_io); } static void bdev_compare_and_write_do_compare(void *_bdev_io) { struct spdk_bdev_io *bdev_io = _bdev_io; int rc; rc = spdk_bdev_comparev_blocks(bdev_io->internal.desc, spdk_io_channel_from_ctx(bdev_io->internal.ch), bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, bdev_compare_and_write_do_compare_done, bdev_io); if (rc == -ENOMEM) { bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_and_write_do_compare); } else if (rc != 0) { bdev_comparev_and_writev_blocks_unlock(bdev_io, SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED); } } static void bdev_comparev_and_writev_blocks_locked(void *ctx, int status) { struct spdk_bdev_io *bdev_io = ctx; if (status) { bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED; bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); } bdev_compare_and_write_do_compare(bdev_io); } int spdk_bdev_comparev_and_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *compare_iov, int compare_iovcnt, struct iovec *write_iov, int write_iovcnt, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); if (!desc->write) { return -EBADF; } if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { return -EINVAL; } if (num_blocks > bdev->acwu) { return -EINVAL; } bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE; bdev_io->u.bdev.iovs = compare_iov; bdev_io->u.bdev.iovcnt = compare_iovcnt; bdev_io->u.bdev.fused_iovs = write_iov; bdev_io->u.bdev.fused_iovcnt = write_iovcnt; bdev_io->u.bdev.md_buf = NULL; bdev_io->u.bdev.num_blocks = num_blocks; bdev_io->u.bdev.offset_blocks = offset_blocks; bdev_io_init(bdev_io, bdev, cb_arg, cb); if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE)) { bdev_io_submit(bdev_io); return 0; } return bdev_lock_lba_range(desc, ch, offset_blocks, num_blocks, bdev_comparev_and_writev_blocks_locked, bdev_io); } static void bdev_zcopy_get_buf(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success) { if (!success) { /* Don't use spdk_bdev_io_complete here - this bdev_io was never actually submitted. */ bdev_io->internal.status = SPDK_BDEV_IO_STATUS_NOMEM; bdev_io->internal.cb(bdev_io, success, bdev_io->internal.caller_ctx); return; } if (bdev_io->u.bdev.zcopy.populate) { /* Read the real data into the buffer */ bdev_io->type = SPDK_BDEV_IO_TYPE_READ; bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; bdev_io_submit(bdev_io); return; } /* Don't use spdk_bdev_io_complete here - this bdev_io was never actually submitted. */ bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; bdev_io->internal.cb(bdev_io, success, bdev_io->internal.caller_ctx); } int spdk_bdev_zcopy_start(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, uint64_t offset_blocks, uint64_t num_blocks, bool populate, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); if (!desc->write) { return -EBADF; } if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { return -EINVAL; } if (!spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ZCOPY)) { return -ENOTSUP; } bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->type = SPDK_BDEV_IO_TYPE_ZCOPY; bdev_io->u.bdev.num_blocks = num_blocks; bdev_io->u.bdev.offset_blocks = offset_blocks; bdev_io->u.bdev.iovs = NULL; bdev_io->u.bdev.iovcnt = 0; bdev_io->u.bdev.md_buf = NULL; bdev_io->u.bdev.zcopy.populate = populate ? 1 : 0; bdev_io->u.bdev.zcopy.commit = 0; bdev_io->u.bdev.zcopy.start = 1; bdev_io_init(bdev_io, bdev, cb_arg, cb); if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ZCOPY)) { bdev_io_submit(bdev_io); } else { /* Emulate zcopy by allocating a buffer */ spdk_bdev_io_get_buf(bdev_io, bdev_zcopy_get_buf, bdev_io->u.bdev.num_blocks * bdev->blocklen); } return 0; } int spdk_bdev_zcopy_end(struct spdk_bdev_io *bdev_io, bool commit, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = bdev_io->bdev; if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) { /* This can happen if the zcopy was emulated in start */ if (bdev_io->u.bdev.zcopy.start != 1) { return -EINVAL; } bdev_io->type = SPDK_BDEV_IO_TYPE_ZCOPY; } if (bdev_io->type != SPDK_BDEV_IO_TYPE_ZCOPY) { return -EINVAL; } bdev_io->u.bdev.zcopy.commit = commit ? 1 : 0; bdev_io->u.bdev.zcopy.start = 0; bdev_io->internal.caller_ctx = cb_arg; bdev_io->internal.cb = cb; bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ZCOPY)) { bdev_io_submit(bdev_io); return 0; } if (!bdev_io->u.bdev.zcopy.commit) { /* Don't use spdk_bdev_io_complete here - this bdev_io was never actually submitted. */ bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; bdev_io->internal.cb(bdev_io, true, bdev_io->internal.caller_ctx); return 0; } bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE; bdev_io_submit(bdev_io); return 0; } int spdk_bdev_write_zeroes(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, uint64_t offset, uint64_t len, spdk_bdev_io_completion_cb cb, void *cb_arg) { uint64_t offset_blocks, num_blocks; if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, len, &num_blocks) != 0) { return -EINVAL; } return spdk_bdev_write_zeroes_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); } int spdk_bdev_write_zeroes_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); if (!desc->write) { return -EBADF; } if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { return -EINVAL; } if (!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES) && !bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE)) { return -ENOTSUP; } bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE_ZEROES; bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->u.bdev.offset_blocks = offset_blocks; bdev_io->u.bdev.num_blocks = num_blocks; bdev_io_init(bdev_io, bdev, cb_arg, cb); if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES)) { bdev_io_submit(bdev_io); return 0; } assert(bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE)); assert(_bdev_get_block_size_with_md(bdev) <= ZERO_BUFFER_SIZE); bdev_io->u.bdev.split_remaining_num_blocks = num_blocks; bdev_io->u.bdev.split_current_offset_blocks = offset_blocks; bdev_write_zero_buffer_next(bdev_io); return 0; } int spdk_bdev_unmap(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, uint64_t offset, uint64_t nbytes, spdk_bdev_io_completion_cb cb, void *cb_arg) { uint64_t offset_blocks, num_blocks; if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, nbytes, &num_blocks) != 0) { return -EINVAL; } return spdk_bdev_unmap_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); } int spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); if (!desc->write) { return -EBADF; } if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { return -EINVAL; } if (num_blocks == 0) { SPDK_ERRLOG("Can't unmap 0 bytes\n"); return -EINVAL; } bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->type = SPDK_BDEV_IO_TYPE_UNMAP; bdev_io->u.bdev.iovs = &bdev_io->iov; bdev_io->u.bdev.iovs[0].iov_base = NULL; bdev_io->u.bdev.iovs[0].iov_len = 0; bdev_io->u.bdev.iovcnt = 1; bdev_io->u.bdev.offset_blocks = offset_blocks; bdev_io->u.bdev.num_blocks = num_blocks; bdev_io_init(bdev_io, bdev, cb_arg, cb); bdev_io_submit(bdev_io); return 0; } int spdk_bdev_flush(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, uint64_t offset, uint64_t length, spdk_bdev_io_completion_cb cb, void *cb_arg) { uint64_t offset_blocks, num_blocks; if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks, length, &num_blocks) != 0) { return -EINVAL; } return spdk_bdev_flush_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg); } int spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); if (!desc->write) { return -EBADF; } if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) { return -EINVAL; } bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->type = SPDK_BDEV_IO_TYPE_FLUSH; bdev_io->u.bdev.iovs = NULL; bdev_io->u.bdev.iovcnt = 0; bdev_io->u.bdev.offset_blocks = offset_blocks; bdev_io->u.bdev.num_blocks = num_blocks; bdev_io_init(bdev_io, bdev, cb_arg, cb); bdev_io_submit(bdev_io); return 0; } static void bdev_reset_dev(struct spdk_io_channel_iter *i, int status) { struct spdk_bdev_channel *ch = spdk_io_channel_iter_get_ctx(i); struct spdk_bdev_io *bdev_io; bdev_io = TAILQ_FIRST(&ch->queued_resets); TAILQ_REMOVE(&ch->queued_resets, bdev_io, internal.link); bdev_io_submit_reset(bdev_io); } static void bdev_reset_freeze_channel(struct spdk_io_channel_iter *i) { struct spdk_io_channel *ch; struct spdk_bdev_channel *channel; struct spdk_bdev_mgmt_channel *mgmt_channel; struct spdk_bdev_shared_resource *shared_resource; bdev_io_tailq_t tmp_queued; TAILQ_INIT(&tmp_queued); ch = spdk_io_channel_iter_get_channel(i); channel = spdk_io_channel_get_ctx(ch); shared_resource = channel->shared_resource; mgmt_channel = shared_resource->mgmt_ch; channel->flags |= BDEV_CH_RESET_IN_PROGRESS; if ((channel->flags & BDEV_CH_QOS_ENABLED) != 0) { /* The QoS object is always valid and readable while * the channel flag is set, so the lock here should not * be necessary. We're not in the fast path though, so * just take it anyway. */ pthread_mutex_lock(&channel->bdev->internal.mutex); if (channel->bdev->internal.qos->ch == channel) { TAILQ_SWAP(&channel->bdev->internal.qos->queued, &tmp_queued, spdk_bdev_io, internal.link); } pthread_mutex_unlock(&channel->bdev->internal.mutex); } bdev_abort_all_queued_io(&shared_resource->nomem_io, channel); bdev_abort_all_buf_io(&mgmt_channel->need_buf_small, channel); bdev_abort_all_buf_io(&mgmt_channel->need_buf_large, channel); bdev_abort_all_queued_io(&tmp_queued, channel); spdk_for_each_channel_continue(i, 0); } static void bdev_start_reset(void *ctx) { struct spdk_bdev_channel *ch = ctx; spdk_for_each_channel(__bdev_to_io_dev(ch->bdev), bdev_reset_freeze_channel, ch, bdev_reset_dev); } static void bdev_channel_start_reset(struct spdk_bdev_channel *ch) { struct spdk_bdev *bdev = ch->bdev; assert(!TAILQ_EMPTY(&ch->queued_resets)); pthread_mutex_lock(&bdev->internal.mutex); if (bdev->internal.reset_in_progress == NULL) { bdev->internal.reset_in_progress = TAILQ_FIRST(&ch->queued_resets); /* * Take a channel reference for the target bdev for the life of this * reset. This guards against the channel getting destroyed while * spdk_for_each_channel() calls related to this reset IO are in * progress. We will release the reference when this reset is * completed. */ bdev->internal.reset_in_progress->u.reset.ch_ref = spdk_get_io_channel(__bdev_to_io_dev(bdev)); bdev_start_reset(ch); } pthread_mutex_unlock(&bdev->internal.mutex); } int spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->internal.submit_tsc = spdk_get_ticks(); bdev_io->type = SPDK_BDEV_IO_TYPE_RESET; bdev_io->u.reset.ch_ref = NULL; bdev_io_init(bdev_io, bdev, cb_arg, cb); pthread_mutex_lock(&bdev->internal.mutex); TAILQ_INSERT_TAIL(&channel->queued_resets, bdev_io, internal.link); pthread_mutex_unlock(&bdev->internal.mutex); TAILQ_INSERT_TAIL(&bdev_io->internal.ch->io_submitted, bdev_io, internal.ch_link); bdev_channel_start_reset(channel); return 0; } void spdk_bdev_get_io_stat(struct spdk_bdev *bdev, struct spdk_io_channel *ch, struct spdk_bdev_io_stat *stat) { struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); *stat = channel->stat; } static void bdev_get_device_stat_done(struct spdk_io_channel_iter *i, int status) { void *io_device = spdk_io_channel_iter_get_io_device(i); struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = spdk_io_channel_iter_get_ctx(i); bdev_iostat_ctx->cb(__bdev_from_io_dev(io_device), bdev_iostat_ctx->stat, bdev_iostat_ctx->cb_arg, 0); free(bdev_iostat_ctx); } static void bdev_get_each_channel_stat(struct spdk_io_channel_iter *i) { struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = spdk_io_channel_iter_get_ctx(i); struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); bdev_io_stat_add(bdev_iostat_ctx->stat, &channel->stat); spdk_for_each_channel_continue(i, 0); } void spdk_bdev_get_device_stat(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, spdk_bdev_get_device_stat_cb cb, void *cb_arg) { struct spdk_bdev_iostat_ctx *bdev_iostat_ctx; assert(bdev != NULL); assert(stat != NULL); assert(cb != NULL); bdev_iostat_ctx = calloc(1, sizeof(struct spdk_bdev_iostat_ctx)); if (bdev_iostat_ctx == NULL) { SPDK_ERRLOG("Unable to allocate memory for spdk_bdev_iostat_ctx\n"); cb(bdev, stat, cb_arg, -ENOMEM); return; } bdev_iostat_ctx->stat = stat; bdev_iostat_ctx->cb = cb; bdev_iostat_ctx->cb_arg = cb_arg; /* Start with the statistics from previously deleted channels. */ pthread_mutex_lock(&bdev->internal.mutex); bdev_io_stat_add(bdev_iostat_ctx->stat, &bdev->internal.stat); pthread_mutex_unlock(&bdev->internal.mutex); /* Then iterate and add the statistics from each existing channel. */ spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_get_each_channel_stat, bdev_iostat_ctx, bdev_get_device_stat_done); } int spdk_bdev_nvme_admin_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); if (!desc->write) { return -EBADF; } bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_ADMIN; bdev_io->u.nvme_passthru.cmd = *cmd; bdev_io->u.nvme_passthru.buf = buf; bdev_io->u.nvme_passthru.nbytes = nbytes; bdev_io->u.nvme_passthru.md_buf = NULL; bdev_io->u.nvme_passthru.md_len = 0; bdev_io_init(bdev_io, bdev, cb_arg, cb); bdev_io_submit(bdev_io); return 0; } int spdk_bdev_nvme_io_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); if (!desc->write) { /* * Do not try to parse the NVMe command - we could maybe use bits in the opcode * to easily determine if the command is a read or write, but for now just * do not allow io_passthru with a read-only descriptor. */ return -EBADF; } bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO; bdev_io->u.nvme_passthru.cmd = *cmd; bdev_io->u.nvme_passthru.buf = buf; bdev_io->u.nvme_passthru.nbytes = nbytes; bdev_io->u.nvme_passthru.md_buf = NULL; bdev_io->u.nvme_passthru.md_len = 0; bdev_io_init(bdev_io, bdev, cb_arg, cb); bdev_io_submit(bdev_io); return 0; } int spdk_bdev_nvme_io_passthru_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); if (!desc->write) { /* * Do not try to parse the NVMe command - we could maybe use bits in the opcode * to easily determine if the command is a read or write, but for now just * do not allow io_passthru with a read-only descriptor. */ return -EBADF; } bdev_io = bdev_channel_get_io(channel); if (!bdev_io) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO_MD; bdev_io->u.nvme_passthru.cmd = *cmd; bdev_io->u.nvme_passthru.buf = buf; bdev_io->u.nvme_passthru.nbytes = nbytes; bdev_io->u.nvme_passthru.md_buf = md_buf; bdev_io->u.nvme_passthru.md_len = md_len; bdev_io_init(bdev_io, bdev, cb_arg, cb); bdev_io_submit(bdev_io); return 0; } static void bdev_abort_retry(void *ctx); static void bdev_abort(struct spdk_bdev_io *parent_io); static void bdev_abort_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) { struct spdk_bdev_channel *channel = bdev_io->internal.ch; struct spdk_bdev_io *parent_io = cb_arg; struct spdk_bdev_io *bio_to_abort, *tmp_io; bio_to_abort = bdev_io->u.abort.bio_to_abort; spdk_bdev_free_io(bdev_io); if (!success) { /* Check if the target I/O completed in the meantime. */ TAILQ_FOREACH(tmp_io, &channel->io_submitted, internal.ch_link) { if (tmp_io == bio_to_abort) { break; } } /* If the target I/O still exists, set the parent to failed. */ if (tmp_io != NULL) { parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; } } parent_io->u.bdev.split_outstanding--; if (parent_io->u.bdev.split_outstanding == 0) { if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { bdev_abort_retry(parent_io); } else { bdev_io_complete(parent_io); } } } static int bdev_abort_io(struct spdk_bdev_desc *desc, struct spdk_bdev_channel *channel, struct spdk_bdev_io *bio_to_abort, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_io *bdev_io; if (bio_to_abort->type == SPDK_BDEV_IO_TYPE_ABORT || bio_to_abort->type == SPDK_BDEV_IO_TYPE_RESET) { /* TODO: Abort reset or abort request. */ return -ENOTSUP; } bdev_io = bdev_channel_get_io(channel); if (bdev_io == NULL) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->type = SPDK_BDEV_IO_TYPE_ABORT; bdev_io_init(bdev_io, bdev, cb_arg, cb); if (bdev->split_on_optimal_io_boundary && bdev_io_should_split(bio_to_abort)) { bdev_io->u.bdev.abort.bio_cb_arg = bio_to_abort; /* Parent abort request is not submitted directly, but to manage its * execution add it to the submitted list here. */ bdev_io->internal.submit_tsc = spdk_get_ticks(); TAILQ_INSERT_TAIL(&channel->io_submitted, bdev_io, internal.ch_link); bdev_abort(bdev_io); return 0; } bdev_io->u.abort.bio_to_abort = bio_to_abort; /* Submit the abort request to the underlying bdev module. */ bdev_io_submit(bdev_io); return 0; } static uint32_t _bdev_abort(struct spdk_bdev_io *parent_io) { struct spdk_bdev_desc *desc = parent_io->internal.desc; struct spdk_bdev_channel *channel = parent_io->internal.ch; void *bio_cb_arg; struct spdk_bdev_io *bio_to_abort; uint32_t matched_ios; int rc; bio_cb_arg = parent_io->u.bdev.abort.bio_cb_arg; /* matched_ios is returned and will be kept by the caller. * * This funcion will be used for two cases, 1) the same cb_arg is used for * multiple I/Os, 2) a single large I/O is split into smaller ones. * Incrementing split_outstanding directly here may confuse readers especially * for the 1st case. * * Completion of I/O abort is processed after stack unwinding. Hence this trick * works as expected. */ matched_ios = 0; parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; TAILQ_FOREACH(bio_to_abort, &channel->io_submitted, internal.ch_link) { if (bio_to_abort->internal.caller_ctx != bio_cb_arg) { continue; } if (bio_to_abort->internal.submit_tsc > parent_io->internal.submit_tsc) { /* Any I/O which was submitted after this abort command should be excluded. */ continue; } rc = bdev_abort_io(desc, channel, bio_to_abort, bdev_abort_io_done, parent_io); if (rc != 0) { if (rc == -ENOMEM) { parent_io->internal.status = SPDK_BDEV_IO_STATUS_NOMEM; } else { parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; } break; } matched_ios++; } return matched_ios; } static void bdev_abort_retry(void *ctx) { struct spdk_bdev_io *parent_io = ctx; uint32_t matched_ios; matched_ios = _bdev_abort(parent_io); if (matched_ios == 0) { if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { bdev_queue_io_wait_with_cb(parent_io, bdev_abort_retry); } else { /* For retry, the case that no target I/O was found is success * because it means target I/Os completed in the meantime. */ bdev_io_complete(parent_io); } return; } /* Use split_outstanding to manage the progress of aborting I/Os. */ parent_io->u.bdev.split_outstanding = matched_ios; } static void bdev_abort(struct spdk_bdev_io *parent_io) { uint32_t matched_ios; matched_ios = _bdev_abort(parent_io); if (matched_ios == 0) { if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { bdev_queue_io_wait_with_cb(parent_io, bdev_abort_retry); } else { /* The case the no target I/O was found is failure. */ parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; bdev_io_complete(parent_io); } return; } /* Use split_outstanding to manage the progress of aborting I/Os. */ parent_io->u.bdev.split_outstanding = matched_ios; } int spdk_bdev_abort(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *bio_cb_arg, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); struct spdk_bdev_io *bdev_io; if (bio_cb_arg == NULL) { return -EINVAL; } if (!spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ABORT)) { return -ENOTSUP; } bdev_io = bdev_channel_get_io(channel); if (bdev_io == NULL) { return -ENOMEM; } bdev_io->internal.ch = channel; bdev_io->internal.desc = desc; bdev_io->internal.submit_tsc = spdk_get_ticks(); bdev_io->type = SPDK_BDEV_IO_TYPE_ABORT; bdev_io_init(bdev_io, bdev, cb_arg, cb); bdev_io->u.bdev.abort.bio_cb_arg = bio_cb_arg; /* Parent abort request is not submitted directly, but to manage its execution, * add it to the submitted list here. */ TAILQ_INSERT_TAIL(&channel->io_submitted, bdev_io, internal.ch_link); bdev_abort(bdev_io); return 0; } int spdk_bdev_queue_io_wait(struct spdk_bdev *bdev, struct spdk_io_channel *ch, struct spdk_bdev_io_wait_entry *entry) { struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); struct spdk_bdev_mgmt_channel *mgmt_ch = channel->shared_resource->mgmt_ch; if (bdev != entry->bdev) { SPDK_ERRLOG("bdevs do not match\n"); return -EINVAL; } if (mgmt_ch->per_thread_cache_count > 0) { SPDK_ERRLOG("Cannot queue io_wait if spdk_bdev_io available in per-thread cache\n"); return -EINVAL; } TAILQ_INSERT_TAIL(&mgmt_ch->io_wait_queue, entry, link); return 0; } static void bdev_ch_retry_io(struct spdk_bdev_channel *bdev_ch) { struct spdk_bdev *bdev = bdev_ch->bdev; struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; struct spdk_bdev_io *bdev_io; if (shared_resource->io_outstanding > shared_resource->nomem_threshold) { /* * Allow some more I/O to complete before retrying the nomem_io queue. * Some drivers (such as nvme) cannot immediately take a new I/O in * the context of a completion, because the resources for the I/O are * not released until control returns to the bdev poller. Also, we * may require several small I/O to complete before a larger I/O * (that requires splitting) can be submitted. */ return; } while (!TAILQ_EMPTY(&shared_resource->nomem_io)) { bdev_io = TAILQ_FIRST(&shared_resource->nomem_io); TAILQ_REMOVE(&shared_resource->nomem_io, bdev_io, internal.link); bdev_io->internal.ch->io_outstanding++; shared_resource->io_outstanding++; bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING; bdev_io->internal.error.nvme.cdw0 = 0; bdev_io->num_retries++; bdev->fn_table->submit_request(spdk_bdev_io_get_io_channel(bdev_io), bdev_io); if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) { break; } } } static inline void bdev_io_complete(void *ctx) { struct spdk_bdev_io *bdev_io = ctx; struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; uint64_t tsc, tsc_diff; if (spdk_unlikely(bdev_io->internal.in_submit_request || bdev_io->internal.io_submit_ch)) { /* * Send the completion to the thread that originally submitted the I/O, * which may not be the current thread in the case of QoS. */ if (bdev_io->internal.io_submit_ch) { bdev_io->internal.ch = bdev_io->internal.io_submit_ch; bdev_io->internal.io_submit_ch = NULL; } /* * Defer completion to avoid potential infinite recursion if the * user's completion callback issues a new I/O. */ spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), bdev_io_complete, bdev_io); return; } tsc = spdk_get_ticks(); tsc_diff = tsc - bdev_io->internal.submit_tsc; spdk_trace_record_tsc(tsc, TRACE_BDEV_IO_DONE, 0, 0, (uintptr_t)bdev_io, 0); TAILQ_REMOVE(&bdev_ch->io_submitted, bdev_io, internal.ch_link); if (bdev_io->internal.ch->histogram) { spdk_histogram_data_tally(bdev_io->internal.ch->histogram, tsc_diff); } if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { switch (bdev_io->type) { case SPDK_BDEV_IO_TYPE_READ: bdev_io->internal.ch->stat.bytes_read += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; bdev_io->internal.ch->stat.num_read_ops++; bdev_io->internal.ch->stat.read_latency_ticks += tsc_diff; break; case SPDK_BDEV_IO_TYPE_WRITE: bdev_io->internal.ch->stat.bytes_written += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; bdev_io->internal.ch->stat.num_write_ops++; bdev_io->internal.ch->stat.write_latency_ticks += tsc_diff; break; case SPDK_BDEV_IO_TYPE_UNMAP: bdev_io->internal.ch->stat.bytes_unmapped += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; bdev_io->internal.ch->stat.num_unmap_ops++; bdev_io->internal.ch->stat.unmap_latency_ticks += tsc_diff; break; case SPDK_BDEV_IO_TYPE_ZCOPY: /* Track the data in the start phase only */ if (bdev_io->u.bdev.zcopy.start) { if (bdev_io->u.bdev.zcopy.populate) { bdev_io->internal.ch->stat.bytes_read += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; bdev_io->internal.ch->stat.num_read_ops++; bdev_io->internal.ch->stat.read_latency_ticks += tsc_diff; } else { bdev_io->internal.ch->stat.bytes_written += bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen; bdev_io->internal.ch->stat.num_write_ops++; bdev_io->internal.ch->stat.write_latency_ticks += tsc_diff; } } break; default: break; } } #ifdef SPDK_CONFIG_VTUNE uint64_t now_tsc = spdk_get_ticks(); if (now_tsc > (bdev_io->internal.ch->start_tsc + bdev_io->internal.ch->interval_tsc)) { uint64_t data[5]; data[0] = bdev_io->internal.ch->stat.num_read_ops - bdev_io->internal.ch->prev_stat.num_read_ops; data[1] = bdev_io->internal.ch->stat.bytes_read - bdev_io->internal.ch->prev_stat.bytes_read; data[2] = bdev_io->internal.ch->stat.num_write_ops - bdev_io->internal.ch->prev_stat.num_write_ops; data[3] = bdev_io->internal.ch->stat.bytes_written - bdev_io->internal.ch->prev_stat.bytes_written; data[4] = bdev_io->bdev->fn_table->get_spin_time ? bdev_io->bdev->fn_table->get_spin_time(spdk_bdev_io_get_io_channel(bdev_io)) : 0; __itt_metadata_add(g_bdev_mgr.domain, __itt_null, bdev_io->internal.ch->handle, __itt_metadata_u64, 5, data); bdev_io->internal.ch->prev_stat = bdev_io->internal.ch->stat; bdev_io->internal.ch->start_tsc = now_tsc; } #endif assert(bdev_io->internal.cb != NULL); assert(spdk_get_thread() == spdk_bdev_io_get_thread(bdev_io)); bdev_io->internal.cb(bdev_io, bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS, bdev_io->internal.caller_ctx); } static void bdev_reset_complete(struct spdk_io_channel_iter *i, int status) { struct spdk_bdev_io *bdev_io = spdk_io_channel_iter_get_ctx(i); if (bdev_io->u.reset.ch_ref != NULL) { spdk_put_io_channel(bdev_io->u.reset.ch_ref); bdev_io->u.reset.ch_ref = NULL; } bdev_io_complete(bdev_io); } static void bdev_unfreeze_channel(struct spdk_io_channel_iter *i) { struct spdk_bdev_io *bdev_io = spdk_io_channel_iter_get_ctx(i); struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); struct spdk_bdev_io *queued_reset; ch->flags &= ~BDEV_CH_RESET_IN_PROGRESS; while (!TAILQ_EMPTY(&ch->queued_resets)) { queued_reset = TAILQ_FIRST(&ch->queued_resets); TAILQ_REMOVE(&ch->queued_resets, queued_reset, internal.link); spdk_bdev_io_complete(queued_reset, bdev_io->internal.status); } spdk_for_each_channel_continue(i, 0); } void spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status) { struct spdk_bdev *bdev = bdev_io->bdev; struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch; struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource; bdev_io->internal.status = status; if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_RESET)) { bool unlock_channels = false; if (status == SPDK_BDEV_IO_STATUS_NOMEM) { SPDK_ERRLOG("NOMEM returned for reset\n"); } pthread_mutex_lock(&bdev->internal.mutex); if (bdev_io == bdev->internal.reset_in_progress) { bdev->internal.reset_in_progress = NULL; unlock_channels = true; } pthread_mutex_unlock(&bdev->internal.mutex); if (unlock_channels) { spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_unfreeze_channel, bdev_io, bdev_reset_complete); return; } } else { _bdev_io_unset_bounce_buf(bdev_io); assert(bdev_ch->io_outstanding > 0); assert(shared_resource->io_outstanding > 0); bdev_ch->io_outstanding--; shared_resource->io_outstanding--; if (spdk_unlikely(status == SPDK_BDEV_IO_STATUS_NOMEM)) { TAILQ_INSERT_HEAD(&shared_resource->nomem_io, bdev_io, internal.link); /* * Wait