/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "nvme_internal.h" #include "spdk/nvme_ocssd.h" #define NVME_CMD_DPTR_STR_SIZE 256 static int nvme_qpair_resubmit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req); struct nvme_string { uint16_t value; const char *str; }; static const struct nvme_string admin_opcode[] = { { SPDK_NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" }, { SPDK_NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" }, { SPDK_NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" }, { SPDK_NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" }, { SPDK_NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" }, { SPDK_NVME_OPC_IDENTIFY, "IDENTIFY" }, { SPDK_NVME_OPC_ABORT, "ABORT" }, { SPDK_NVME_OPC_SET_FEATURES, "SET FEATURES" }, { SPDK_NVME_OPC_GET_FEATURES, "GET FEATURES" }, { SPDK_NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" }, { SPDK_NVME_OPC_NS_MANAGEMENT, "NAMESPACE MANAGEMENT" }, { SPDK_NVME_OPC_FIRMWARE_COMMIT, "FIRMWARE COMMIT" }, { SPDK_NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" }, { SPDK_NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" }, { SPDK_NVME_OPC_NS_ATTACHMENT, "NAMESPACE ATTACHMENT" }, { SPDK_NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" }, { SPDK_NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" }, { SPDK_NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" }, { SPDK_NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" }, { SPDK_NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" }, { SPDK_NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" }, { SPDK_NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" }, { SPDK_NVME_OPC_FABRIC, "FABRIC" }, { SPDK_NVME_OPC_FORMAT_NVM, "FORMAT NVM" }, { SPDK_NVME_OPC_SECURITY_SEND, "SECURITY SEND" }, { SPDK_NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" }, { SPDK_NVME_OPC_SANITIZE, "SANITIZE" }, { SPDK_NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" }, { SPDK_OCSSD_OPC_GEOMETRY, "OCSSD / GEOMETRY" }, { 0xFFFF, "ADMIN COMMAND" } }; static const struct nvme_string fabric_opcode[] = { { SPDK_NVMF_FABRIC_COMMAND_PROPERTY_SET, "PROPERTY SET" }, { SPDK_NVMF_FABRIC_COMMAND_CONNECT, "CONNECT" }, { SPDK_NVMF_FABRIC_COMMAND_PROPERTY_GET, "PROPERTY GET" }, { SPDK_NVMF_FABRIC_COMMAND_AUTHENTICATION_SEND, "AUTHENTICATION SEND" }, { SPDK_NVMF_FABRIC_COMMAND_AUTHENTICATION_RECV, "AUTHENTICATION RECV" }, { 0xFFFF, "RESERVED / VENDOR SPECIFIC" } }; static const struct nvme_string feat_opcode[] = { { SPDK_NVME_FEAT_ARBITRATION, "ARBITRATION" }, { SPDK_NVME_FEAT_POWER_MANAGEMENT, "POWER MANAGEMENT" }, { SPDK_NVME_FEAT_LBA_RANGE_TYPE, "LBA RANGE TYPE" }, { SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD, "TEMPERATURE THRESHOLD" }, { SPDK_NVME_FEAT_ERROR_RECOVERY, "ERROR_RECOVERY" }, { SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE, "VOLATILE WRITE CACHE" }, { SPDK_NVME_FEAT_NUMBER_OF_QUEUES, "NUMBER OF QUEUES" }, { SPDK_NVME_FEAT_INTERRUPT_COALESCING, "INTERRUPT COALESCING" }, { SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION, "INTERRUPT VECTOR CONFIGURATION" }, { SPDK_NVME_FEAT_WRITE_ATOMICITY, "WRITE ATOMICITY" }, { SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION, "ASYNC EVENT CONFIGURATION" }, { SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION, "AUTONOMOUS POWER STATE TRANSITION" }, { SPDK_NVME_FEAT_HOST_MEM_BUFFER, "HOST MEM BUFFER" }, { SPDK_NVME_FEAT_TIMESTAMP, "TIMESTAMP" }, { SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, "KEEP ALIVE TIMER" }, { SPDK_NVME_FEAT_HOST_CONTROLLED_THERMAL_MANAGEMENT, "HOST CONTROLLED THERMAL MANAGEMENT" }, { SPDK_NVME_FEAT_NON_OPERATIONAL_POWER_STATE_CONFIG, "NON OPERATIONAL POWER STATE CONFIG" }, { SPDK_NVME_FEAT_SOFTWARE_PROGRESS_MARKER, "SOFTWARE PROGRESS MARKER" }, { SPDK_NVME_FEAT_HOST_IDENTIFIER, "HOST IDENTIFIER" }, { SPDK_NVME_FEAT_HOST_RESERVE_MASK, "HOST RESERVE MASK" }, { SPDK_NVME_FEAT_HOST_RESERVE_PERSIST, "HOST RESERVE PERSIST" }, { 0xFFFF, "RESERVED" } }; static const struct nvme_string io_opcode[] = { { SPDK_NVME_OPC_FLUSH, "FLUSH" }, { SPDK_NVME_OPC_WRITE, "WRITE" }, { SPDK_NVME_OPC_READ, "READ" }, { SPDK_NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" }, { SPDK_NVME_OPC_COMPARE, "COMPARE" }, { SPDK_NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" }, { SPDK_NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" }, { SPDK_NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" }, { SPDK_NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" }, { SPDK_NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" }, { SPDK_NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" }, { SPDK_OCSSD_OPC_VECTOR_RESET, "OCSSD / VECTOR RESET" }, { SPDK_OCSSD_OPC_VECTOR_WRITE, "OCSSD / VECTOR WRITE" }, { SPDK_OCSSD_OPC_VECTOR_READ, "OCSSD / VECTOR READ" }, { SPDK_OCSSD_OPC_VECTOR_COPY, "OCSSD / VECTOR COPY" }, { 0xFFFF, "IO COMMAND" } }; static const struct nvme_string sgl_type[] = { { SPDK_NVME_SGL_TYPE_DATA_BLOCK, "DATA BLOCK" }, { SPDK_NVME_SGL_TYPE_BIT_BUCKET, "BIT BUCKET" }, { SPDK_NVME_SGL_TYPE_SEGMENT, "SEGMENT" }, { SPDK_NVME_SGL_TYPE_LAST_SEGMENT, "LAST SEGMENT" }, { SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK, "TRANSPORT DATA BLOCK" }, { SPDK_NVME_SGL_TYPE_VENDOR_SPECIFIC, "VENDOR SPECIFIC" }, { 0xFFFF, "RESERVED" } }; static const struct nvme_string sgl_subtype[] = { { SPDK_NVME_SGL_SUBTYPE_ADDRESS, "ADDRESS" }, { SPDK_NVME_SGL_SUBTYPE_OFFSET, "OFFSET" }, { SPDK_NVME_SGL_SUBTYPE_TRANSPORT, "TRANSPORT" }, { SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY, "INVALIDATE KEY" }, { 0xFFFF, "RESERVED" } }; static const char * nvme_get_string(const struct nvme_string *strings, uint16_t value) { const struct nvme_string *entry; entry = strings; while (entry->value != 0xFFFF) { if (entry->value == value) { return entry->str; } entry++; } return entry->str; } static void nvme_get_sgl_unkeyed(char *buf, size_t size, struct spdk_nvme_cmd *cmd) { struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1; snprintf(buf, size, " len:0x%x", sgl->unkeyed.length); } static void nvme_get_sgl_keyed(char *buf, size_t size, struct spdk_nvme_cmd *cmd) { struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1; snprintf(buf, size, " len:0x%x key:0x%x", sgl->keyed.length, sgl->keyed.key); } static void nvme_get_sgl(char *buf, size_t size, struct spdk_nvme_cmd *cmd) { struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1; int c; c = snprintf(buf, size, "SGL %s %s 0x%" PRIx64, nvme_get_string(sgl_type, sgl->generic.type), nvme_get_string(sgl_subtype, sgl->generic.subtype), sgl->address); assert(c >= 0 && (size_t)c < size); if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK) { nvme_get_sgl_unkeyed(buf + c, size - c, cmd); } if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK) { nvme_get_sgl_keyed(buf + c, size - c, cmd); } } static void nvme_get_prp(char *buf, size_t size, struct spdk_nvme_cmd *cmd) { snprintf(buf, size, "PRP1 0x%" PRIx64 " PRP2 0x%" PRIx64, cmd->dptr.prp.prp1, cmd->dptr.prp.prp2); } static void nvme_get_dptr(char *buf, size_t size, struct