for some of the outstanding I/O to complete before we * retry any of the nomem_io. Normally we will wait for * NOMEM_THRESHOLD_COUNT I/O to complete but for low queue * depth channels we will instead wait for half to complete. */ shared_resource->nomem_threshold = spdk_max((int64_t)shared_resource->io_outstanding / 2, (int64_t)shared_resource->io_outstanding - NOMEM_THRESHOLD_COUNT); return; } if (spdk_unlikely(!TAILQ_EMPTY(&shared_resource->nomem_io))) { bdev_ch_retry_io(bdev_ch); } } bdev_io_complete(bdev_io); } void spdk_bdev_io_complete_scsi_status(struct spdk_bdev_io *bdev_io, enum spdk_scsi_status sc, enum spdk_scsi_sense sk, uint8_t asc, uint8_t ascq) { if (sc == SPDK_SCSI_STATUS_GOOD) { bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; } else { bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SCSI_ERROR; bdev_io->internal.error.scsi.sc = sc; bdev_io->internal.error.scsi.sk = sk; bdev_io->internal.error.scsi.asc = asc; bdev_io->internal.error.scsi.ascq = ascq; } spdk_bdev_io_complete(bdev_io, bdev_io->internal.status); } void spdk_bdev_io_get_scsi_status(const struct spdk_bdev_io *bdev_io, int *sc, int *sk, int *asc, int *ascq) { assert(sc != NULL); assert(sk != NULL); assert(asc != NULL); assert(ascq != NULL); switch (bdev_io->internal.status) { case SPDK_BDEV_IO_STATUS_SUCCESS: *sc = SPDK_SCSI_STATUS_GOOD; *sk = SPDK_SCSI_SENSE_NO_SENSE; *asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE; *ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; case SPDK_BDEV_IO_STATUS_NVME_ERROR: spdk_scsi_nvme_translate(bdev_io, sc, sk, asc, ascq); break; case SPDK_BDEV_IO_STATUS_SCSI_ERROR: *sc = bdev_io->internal.error.scsi.sc; *sk = bdev_io->internal.error.scsi.sk; *asc = bdev_io->internal.error.scsi.asc; *ascq = bdev_io->internal.error.scsi.ascq; break; default: *sc = SPDK_SCSI_STATUS_CHECK_CONDITION; *sk = SPDK_SCSI_SENSE_ABORTED_COMMAND; *asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE; *ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE; break; } } void spdk_bdev_io_complete_nvme_status(struct spdk_bdev_io *bdev_io, uint32_t cdw0, int sct, int sc) { if (sct == SPDK_NVME_SCT_GENERIC && sc == SPDK_NVME_SC_SUCCESS) { bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; } else { bdev_io->internal.status = SPDK_BDEV_IO_STATUS_NVME_ERROR; } bdev_io->internal.error.nvme.cdw0 = cdw0; bdev_io->internal.error.nvme.sct = sct; bdev_io->internal.error.nvme.sc = sc; spdk_bdev_io_complete(bdev_io, bdev_io->internal.status); } void spdk_bdev_io_get_nvme_status(const struct spdk_bdev_io *bdev_io, uint32_t *cdw0, int *sct, int *sc) { assert(sct != NULL); assert(sc != NULL); assert(cdw0 != NULL); if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NVME_ERROR) { *sct = bdev_io->internal.error.nvme.sct; *sc = bdev_io->internal.error.nvme.sc; } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { *sct = SPDK_NVME_SCT_GENERIC; *sc = SPDK_NVME_SC_SUCCESS; } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_ABORTED) { *sct = SPDK_NVME_SCT_GENERIC; *sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; } else { *sct = SPDK_NVME_SCT_GENERIC; *sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; } *cdw0 = bdev_io->internal.error.nvme.cdw0; } void spdk_bdev_io_get_nvme_fused_status(const struct spdk_bdev_io *bdev_io, uint32_t *cdw0, int *first_sct, int *first_sc, int *second_sct, int *second_sc) { assert(first_sct != NULL); assert(first_sc != NULL); assert(second_sct != NULL); assert(second_sc != NULL); assert(cdw0 != NULL); if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NVME_ERROR) { if (bdev_io->internal.error.nvme.sct == SPDK_NVME_SCT_MEDIA_ERROR && bdev_io->internal.error.nvme.sc == SPDK_NVME_SC_COMPARE_FAILURE) { *first_sct = bdev_io->internal.error.nvme.sct; *first_sc = bdev_io->internal.error.nvme.sc; *second_sct = SPDK_NVME_SCT_GENERIC; *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; } else { *first_sct = SPDK_NVME_SCT_GENERIC; *first_sc = SPDK_NVME_SC_SUCCESS; *second_sct = bdev_io->internal.error.nvme.sct; *second_sc = bdev_io->internal.error.nvme.sc; } } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) { *first_sct = SPDK_NVME_SCT_GENERIC; *first_sc = SPDK_NVME_SC_SUCCESS; *second_sct = SPDK_NVME_SCT_GENERIC; *second_sc = SPDK_NVME_SC_SUCCESS; } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED) { *first_sct = SPDK_NVME_SCT_GENERIC; *first_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; *second_sct = SPDK_NVME_SCT_GENERIC; *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; } else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_MISCOMPARE) { *first_sct = SPDK_NVME_SCT_MEDIA_ERROR; *first_sc = SPDK_NVME_SC_COMPARE_FAILURE; *second_sct = SPDK_NVME_SCT_GENERIC; *second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED; } else { *first_sct = SPDK_NVME_SCT_GENERIC; *first_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; *second_sct = SPDK_NVME_SCT_GENERIC; *second_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; } *cdw0 = bdev_io->internal.error.nvme.cdw0; } struct spdk_thread * spdk_bdev_io_get_thread(struct spdk_bdev_io *bdev_io) { return spdk_io_channel_get_thread(bdev_io->internal.ch->channel); } struct spdk_io_channel * spdk_bdev_io_get_io_channel(struct spdk_bdev_io *bdev_io) { return bdev_io->internal.ch->channel; } static void bdev_qos_config_limit(struct spdk_bdev *bdev, uint64_t *limits) { uint64_t min_qos_set; int i; for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { if (limits[i] != SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { break; } } if (i == SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES) { SPDK_ERRLOG("Invalid rate limits set.\n"); return; } for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { continue; } if (bdev_qos_is_iops_rate_limit(i) == true) { min_qos_set = SPDK_BDEV_QOS_MIN_IOS_PER_SEC; } else { min_qos_set = SPDK_BDEV_QOS_MIN_BYTES_PER_SEC; } if (limits[i] == 0 || limits[i] % min_qos_set) { SPDK_ERRLOG("Assigned limit %" PRIu64 " on bdev %s is not multiple of %" PRIu64 "\n", limits[i], bdev->name, min_qos_set); SPDK_ERRLOG("Failed to enable QoS on this bdev %s\n", bdev->name); return; } } if (!bdev->internal.qos) { bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos)); if (!bdev->internal.qos) { SPDK_ERRLOG("Unable to allocate memory for QoS tracking\n"); return; } } for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { bdev->internal.qos->rate_limits[i].limit = limits[i]; SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Bdev:%s QoS type:%d set:%lu\n", bdev->name, i, limits[i]); } return; } static void bdev_qos_config(struct spdk_bdev *bdev) { struct spdk_conf_section *sp = NULL; const char *val = NULL; int i = 0, j = 0; uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES] = {}; bool config_qos = false; sp = spdk_conf_find_section(NULL, "QoS"); if (!sp) { return; } while (j < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES) { limits[j] = SPDK_BDEV_QOS_LIMIT_NOT_DEFINED; i = 0; while (true) { val = spdk_conf_section_get_nmval(sp, qos_conf_type[j], i, 0); if (!val) { break; } if (strcmp(bdev->name, val) != 0) { i++; continue; } val = spdk_conf_section_get_nmval(sp, qos_conf_type[j], i, 1); if (val) { if (bdev_qos_is_iops_rate_limit(j) == true) { limits[j] = strtoull(val, NULL, 10); } else { limits[j] = strtoull(val, NULL, 10) * 1024 * 1024; } config_qos = true; } break; } j++; } if (config_qos == true) { bdev_qos_config_limit(bdev, limits); } return; } static int bdev_init(struct spdk_bdev *bdev) { char *bdev_name; assert(bdev->module != NULL); if (!bdev->name) { SPDK_ERRLOG("Bdev name is NULL\n"); return -EINVAL; } if (!strlen(bdev->name)) { SPDK_ERRLOG("Bdev name must not be an empty string\n"); return -EINVAL; } if (spdk_bdev_get_by_name(bdev->name)) { SPDK_ERRLOG("Bdev name:%s already exists\n", bdev->name); return -EEXIST; } /* Users often register their own I/O devices using the bdev name. In * order to avoid conflicts, prepend bdev_. */ bdev_name = spdk_sprintf_alloc("bdev_%s", bdev->name); if (!bdev_name) { SPDK_ERRLOG("Unable to allocate memory for internal bdev name.