spdk_nvme_cmd *cmd) { if (spdk_nvme_opc_get_data_transfer(cmd->opc) != SPDK_NVME_DATA_NONE) { switch (cmd->psdt) { case SPDK_NVME_PSDT_PRP: nvme_get_prp(buf, size, cmd); break; case SPDK_NVME_PSDT_SGL_MPTR_CONTIG: case SPDK_NVME_PSDT_SGL_MPTR_SGL: nvme_get_sgl(buf, size, cmd); break; default: ; } } } static void nvme_admin_qpair_print_command(uint16_t qid, struct spdk_nvme_cmd *cmd) { struct spdk_nvmf_capsule_cmd *fcmd = (void *)cmd; char dptr[NVME_CMD_DPTR_STR_SIZE] = {'\0'}; assert(cmd != NULL); nvme_get_dptr(dptr, sizeof(dptr), cmd); switch ((int)cmd->opc) { case SPDK_NVME_OPC_SET_FEATURES: case SPDK_NVME_OPC_GET_FEATURES: SPDK_NOTICELOG("%s %s cid:%d cdw10:%08x %s\n", nvme_get_string(admin_opcode, cmd->opc), nvme_get_string(feat_opcode, cmd->cdw10_bits.set_features.fid), cmd->cid, cmd->cdw10, dptr); break; case SPDK_NVME_OPC_FABRIC: SPDK_NOTICELOG("%s %s qid:%d cid:%d %s\n", nvme_get_string(admin_opcode, cmd->opc), nvme_get_string(fabric_opcode, fcmd->fctype), qid, fcmd->cid, dptr); break; default: SPDK_NOTICELOG("%s (%02x) qid:%d cid:%d nsid:%x cdw10:%08x cdw11:%08x %s\n", nvme_get_string(admin_opcode, cmd->opc), cmd->opc, qid, cmd->cid, cmd->nsid, cmd->cdw10, cmd->cdw11, dptr); } } static void nvme_io_qpair_print_command(uint16_t qid, struct spdk_nvme_cmd *cmd) { char dptr[NVME_CMD_DPTR_STR_SIZE] = {'\0'}; assert(cmd != NULL); nvme_get_dptr(dptr, sizeof(dptr), cmd); switch ((int)cmd->opc) { case SPDK_NVME_OPC_WRITE: case SPDK_NVME_OPC_READ: case SPDK_NVME_OPC_WRITE_UNCORRECTABLE: case SPDK_NVME_OPC_COMPARE: SPDK_NOTICELOG("%s sqid:%d cid:%d nsid:%d " "lba:%llu len:%d %s\n", nvme_get_string(io_opcode, cmd->opc), qid, cmd->cid, cmd->nsid, ((unsigned long long)cmd->cdw11 << 32) + cmd->cdw10, (cmd->cdw12 & 0xFFFF) + 1, dptr); break; case SPDK_NVME_OPC_FLUSH: case SPDK_NVME_OPC_DATASET_MANAGEMENT: SPDK_NOTICELOG("%s sqid:%d cid:%d nsid:%d\n", nvme_get_string(io_opcode, cmd->opc), qid, cmd->cid, cmd->nsid); break; default: SPDK_NOTICELOG("%s (%02x) sqid:%d cid:%d nsid:%d\n", nvme_get_string(io_opcode, cmd->opc), cmd->opc, qid, cmd->cid, cmd->nsid); break; } } void spdk_nvme_print_command(uint16_t qid, struct spdk_nvme_cmd *cmd) { assert(cmd != NULL); if (qid == 0 || cmd->opc == SPDK_NVME_OPC_FABRIC) { nvme_admin_qpair_print_command(qid, cmd); } else { nvme_io_qpair_print_command(qid, cmd); } } void spdk_nvme_qpair_print_command(struct spdk_nvme_qpair *qpair, struct spdk_nvme_cmd *cmd) { assert(qpair != NULL); assert(cmd != NULL); spdk_nvme_print_command(qpair->id, cmd); } static const struct nvme_string generic_status[] = { { SPDK_NVME_SC_SUCCESS, "SUCCESS" }, { SPDK_NVME_SC_INVALID_OPCODE, "INVALID OPCODE" }, { SPDK_NVME_SC_INVALID_FIELD, "INVALID FIELD" }, { SPDK_NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" }, { SPDK_NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" }, { SPDK_NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" }, { SPDK_NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" }, { SPDK_NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" }, { SPDK_NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" }, { SPDK_NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" }, { SPDK_NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" }, { SPDK_NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" }, { SPDK_NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" }, { SPDK_NVME_SC_INVALID_SGL_SEG_DESCRIPTOR, "INVALID SGL SEGMENT DESCRIPTOR" }, { SPDK_NVME_SC_INVALID_NUM_SGL_DESCIRPTORS, "INVALID NUMBER OF SGL DESCRIPTORS" }, { SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" }, { SPDK_NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" }, { SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" }, { SPDK_NVME_SC_INVALID_CONTROLLER_MEM_BUF, "INVALID CONTROLLER MEMORY BUFFER" }, { SPDK_NVME_SC_INVALID_PRP_OFFSET, "INVALID PRP OFFSET" }, { SPDK_NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" }, { SPDK_NVME_SC_OPERATION_DENIED, "OPERATION DENIED" }, { SPDK_NVME_SC_INVALID_SGL_OFFSET, "INVALID SGL OFFSET" }, { SPDK_NVME_SC_HOSTID_INCONSISTENT_FORMAT, "HOSTID INCONSISTENT FORMAT" }, { SPDK_NVME_SC_KEEP_ALIVE_EXPIRED, "KEEP ALIVE EXPIRED" }, { SPDK_NVME_SC_KEEP_ALIVE_INVALID, "KEEP ALIVE INVALID" }, { SPDK_NVME_SC_ABORTED_PREEMPT, "ABORTED - PREEMPT AND ABORT" }, { SPDK_NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" }, { SPDK_NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" }, { SPDK_NVME_SC_SGL_DATA_BLOCK_GRANULARITY_INVALID, "DATA BLOCK GRANULARITY INVALID" }, { SPDK_NVME_SC_COMMAND_INVALID_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" }, { SPDK_NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" }, { SPDK_NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" }, { SPDK_NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" }, { SPDK_NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" }, { SPDK_NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" }, { 0xFFFF, "GENERIC" } }; static const struct nvme_string command_specific_status[] = { { SPDK_NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" }, { SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" }, { SPDK_NVME_SC_INVALID_QUEUE_SIZE, "INVALID QUEUE SIZE" }, { SPDK_NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" }, { SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" }, { SPDK_NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" }, { SPDK_NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" }, { SPDK_NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" }, { SPDK_NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" }, { SPDK_NVME_SC_INVALID_FORMAT, "INVALID FORMAT" }, { SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET, "FIRMWARE REQUIRES CONVENTIONAL RESET" }, { SPDK_NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" }, { SPDK_NVME_SC_FEATURE_ID_NOT_SAVEABLE, "FEATURE ID NOT SAVEABLE" }, { SPDK_NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" }, { SPDK_NVME_SC_FEATURE_NOT_NAMESPACE_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" }, { SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET, "FIRMWARE REQUIRES NVM RESET" }, { SPDK_NVME_SC_FIRMWARE_REQ_RESET, "FIRMWARE REQUIRES RESET" }, { SPDK_NVME_SC_FIRMWARE_REQ_MAX_TIME_VIOLATION, "FIRMWARE REQUIRES MAX TIME VIOLATION" }, { SPDK_NVME_SC_FIRMWARE_ACTIVATION_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" }, { SPDK_NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" }, { SPDK_NVME_SC_NAMESPACE_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" }, { SPDK_NVME_SC_NAMESPACE_ID_UNAVAILABLE, "NAMESPACE ID UNAVAILABLE" }, { SPDK_NVME_SC_NAMESPACE_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" }, { SPDK_NVME_SC_NAMESPACE_IS_PRIVATE, "NAMESPACE IS PRIVATE" }, { SPDK_NVME_SC_NAMESPACE_NOT_ATTACHED, "NAMESPACE NOT ATTACHED" }, { SPDK_NVME_SC_THINPROVISIONING_NOT_SUPPORTED, "THINPROVISIONING NOT SUPPORTED" }, { SPDK_NVME_SC_CONTROLLER_LIST_INVALID, "CONTROLLER LIST INVALID" }, { SPDK_NVME_SC_DEVICE_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" }, { SPDK_NVME_SC_BOOT_PARTITION_WRITE_PROHIBITED, "BOOT