\n"); return -ENOMEM; } bdev->internal.status = SPDK_BDEV_STATUS_READY; bdev->internal.measured_queue_depth = UINT64_MAX; bdev->internal.claim_module = NULL; bdev->internal.qd_poller = NULL; bdev->internal.qos = NULL; /* If the user didn't specify a uuid, generate one. */ if (spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid))) { spdk_uuid_generate(&bdev->uuid); } if (spdk_bdev_get_buf_align(bdev) > 1) { if (bdev->split_on_optimal_io_boundary) { bdev->optimal_io_boundary = spdk_min(bdev->optimal_io_boundary, SPDK_BDEV_LARGE_BUF_MAX_SIZE / bdev->blocklen); } else { bdev->split_on_optimal_io_boundary = true; bdev->optimal_io_boundary = SPDK_BDEV_LARGE_BUF_MAX_SIZE / bdev->blocklen; } } /* If the user didn't specify a write unit size, set it to one. */ if (bdev->write_unit_size == 0) { bdev->write_unit_size = 1; } /* Set ACWU value to 1 if bdev module did not set it (does not support it natively) */ if (bdev->acwu == 0) { bdev->acwu = 1; } TAILQ_INIT(&bdev->internal.open_descs); TAILQ_INIT(&bdev->internal.locked_ranges); TAILQ_INIT(&bdev->internal.pending_locked_ranges); TAILQ_INIT(&bdev->aliases); bdev->internal.reset_in_progress = NULL; bdev_qos_config(bdev); spdk_io_device_register(__bdev_to_io_dev(bdev), bdev_channel_create, bdev_channel_destroy, sizeof(struct spdk_bdev_channel), bdev_name); free(bdev_name); pthread_mutex_init(&bdev->internal.mutex, NULL); return 0; } static void bdev_destroy_cb(void *io_device) { int rc; struct spdk_bdev *bdev; spdk_bdev_unregister_cb cb_fn; void *cb_arg; bdev = __bdev_from_io_dev(io_device); cb_fn = bdev->internal.unregister_cb; cb_arg = bdev->internal.unregister_ctx; rc = bdev->fn_table->destruct(bdev->ctxt); if (rc < 0) { SPDK_ERRLOG("destruct failed\n"); } if (rc <= 0 && cb_fn != NULL) { cb_fn(cb_arg, rc); } } static void bdev_fini(struct spdk_bdev *bdev) { pthread_mutex_destroy(&bdev->internal.mutex); free(bdev->internal.qos); spdk_io_device_unregister(__bdev_to_io_dev(bdev), bdev_destroy_cb); } static void bdev_start(struct spdk_bdev *bdev) { SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Inserting bdev %s into list\n", bdev->name); TAILQ_INSERT_TAIL(&g_bdev_mgr.bdevs, bdev, internal.link); /* Examine configuration before initializing I/O */ bdev_examine(bdev); } int spdk_bdev_register(struct spdk_bdev *bdev) { int rc = bdev_init(bdev); if (rc == 0) { bdev_start(bdev); } spdk_notify_send("bdev_register", spdk_bdev_get_name(bdev)); return rc; } int spdk_vbdev_register(struct spdk_bdev *vbdev, struct spdk_bdev **base_bdevs, int base_bdev_count) { SPDK_ERRLOG("This function is deprecated. Use spdk_bdev_register() instead.\n"); return spdk_bdev_register(vbdev); } void spdk_bdev_destruct_done(struct spdk_bdev *bdev, int bdeverrno) { if (bdev->internal.unregister_cb != NULL) { bdev->internal.unregister_cb(bdev->internal.unregister_ctx, bdeverrno); } } static void _remove_notify(void *arg) { struct spdk_bdev_desc *desc = arg; pthread_mutex_lock(&desc->mutex); desc->refs--; if (!desc->closed) { pthread_mutex_unlock(&desc->mutex); if (desc->callback.open_with_ext) { desc->callback.event_fn(SPDK_BDEV_EVENT_REMOVE, desc->bdev, desc->callback.ctx); } else { desc->callback.remove_fn(desc->callback.ctx); } return; } else if (0 == desc->refs) { /* This descriptor was closed after this remove_notify message was sent. * spdk_bdev_close() could not free the descriptor since this message was * in flight, so we free it now using bdev_desc_free(). */ pthread_mutex_unlock(&desc->mutex); bdev_desc_free(desc); return; } pthread_mutex_unlock(&desc->mutex); } /* Must be called while holding bdev->internal.mutex. * returns: 0 - bdev removed and ready to be destructed. * -EBUSY - bdev can't be destructed yet. */ static int bdev_unregister_unsafe(struct spdk_bdev *bdev) { struct spdk_bdev_desc *desc, *tmp; int rc = 0; /* Notify each descriptor about hotremoval */ TAILQ_FOREACH_SAFE(desc, &bdev->internal.open_descs, link, tmp) { rc = -EBUSY; pthread_mutex_lock(&desc->mutex); /* * Defer invocation of the event_cb to a separate message that will * run later on its thread. This ensures this context unwinds and * we don't recursively unregister this bdev again if the event_cb * immediately closes its descriptor. */ desc->refs++; spdk_thread_send_msg(desc->thread, _remove_notify, desc); pthread_mutex_unlock(&desc->mutex); } /* If there are no descriptors, proceed removing the bdev */ if (rc == 0) { TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link); SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Removing bdev %s from list done\n", bdev->name); spdk_notify_send("bdev_unregister", spdk_bdev_get_name(bdev)); } return rc; } void spdk_bdev_unregister(struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, void *cb_arg) { struct spdk_thread *thread; int rc; SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Removing bdev %s from list\n", bdev->name); thread = spdk_get_thread(); if (!thread) { /* The user called this from a non-SPDK thread. */ if (cb_fn != NULL) { cb_fn(cb_arg, -ENOTSUP); } return; } pthread_mutex_lock(&g_bdev_mgr.mutex); pthread_mutex_lock(&bdev->internal.mutex); if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING) { pthread_mutex_unlock(&bdev->internal.mutex); pthread_mutex_unlock(&g_bdev_mgr.mutex); if (cb_fn) { cb_fn(cb_arg, -EBUSY); } return; } bdev->internal.status = SPDK_BDEV_STATUS_REMOVING; bdev->internal.unregister_cb = cb_fn; bdev->internal.unregister_ctx = cb_arg; /* Call under lock. */ rc = bdev_unregister_unsafe(bdev); pthread_mutex_unlock(&bdev->internal.mutex); pthread_mutex_unlock(&g_bdev_mgr.mutex); if (rc == 0) { bdev_fini(bdev); } } static void bdev_dummy_event_cb(void *remove_ctx) { SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Bdev remove event received with no remove callback specified"); } static int bdev_start_qos(struct spdk_bdev *bdev) { struct set_qos_limit_ctx *ctx; /* Enable QoS */ if (bdev->internal.qos && bdev->internal.qos->thread == NULL) { ctx = calloc(1, sizeof(*ctx)); if (ctx == NULL) { SPDK_ERRLOG("Failed to allocate memory for QoS context\n"); return -ENOMEM; } ctx->bdev = bdev; spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_enable_qos_msg, ctx, bdev_enable_qos_done); } return 0; } static int bdev_open(struct spdk_bdev *bdev, bool write, struct spdk_bdev_desc *desc) { struct spdk_thread *thread; int rc = 0; thread = spdk_get_thread(); if (!thread) { SPDK_ERRLOG("Cannot open bdev from non-SPDK thread.\n"); return -ENOTSUP; } SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Opening descriptor %p for bdev %s on thread %p\n", desc, bdev->name, spdk_get_thread()); desc->bdev = bdev; desc->thread = thread; desc->write = write; pthread_mutex_lock(&bdev->internal.mutex); if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING) { pthread_mutex_unlock(&bdev->internal.mutex); return -ENODEV; } if (write && bdev->internal.claim_module) { SPDK_ERRLOG("Could not open %s - %s module already claimed it\n", bdev->name, bdev->internal.claim_module->name); pthread_mutex_unlock(&bdev->internal.mutex); return -EPERM; } rc = bdev_start_qos(bdev); if (rc != 0) { SPDK_ERRLOG("Failed to start QoS on bdev %s\n", bdev->name); pthread_mutex_unlock(&bdev->internal.mutex); return rc; } TAILQ_INSERT_TAIL(&bdev->internal.open_descs, desc, link); pthread_mutex_unlock(&bdev->internal.mutex); return 0; } int spdk_bdev_open(struct spdk_bdev *bdev, bool write, spdk_bdev_remove_cb_t remove_cb, void *remove_ctx, struct spdk_bdev_desc **_desc) { struct spdk_bdev_desc *desc; int rc; desc = calloc(1, sizeof(*desc)); if (desc == NULL) { SPDK_ERRLOG("Failed to allocate memory for bdev descriptor\n"); return -ENOMEM; } if (remove_cb == NULL) { remove_cb = bdev_dummy_event_cb; } TAILQ_INIT(&desc->pending_media_events); TAILQ_INIT(&desc->free_media_events); desc->callback.open_with_ext = false; desc->callback.remove_fn = remove_cb; desc->callback.ctx = remove_ctx; pthread_mutex_init(&desc->mutex, NULL); pthread_mutex_lock(&g_bdev_mgr.mutex); rc = bdev_open(bdev, write, desc); if (rc != 0) { bdev_desc_free(desc); desc = NULL; } *_desc = desc; pthread_mutex_unlock(&g_bdev_mgr.mutex); return rc; } int spdk_bdev_open_ext(const char *bdev_name, bool write, spdk_bdev_event_cb_t event_cb, void *event_ctx, struct spdk_bdev_desc **_desc) { struct spdk_bdev_desc *desc; struct spdk_bdev *bdev; unsigned int event_id; int rc; if (event_cb == NULL) { SPDK_ERRLOG("Missing event callback function\n"); return -EINVAL; } pthread_mutex_lock(&g_bdev_mgr.mutex); bdev = spdk_bdev_get_by_name(bdev_name); if (bdev == NULL) { SPDK_ERRLOG("Failed to find bdev with name: %s\n", bdev_name); pthread_mutex_unlock(&g_bdev_mgr.mutex); return -EINVAL; } desc = calloc(1, sizeof(*desc)); if (desc == NULL) { SPDK_ERRLOG("Failed to allocate memory for bdev descriptor\n"); pthread_mutex_unlock(&g_bdev_mgr.mutex); return -ENOMEM; } TAILQ_INIT(&desc->pending_media_events); TAILQ_INIT(&desc->free_media_events); desc->callback.open_with_ext = true; desc->callback.event_fn = event_cb; desc->callback.ctx = event_ctx; pthread_mutex_init(&desc->mutex, NULL); if (bdev->media_events) { desc->media_events_buffer = calloc(MEDIA_EVENT_POOL_SIZE, sizeof(*desc->media_events_buffer)); if (desc->media_events_buffer == NULL) { SPDK_ERRLOG("Failed to initialize media event pool\n"); bdev_desc_free(desc); pthread_mutex_unlock(&g_bdev_mgr.mutex); return -ENOMEM; } for (event_id = 0; event_id < MEDIA_EVENT_POOL_SIZE; ++event_id) { TAILQ_INSERT_TAIL(&desc->free_media_events, &desc->media_events_buffer[event_id], tailq); } } rc = bdev_open(bdev, write, desc); if (rc != 0) { bdev_desc_free(desc); desc = NULL; } *_desc = desc; pthread_mutex_unlock(&g_bdev_mgr.mutex); return rc; } void spdk_bdev_close(struct spdk_bdev_desc *desc) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); int rc; SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Closing descriptor %p for bdev %s on thread %p\n", desc, bdev->name, spdk_get_thread()); assert(desc->thread == spdk_get_thread()); spdk_poller_unregister(&desc->io_timeout_poller); pthread_mutex_lock(&bdev->internal.mutex); pthread_mutex_lock(&desc->mutex); TAILQ_REMOVE(&bdev->internal.open_descs, desc, link); desc->closed = true; if (0 == desc->refs) { pthread_mutex_unlock(&desc->mutex); bdev_desc_free(desc); } else { pthread_mutex_unlock(&desc->mutex); } /* If no more descriptors, kill QoS channel */ if (bdev->internal.qos && TAILQ_EMPTY(&bdev->internal.open_descs)) { SPDK_DEBUGLOG(SPDK_LOG_BDEV, "Closed last descriptor for bdev %s on thread %p. Stopping QoS.\n", bdev->name, spdk_get_thread()); if (bdev_qos_destroy(bdev)) { /* There isn't anything we can do to recover here. Just let the * old QoS poller keep running. The QoS handling won't change * cores when the user allocates a new channel, but it won't break. */ SPDK_ERRLOG("Unable to shut down QoS poller. It will continue running on the current thread.\n"); } } spdk_bdev_set_qd_sampling_period(bdev, 0); if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING && TAILQ_EMPTY(&bdev->internal.open_descs)) { rc = bdev_unregister_unsafe(bdev); pthread_mutex_unlock(&bdev->internal.mutex); if (rc == 0) { bdev_fini(bdev); } } else { pthread_mutex_unlock(&bdev->internal.mutex); } } int spdk_bdev_module_claim_bdev(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc, struct spdk_bdev_module *module) { if (bdev->internal.claim_module != NULL) { SPDK_ERRLOG("bdev %s already claimed by module %s\n", bdev->name, bdev->internal.claim_module->name); return -EPERM; } if (desc && !desc->write) { desc->write = true; } bdev->internal.claim_module = module; return 0; } void spdk_bdev_module_release_bdev(struct spdk_bdev *bdev) { assert(bdev->internal.claim_module != NULL); bdev->internal.claim_module = NULL; } struct spdk_bdev * spdk_bdev_desc_get_bdev(struct spdk_bdev_desc *desc) { assert(desc != NULL); return desc->bdev; } void spdk_bdev_io_get_iovec(struct spdk_bdev_io *bdev_io, struct iovec **iovp, int *iovcntp) { struct iovec *iovs; int iovcnt; if (bdev_io == NULL) { return; } switch (bdev_io->type) { case SPDK_BDEV_IO_TYPE_READ: case SPDK_BDEV_IO_TYPE_WRITE: case SPDK_BDEV_IO_TYPE_ZCOPY: iovs = bdev_io->u.bdev.iovs; iovcnt = bdev_io->u.bdev.iovcnt; break; default: iovs = NULL; iovcnt = 0; break; } if (iovp) { *iovp = iovs; } if (iovcntp) { *iovcntp = iovcnt; } } void * spdk_bdev_io_get_md_buf(struct spdk_bdev_io *bdev_io) { if (bdev_io == NULL) { return NULL; } if (!spdk_bdev_is_md_separate(bdev_io->bdev)) { return NULL; } if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ || bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { return bdev_io->u.bdev.md_buf; } return NULL; } void * spdk_bdev_io_get_cb_arg(struct spdk_bdev_io *bdev_io) { if (bdev_io == NULL) { assert(false); return NULL; } return bdev_io->internal.caller_ctx; } void spdk_bdev_module_list_add(struct spdk_bdev_module *bdev_module) { if (spdk_bdev_module_list_find(bdev_module->name)) { SPDK_ERRLOG("ERROR: module '%s' already registered.\n", bdev_module->name); assert(false); } /* * Modules with examine callbacks must be initialized first, so they are * ready to handle examine callbacks from later modules that will * register physical bdevs. */ if (bdev_module->examine_config != NULL || bdev_module->examine_disk != NULL) { TAILQ_INSERT_HEAD(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq); } else { TAILQ_INSERT_TAIL(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq); } } struct spdk_bdev_module * spdk_bdev_module_list_find(const char *name) { struct spdk_bdev_module *bdev_module; TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) { if (strcmp(name, bdev_module->name) == 0) { break; } } return bdev_module; } static void bdev_write_zero_buffer_next(void *_bdev_io) { struct spdk_bdev_io *bdev_io = _bdev_io; uint64_t num_bytes, num_blocks; void *md_buf = NULL; int rc; num_bytes = spdk_min(_bdev_get_block_size_with_md(bdev_io->bdev) * bdev_io->u.bdev.split_remaining_num_blocks, ZERO_BUFFER_SIZE); num_blocks = num_bytes / _bdev_get_block_size_with_md(bdev_io->bdev); if (spdk_bdev_is_md_separate(bdev_io->bdev)) { md_buf = (char *)g_bdev_mgr.zero_buffer + spdk_bdev_get_block_size(bdev_io->bdev) * num_blocks; } rc = bdev_write_blocks_with_md(bdev_io->internal.desc, spdk_io_channel_from_ctx(bdev_io->internal.ch), g_bdev_mgr.zero_buffer, md_buf, bdev_io->u.bdev.split_current_offset_blocks, num_blocks, bdev_write_zero_buffer_done, bdev_io); if (rc == 0) { bdev_io->u.bdev.split_remaining_num_blocks -= num_blocks; bdev_io->u.bdev.split_current_offset_blocks += num_blocks; } else if (rc == -ENOMEM) { bdev_queue_io_wait_with_cb(bdev_io, bdev_write_zero_buffer_next); } else { bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx); } } static void bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) { struct spdk_bdev_io *parent_io = cb_arg; spdk_bdev_free_io(bdev_io); if (!success) { parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx); return; } if (parent_io->u.bdev.split_remaining_num_blocks == 0) { parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS; parent_io->internal.cb(parent_io, true, parent_io->internal.caller_ctx); return; } bdev_write_zero_buffer_next(parent_io); } static void bdev_set_qos_limit_done(struct set_qos_limit_ctx *ctx, int status) { pthread_mutex_lock(&ctx->bdev->internal.mutex); ctx->bdev->internal.qos_mod_in_progress = false; pthread_mutex_unlock(&ctx->bdev->internal.mutex); if (ctx->cb_fn) { ctx->cb_fn(ctx->cb_arg, status); } free(ctx); } static void bdev_disable_qos_done(void *cb_arg) { struct set_qos_limit_ctx *ctx = cb_arg; struct spdk_bdev *bdev = ctx->bdev; struct spdk_bdev_io *bdev_io; struct spdk_bdev_qos *qos; pthread_mutex_lock(&bdev->internal.mutex); qos = bdev->internal.qos; bdev->internal.qos = NULL; pthread_mutex_unlock(&bdev->internal.mutex); while (!TAILQ_EMPTY(&qos->queued)) { /* Send queued I/O back to their original thread for resubmission. */ bdev_io = TAILQ_FIRST(&qos->queued); TAILQ_REMOVE(&qos->queued, bdev_io, internal.link); if (bdev_io->internal.io_submit_ch) { /* * Channel was changed when sending it to the QoS thread - change it back * before sending it back to the original thread. */ bdev_io->internal.ch = bdev_io->internal.io_submit_ch; bdev_io->internal.io_submit_ch = NULL; } spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io), _bdev_io_submit, bdev_io); } if (qos->thread != NULL) { spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch)); spdk_poller_unregister(&qos->poller); } free(qos); bdev_set_qos_limit_done(ctx, 0); } static void bdev_disable_qos_msg_done(struct spdk_io_channel_iter *i, int status) { void *io_device = spdk_io_channel_iter_get_io_device(i); struct spdk_bdev *bdev = __bdev_from_io_dev(io_device); struct set_qos_limit_ctx *ctx = spdk_io_channel_iter_get_ctx(i); struct spdk_thread *thread; pthread_mutex_lock(&bdev->internal.mutex); thread = bdev->internal.qos->thread; pthread_mutex_unlock(&bdev->internal.mutex); if (thread != NULL) { spdk_thread_send_msg(thread, bdev_disable_qos_done, ctx); } else { bdev_disable_qos_done(ctx); } } static void bdev_disable_qos_msg(struct spdk_io_channel_iter *i) { struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); struct spdk_bdev_channel *bdev_ch = spdk_io_channel_get_ctx(ch); bdev_ch->flags &= ~BDEV_CH_QOS_ENABLED; spdk_for_each_channel_continue(i, 0); } static void bdev_update_qos_rate_limit_msg(void *cb_arg) { struct set_qos_limit_ctx *ctx = cb_arg; struct spdk_bdev *bdev = ctx->bdev; pthread_mutex_lock(&bdev->internal.mutex); bdev_qos_update_max_quota_per_timeslice(bdev->internal.qos); pthread_mutex_unlock(&bdev->internal.mutex); bdev_set_qos_limit_done(ctx, 0); } static void bdev_enable_qos_msg(struct spdk_io_channel_iter *i) { void *io_device = spdk_io_channel_iter_get_io_device(i); struct spdk_bdev *bdev = __bdev_from_io_dev(io_device); struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); struct spdk_bdev_channel *bdev_ch = spdk_io_channel_get_ctx(ch); pthread_mutex_lock(&bdev->internal.mutex); bdev_enable_qos(bdev, bdev_ch); pthread_mutex_unlock(&bdev->internal.mutex); spdk_for_each_channel_continue(i, 0); } static void bdev_enable_qos_done(struct spdk_io_channel_iter *i, int status) { struct set_qos_limit_ctx *ctx = spdk_io_channel_iter_get_ctx(i); bdev_set_qos_limit_done(ctx, status); } static void bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits) { int i; assert(bdev->internal.qos != NULL); for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { if (limits[i] != SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { bdev->internal.qos->rate_limits[i].limit = limits[i]; if (limits[i] == 0) { bdev->internal.qos->rate_limits[i].limit = SPDK_BDEV_QOS_LIMIT_NOT_DEFINED; } } } } void spdk_bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits, void (*cb_fn)(void *cb_arg, int status), void *cb_arg) { struct set_qos_limit_ctx *ctx; uint32_t limit_set_complement; uint64_t min_limit_per_sec; int i; bool disable_rate_limit = true; for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) { continue; } if (limits[i] > 0) { disable_rate_limit = false; } if (bdev_qos_is_iops_rate_limit(i) == true) { min_limit_per_sec = SPDK_BDEV_QOS_MIN_IOS_PER_SEC; } else { /* Change from megabyte to byte rate limit */ limits[i] = limits[i] * 1024 * 1024; min_limit_per_sec = SPDK_BDEV_QOS_MIN_BYTES_PER_SEC; } limit_set_complement = limits[i] % min_limit_per_sec; if (limit_set_complement) { SPDK_ERRLOG("Requested rate limit %" PRIu64 " is not a multiple of %" PRIu64 "\n", limits[i], min_limit_per_sec); limits[i] += min_limit_per_sec - limit_set_complement; SPDK_ERRLOG("Round up the rate limit to %" PRIu64 "\n", limits[i]); } } ctx = calloc(1, sizeof(*ctx)); if (ctx == NULL) { cb_fn(cb_arg, -ENOMEM); return; } ctx->cb_fn = cb_fn; ctx->cb_arg = cb_arg; ctx->bdev = bdev; pthread_mutex_lock(&bdev->internal.mutex); if (bdev->internal.qos_mod_in_progress) { pthread_mutex_unlock(&bdev->internal.mutex); free(ctx); cb_fn(cb_arg, -EAGAIN); return; } bdev->internal.qos_mod_in_progress = true; if (disable_rate_limit == true && bdev->internal.qos) { for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) { if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED && (bdev->internal.qos->rate_limits[i].limit > 0 && bdev->internal.qos->rate_limits[i].limit != SPDK_BDEV_QOS_LIMIT_NOT_DEFINED)) { disable_rate_limit = false; break; } } } if (disable_rate_limit == false) { if (bdev->internal.qos == NULL) { bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos)); if (!bdev->internal.qos) { pthread_mutex_unlock(&bdev->internal.mutex); SPDK_ERRLOG("Unable to allocate memory for QoS tracking\n"); bdev_set_qos_limit_done(ctx, -ENOMEM); return; } } if (bdev->internal.qos->thread == NULL) { /* Enabling */ bdev_set_qos_rate_limits(bdev, limits); spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_enable_qos_msg, ctx, bdev_enable_qos_done); } else { /* Updating */ bdev_set_qos_rate_limits(bdev, limits); spdk_thread_send_msg(bdev->internal.qos->thread, bdev_update_qos_rate_limit_msg, ctx); } } else { if (bdev->internal.qos != NULL) { bdev_set_qos_rate_limits(bdev, limits); /* Disabling */ spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_disable_qos_msg, ctx, bdev_disable_qos_msg_done); } else { pthread_mutex_unlock(&bdev->internal.mutex); bdev_set_qos_limit_done(ctx, 0); return; } } pthread_mutex_unlock(&bdev->internal.mutex); } struct spdk_bdev_histogram_ctx { spdk_bdev_histogram_status_cb cb_fn; void *cb_arg; struct spdk_bdev *bdev; int status; }; static void bdev_histogram_disable_channel_cb(struct spdk_io_channel_iter *i, int status) { struct spdk_bdev_histogram_ctx *ctx = spdk_io_channel_iter_get_ctx(i); pthread_mutex_lock(&ctx->bdev->internal.mutex); ctx->bdev->internal.histogram_in_progress = false; pthread_mutex_unlock(&ctx->bdev->internal.mutex); ctx->cb_fn(ctx->cb_arg, ctx->status); free(ctx); } static void bdev_histogram_disable_channel(struct spdk_io_channel_iter *i) { struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); if (ch->histogram != NULL) { spdk_histogram_data_free(ch->histogram); ch->histogram = NULL; } spdk_for_each_channel_continue(i, 0); } static void bdev_histogram_enable_channel_cb(struct spdk_io_channel_iter *i, int status) { struct spdk_bdev_histogram_ctx *ctx = spdk_io_channel_iter_get_ctx(i); if (status != 0) { ctx->status = status; ctx->bdev->internal.histogram_enabled = false; spdk_for_each_channel(__bdev_to_io_dev(ctx->bdev), bdev_histogram_disable_channel, ctx, bdev_histogram_disable_channel_cb); } else { pthread_mutex_lock(&ctx->bdev->internal.mutex); ctx->bdev->internal.histogram_in_progress = false; pthread_mutex_unlock(&ctx->bdev->internal.mutex); ctx->cb_fn(ctx->cb_arg, ctx->status); free(ctx); } } static void bdev_histogram_enable_channel(struct spdk_io_channel_iter *i) { struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); int status = 0; if (ch->histogram == NULL) { ch->histogram = spdk_histogram_data_alloc(); if (ch->histogram == NULL) { status = -ENOMEM; } } spdk_for_each_channel_continue(i, status); } void spdk_bdev_histogram_enable(struct spdk_bdev *bdev, spdk_bdev_histogram_status_cb cb_fn, void *cb_arg, bool enable) { struct spdk_bdev_histogram_ctx *ctx; ctx = calloc(1, sizeof(struct spdk_bdev_histogram_ctx)); if (ctx == NULL) { cb_fn(cb_arg, -ENOMEM); return; } ctx->bdev = bdev; ctx->status = 0; ctx->cb_fn = cb_fn; ctx->cb_arg = cb_arg; pthread_mutex_lock(&bdev->internal.mutex); if (bdev->internal.histogram_in_progress) { pthread_mutex_unlock(&bdev->internal.mutex); free(ctx); cb_fn(cb_arg, -EAGAIN); return; } bdev->internal.histogram_in_progress = true; pthread_mutex_unlock(&bdev->internal.mutex); bdev->internal.histogram_enabled = enable; if (enable) { /* Allocate histogram for each channel */ spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_histogram_enable_channel, ctx, bdev_histogram_enable_channel_cb); } else { spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_histogram_disable_channel, ctx, bdev_histogram_disable_channel_cb); } } struct spdk_bdev_histogram_data_ctx { spdk_bdev_histogram_data_cb cb_fn; void *cb_arg; struct spdk_bdev *bdev; /** merged histogram data from all channels */ struct spdk_histogram_data *histogram; }; static void bdev_histogram_get_channel_cb(struct spdk_io_channel_iter *i, int status) { struct spdk_bdev_histogram_data_ctx *ctx = spdk_io_channel_iter_get_ctx(i); ctx->cb_fn(ctx->cb_arg, status, ctx->histogram); free(ctx); } static void bdev_histogram_get_channel(struct spdk_io_channel_iter *i) { struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); struct spdk_bdev_histogram_data_ctx *ctx = spdk_io_channel_iter_get_ctx(i); int status = 0; if (ch->histogram == NULL) { status = -EFAULT; } else { spdk_histogram_data_merge(ctx->histogram, ch->histogram); } spdk_for_each_channel_continue(i, status); } void spdk_bdev_histogram_get(struct spdk_bdev *bdev, struct spdk_histogram_data *histogram, spdk_bdev_histogram_data_cb cb_fn, void *cb_arg) { struct spdk_bdev_histogram_data_ctx *ctx; ctx = calloc(1, sizeof(struct spdk_bdev_histogram_data_ctx)); if (ctx == NULL) { cb_fn(cb_arg, -ENOMEM, NULL); return; } ctx->bdev = bdev; ctx->cb_fn = cb_fn; ctx->cb_arg = cb_arg; ctx->histogram = histogram; spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_histogram_get_channel, ctx, bdev_histogram_get_channel_cb); } size_t spdk_bdev_get_media_events(struct spdk_bdev_desc *desc, struct spdk_bdev_media_event *events, size_t max_events) { struct media_event_entry *entry; size_t num_events = 0; for (; num_events < max_events; ++num_events) { entry = TAILQ_FIRST(&desc->pending_media_events); if (entry == NULL) { break; } events[num_events] = entry->event; TAILQ_REMOVE(&desc->pending_media_events, entry, tailq); TAILQ_INSERT_TAIL(&desc->free_media_events, entry, tailq); } return num_events; } int spdk_bdev_push_media_events(struct spdk_bdev *bdev, const struct spdk_bdev_media_event *events, size_t num_events) { struct spdk_bdev_desc *desc; struct media_event_entry *entry; size_t event_id; int rc = 0; assert(bdev->media_events); pthread_mutex_lock(&bdev->internal.mutex); TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { if (desc->write) { break; } } if (desc == NULL || desc->media_events_buffer == NULL) { rc = -ENODEV; goto out; } for (event_id = 0; event_id < num_events; ++event_id) { entry = TAILQ_FIRST(&desc->free_media_events); if (entry == NULL) { break; } TAILQ_REMOVE(&desc->free_media_events, entry, tailq); TAILQ_INSERT_TAIL(&desc->pending_media_events, entry, tailq); entry->event = events[event_id]; } rc = event_id; out: pthread_mutex_unlock(&bdev->internal.mutex); return rc; } void spdk_bdev_notify_media_management(struct spdk_bdev *bdev) { struct spdk_bdev_desc *desc; pthread_mutex_lock(&bdev->internal.mutex); TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) { if (!TAILQ_EMPTY(&desc->pending_media_events)) { desc->callback.event_fn(SPDK_BDEV_EVENT_MEDIA_MANAGEMENT, bdev, desc->callback.ctx); } } pthread_mutex_unlock(&bdev->internal.mutex); } struct locked_lba_range_ctx { struct lba_range range; struct spdk_bdev *bdev; struct lba_range *current_range; struct lba_range *owner_range; struct spdk_poller *poller; lock_range_cb cb_fn; void *cb_arg; }; static void bdev_lock_error_cleanup_cb(struct spdk_io_channel_iter *i, int status) { struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); ctx->cb_fn(ctx->cb_arg, -ENOMEM); free(ctx); } static void bdev_unlock_lba_range_get_channel(struct spdk_io_channel_iter *i); static void bdev_lock_lba_range_cb(struct spdk_io_channel_iter *i, int status) { struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); struct spdk_bdev *bdev = ctx->bdev; if (status == -ENOMEM) { /* One of the channels could not allocate a range object. * So we have to go back and clean up any ranges that were * allocated successfully before we return error status to * the caller. We can reuse the unlock function to do that * clean up. */ spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_unlock_lba_range_get_channel, ctx, bdev_lock_error_cleanup_cb); return; } /* All channels have locked this range and no I/O overlapping the range * are outstanding! Set the owner_ch for the range object for the * locking channel, so that this channel will know that it is allowed * to write to this range. */ ctx->owner_range->owner_ch = ctx->range.owner_ch; ctx->cb_fn(ctx->cb_arg, status); /* Don't free the ctx here. Its range is in the bdev's global list of * locked ranges still, and will be removed and freed when this range * is later unlocked. */ } static int bdev_lock_lba_range_check_io(void *_i) { struct spdk_io_channel_iter *i = _i; struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); struct lba_range *range = ctx->current_range; struct spdk_bdev_io *bdev_io; spdk_poller_unregister(&ctx->poller); /* The range is now in the locked_ranges, so no new IO can be submitted to this * range. But we need to wait until any outstanding IO overlapping with this range * are completed. */ TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) { if (bdev_io_range_is_locked(bdev_io, range)) { ctx->poller = SPDK_POLLER_REGISTER(bdev_lock_lba_range_check_io, i, 100); return SPDK_POLLER_BUSY; } } spdk_for_each_channel_continue(i, 0); return SPDK_POLLER_BUSY; } static void bdev_lock_lba_range_get_channel(struct spdk_io_channel_iter *i) { struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); struct lba_range *range; TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { if (range->length == ctx->range.length && range->offset == ctx->range.offset && range->locked_ctx == ctx->range.locked_ctx) { /* This range already exists on this channel, so don't add * it again. This can happen when a new channel is created * while the for_each_channel operation is in progress. * Do not check for outstanding I/O in that case, since the * range was locked before any I/O could be submitted to the * new channel. */ spdk_for_each_channel_continue(i, 0); return; } } range = calloc(1, sizeof(*range)); if (range == NULL) { spdk_for_each_channel_continue(i, -ENOMEM); return; } range->length = ctx->range.length; range->offset = ctx->range.offset; range->locked_ctx = ctx->range.locked_ctx; ctx->current_range = range; if (ctx->range.owner_ch == ch) { /* This is the range object for the channel that will hold * the lock. Store it in the ctx object so that we can easily * set its owner_ch after the lock is finally acquired. */ ctx->owner_range = range; } TAILQ_INSERT_TAIL(&ch->locked_ranges, range, tailq); bdev_lock_lba_range_check_io(i); } static void bdev_lock_lba_range_ctx(struct spdk_bdev *bdev, struct locked_lba_range_ctx *ctx) { assert(spdk_get_thread() == ctx->range.owner_ch->channel->thread); /* We will add a copy of this range to each channel now. */ spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_lock_lba_range_get_channel, ctx, bdev_lock_lba_range_cb); } static bool bdev_lba_range_overlaps_tailq(struct lba_range *range, lba_range_tailq_t *tailq) { struct lba_range *r; TAILQ_FOREACH(r, tailq, tailq) { if (bdev_lba_range_overlapped(range, r)) { return true; } } return false; } static int bdev_lock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, uint64_t offset, uint64_t length, lock_range_cb cb_fn, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); struct locked_lba_range_ctx *ctx; if (cb_arg == NULL) { SPDK_ERRLOG("cb_arg must not be NULL\n"); return -EINVAL; } ctx = calloc(1, sizeof(*ctx)); if (ctx == NULL) { return -ENOMEM; } ctx->range.offset = offset; ctx->range.length = length; ctx->range.owner_ch = ch; ctx->range.locked_ctx = cb_arg; ctx->bdev = bdev; ctx->cb_fn = cb_fn; ctx->cb_arg = cb_arg; pthread_mutex_lock(&bdev->internal.mutex); if (bdev_lba_range_overlaps_tailq(&ctx->range, &bdev->internal.locked_ranges)) { /* There is an active lock overlapping with this range. * Put it on the pending list until this range no * longer overlaps with another. */ TAILQ_INSERT_TAIL(&bdev->internal.pending_locked_ranges, &ctx->range, tailq); } else { TAILQ_INSERT_TAIL(&bdev->internal.locked_ranges, &ctx->range, tailq); bdev_lock_lba_range_ctx(bdev, ctx); } pthread_mutex_unlock(&bdev->internal.mutex); return 0; } static void bdev_lock_lba_range_ctx_msg(void *_ctx) { struct locked_lba_range_ctx *ctx = _ctx; bdev_lock_lba_range_ctx(ctx->bdev, ctx); } static void bdev_unlock_lba_range_cb(struct spdk_io_channel_iter *i, int status) { struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); struct locked_lba_range_ctx *pending_ctx; struct spdk_bdev_channel *ch = ctx->range.owner_ch; struct spdk_bdev *bdev = ch->bdev; struct lba_range *range, *tmp; pthread_mutex_lock(&bdev->internal.mutex); /* Check if there are any pending locked ranges that overlap with this range * that was just unlocked. If there are, check that it doesn't overlap with any * other locked ranges before calling bdev_lock_lba_range_ctx which will start * the lock process. */ TAILQ_FOREACH_SAFE(range, &bdev->internal.pending_locked_ranges, tailq, tmp) { if (bdev_lba_range_overlapped(range, &ctx->range) && !bdev_lba_range_overlaps_tailq(range, &bdev->internal.locked_ranges)) { TAILQ_REMOVE(&bdev->internal.pending_locked_ranges, range, tailq); pending_ctx = SPDK_CONTAINEROF(range, struct locked_lba_range_ctx, range); TAILQ_INSERT_TAIL(&bdev->internal.locked_ranges, range, tailq); spdk_thread_send_msg(pending_ctx->range.owner_ch->channel->thread, bdev_lock_lba_range_ctx_msg, pending_ctx); } } pthread_mutex_unlock(&bdev->internal.mutex); ctx->cb_fn(ctx->cb_arg, status); free(ctx); } static void bdev_unlock_lba_range_get_channel(struct spdk_io_channel_iter *i) { struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i); struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); struct locked_lba_range_ctx *ctx = spdk_io_channel_iter_get_ctx(i); TAILQ_HEAD(, spdk_bdev_io) io_locked; struct spdk_bdev_io *bdev_io; struct lba_range *range; TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { if (ctx->range.offset == range->offset && ctx->range.length == range->length && ctx->range.locked_ctx == range->locked_ctx) { TAILQ_REMOVE(&ch->locked_ranges, range, tailq); free(range); break; } } /* Note: we should almost always be able to assert that the range specified * was found. But there are some very rare corner cases where a new channel * gets created simultaneously with a range unlock, where this function * would execute on that new channel and wouldn't have the range. * We also use this to clean up range allocations when a later allocation * fails in the locking path. * So we can't actually assert() here. */ /* Swap the locked IO into a temporary list, and then try to submit them again. * We could hyper-optimize this to only resubmit locked I/O that overlap * with the range that was just unlocked, but this isn't a performance path so * we go for simplicity here. */ TAILQ_INIT(&io_locked); TAILQ_SWAP(&ch->io_locked, &io_locked, spdk_bdev_io, internal.ch_link); while (!TAILQ_EMPTY(&io_locked)) { bdev_io = TAILQ_FIRST(&io_locked); TAILQ_REMOVE(&io_locked, bdev_io, internal.ch_link); bdev_io_submit(bdev_io); } spdk_for_each_channel_continue(i, 0); } static int bdev_unlock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch, uint64_t offset, uint64_t length, lock_range_cb cb_fn, void *cb_arg) { struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc); struct spdk_bdev_channel *ch = spdk_io_channel_get_ctx(_ch); struct locked_lba_range_ctx *ctx; struct lba_range *range; bool range_found = false; /* Let's make sure the specified channel actually has a lock on * the specified range. Note that the range must match exactly. */ TAILQ_FOREACH(range, &ch->locked_ranges, tailq) { if (range->offset == offset && range->length == length && range->owner_ch == ch && range->locked_ctx == cb_arg) { range_found = true; break; } } if (!range_found) { return -EINVAL; } pthread_mutex_lock(&bdev->internal.mutex); /* We confirmed that this channel has locked the specified range. To * start the unlock the process, we find the range in the bdev's locked_ranges * and remove it. This ensures new channels don't inherit the locked range. * Then we will send a message to each channel (including the one specified * here) to remove the range from its per-channel list. */ TAILQ_FOREACH(range, &bdev->internal.locked_ranges, tailq) { if (range->offset == offset && range->length == length && range->locked_ctx == cb_arg) { break; } } if (range == NULL) { assert(false); pthread_mutex_unlock(&bdev->internal.mutex); return -EINVAL; } TAILQ_REMOVE(&bdev->internal.locked_ranges, range, tailq); ctx = SPDK_CONTAINEROF(range, struct locked_lba_range_ctx, range); pthread_mutex_unlock(&bdev->internal.mutex); ctx->cb_fn = cb_fn; ctx->cb_arg = cb_arg; spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_unlock_lba_range_get_channel, ctx, bdev_unlock_lba_range_cb); return 0; } SPDK_LOG_REGISTER_COMPONENT("bdev", SPDK_LOG_BDEV) SPDK_TRACE_REGISTER_FN(bdev_trace, "bdev", TRACE_GROUP_BDEV) { spdk_trace_register_owner(OWNER_BDEV, 'b'); spdk_trace_register_object(OBJECT_BDEV_IO, 'i'); spdk_trace_register_description("BDEV_IO_START", TRACE_BDEV_IO_START, OWNER_BDEV, OBJECT_BDEV_IO, 1, 0, "type: "); spdk_trace_register_description("BDEV_IO_DONE", TRACE_BDEV_IO_DONE, OWNER_BDEV, OBJECT_BDEV_IO, 0, 0, ""); }