PARTITION WRITE PROHIBITED" }, { SPDK_NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER ID" }, { SPDK_NVME_SC_INVALID_SECONDARY_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" }, { SPDK_NVME_SC_INVALID_NUM_CTRLR_RESOURCES, "INVALID NUMBER OF CONTROLLER RESOURCES" }, { SPDK_NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" }, { SPDK_NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" }, { SPDK_NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" }, { SPDK_NVME_SC_ATTEMPTED_WRITE_TO_RO_RANGE, "WRITE TO RO RANGE" }, { 0xFFFF, "COMMAND SPECIFIC" } }; static const struct nvme_string media_error_status[] = { { SPDK_NVME_SC_WRITE_FAULTS, "WRITE FAULTS" }, { SPDK_NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" }, { SPDK_NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" }, { SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" }, { SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" }, { SPDK_NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" }, { SPDK_NVME_SC_ACCESS_DENIED, "ACCESS DENIED" }, { SPDK_NVME_SC_DEALLOCATED_OR_UNWRITTEN_BLOCK, "DEALLOCATED OR UNWRITTEN BLOCK" }, { SPDK_OCSSD_SC_OFFLINE_CHUNK, "RESET OFFLINE CHUNK" }, { SPDK_OCSSD_SC_INVALID_RESET, "INVALID RESET" }, { SPDK_OCSSD_SC_WRITE_FAIL_WRITE_NEXT_UNIT, "WRITE FAIL WRITE NEXT UNIT" }, { SPDK_OCSSD_SC_WRITE_FAIL_CHUNK_EARLY_CLOSE, "WRITE FAIL CHUNK EARLY CLOSE" }, { SPDK_OCSSD_SC_OUT_OF_ORDER_WRITE, "OUT OF ORDER WRITE" }, { SPDK_OCSSD_SC_READ_HIGH_ECC, "READ HIGH ECC" }, { 0xFFFF, "MEDIA ERROR" } }; static const struct nvme_string path_status[] = { { SPDK_NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" }, { SPDK_NVME_SC_CONTROLLER_PATH_ERROR, "CONTROLLER PATH ERROR" }, { SPDK_NVME_SC_HOST_PATH_ERROR, "HOST PATH ERROR" }, { SPDK_NVME_SC_ABORTED_BY_HOST, "ABORTED BY HOST" }, { 0xFFFF, "PATH ERROR" } }; const char * spdk_nvme_cpl_get_status_string(const struct spdk_nvme_status *status) { const struct nvme_string *entry; switch (status->sct) { case SPDK_NVME_SCT_GENERIC: entry = generic_status; break; case SPDK_NVME_SCT_COMMAND_SPECIFIC: entry = command_specific_status; break; case SPDK_NVME_SCT_MEDIA_ERROR: entry = media_error_status; break; case SPDK_NVME_SCT_PATH: entry = path_status; break; case SPDK_NVME_SCT_VENDOR_SPECIFIC: return "VENDOR SPECIFIC"; default: return "RESERVED"; } return nvme_get_string(entry, status->sc); } void spdk_nvme_print_completion(uint16_t qid, struct spdk_nvme_cpl *cpl) { assert(cpl != NULL); /* Check that sqid matches qid. Note that sqid is reserved * for fabrics so don't print an error when sqid is 0. */ if (cpl->sqid != qid && cpl->sqid != 0) { SPDK_ERRLOG("sqid %u doesn't match qid\n", cpl->sqid); } SPDK_NOTICELOG("%s (%02x/%02x) qid:%d cid:%d cdw0:%x sqhd:%04x p:%x m:%x dnr:%x\n", spdk_nvme_cpl_get_status_string(&cpl->status), cpl->status.sct, cpl->status.sc, qid, cpl->cid, cpl->cdw0, cpl->sqhd, cpl->status.p, cpl->status.m, cpl->status.dnr); } void spdk_nvme_qpair_print_completion(struct spdk_nvme_qpair *qpair, struct spdk_nvme_cpl *cpl) { spdk_nvme_print_completion(qpair->id, cpl); } bool nvme_completion_is_retry(const struct spdk_nvme_cpl *cpl) { /* * TODO: spec is not clear how commands that are aborted due * to TLER will be marked. So for now, it seems * NAMESPACE_NOT_READY is the only case where we should * look at the DNR bit. */ switch ((int)cpl->status.sct) { case SPDK_NVME_SCT_GENERIC: switch ((int)cpl->status.sc) { case SPDK_NVME_SC_NAMESPACE_NOT_READY: case SPDK_NVME_SC_FORMAT_IN_PROGRESS: if (cpl->status.dnr) { return false; } else { return true; } case SPDK_NVME_SC_INVALID_OPCODE: case SPDK_NVME_SC_INVALID_FIELD: case SPDK_NVME_SC_COMMAND_ID_CONFLICT: case SPDK_NVME_SC_DATA_TRANSFER_ERROR: case SPDK_NVME_SC_ABORTED_POWER_LOSS: case SPDK_NVME_SC_INTERNAL_DEVICE_ERROR: case SPDK_NVME_SC_ABORTED_BY_REQUEST: case SPDK_NVME_SC_ABORTED_SQ_DELETION: case SPDK_NVME_SC_ABORTED_FAILED_FUSED: case SPDK_NVME_SC_ABORTED_MISSING_FUSED: case SPDK_NVME_SC_INVALID_NAMESPACE_OR_FORMAT: case SPDK_NVME_SC_COMMAND_SEQUENCE_ERROR: case SPDK_NVME_SC_LBA_OUT_OF_RANGE: case SPDK_NVME_SC_CAPACITY_EXCEEDED: default: return false; } case SPDK_NVME_SCT_PATH: /* * Per NVMe TP 4028 (Path and Transport Error Enhancements), retries should be * based on the setting of the DNR bit for Internal Path Error */ switch ((int)cpl->status.sc) { case SPDK_NVME_SC_INTERNAL_PATH_ERROR: return !cpl->status.dnr; default: return false; } case SPDK_NVME_SCT_COMMAND_SPECIFIC: case SPDK_NVME_SCT_MEDIA_ERROR: case SPDK_NVME_SCT_VENDOR_SPECIFIC: default: return false; } } static void nvme_qpair_manual_complete_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req, uint32_t sct, uint32_t sc, uint32_t dnr, bool print_on_error) { struct spdk_nvme_cpl cpl; bool error; memset(&cpl, 0, sizeof(cpl)); cpl.sqid = qpair->id; cpl.status.sct = sct; cpl.status.sc = sc; cpl.status.dnr = dnr; error = spdk_nvme_cpl_is_error(&cpl); if (error && print_on_error && !qpair->ctrlr->opts.disable_error_logging) { SPDK_NOTICELOG("Command completed manually:\n"); spdk_nvme_qpair_print_command(qpair, &req->cmd); spdk_nvme_qpair_print_completion(qpair, &cpl); } nvme_complete_request(req->cb_fn, req->cb_arg, qpair, req, &cpl); nvme_free_request(req); } static void _nvme_qpair_abort_queued_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr) { struct nvme_request *req; while (!STAILQ_EMPTY(&qpair->queued_req)) { req = STAILQ_FIRST(&qpair->queued_req); STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); if (!qpair->ctrlr->opts.disable_error_logging) { SPDK_ERRLOG("aborting queued i/o\n"); } nvme_qpair_manual_complete_request(qpair, req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true); } } /* The callback to a request may submit the next request which is queued and * then the same callback may abort it immediately. This repetition may cause * infinite recursive calls. Hence move aborting requests to another list here * and abort them later at resubmission. */ static void _nvme_qpair_complete_abort_queued_reqs(struct spdk_nvme_qpair *qpair) { struct nvme_request *req; while (!STAILQ_EMPTY(&qpair->aborting_queued_req)) { req = STAILQ_FIRST(&qpair->aborting_queued_req); STAILQ_REMOVE_HEAD(&qpair->aborting_queued_req, stailq); nvme_qpair_manual_complete_request(qpair, req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_BY_REQUEST, 1, true); } } uint32_t nvme_qpair_abort_queued_reqs(struct spdk_nvme_qpair *qpair, void *cmd_cb_arg) { struct nvme_request *req, *tmp; uint32_t aborting = 0; STAILQ_FOREACH_SAFE(req, &qpair->queued_req, stailq, tmp) { if (req->cb_arg == cmd_cb_arg) { STAILQ_REMOVE(&qpair->queued_req, req, nvme_request, stailq); STAILQ_INSERT_TAIL(&qpair->aborting_queued_req, req, stailq); if (!qpair->ctrlr->opts.disable_error_logging) { SPDK_ERRLOG("aborting queued i/o\n"); } aborting++; } } return aborting; } static inline bool nvme_qpair_check_enabled(struct spdk_nvme_qpair *qpair) { struct nvme_request *req; /* * Either during initial connect or reset, the qpair should follow the given state machine. * QPAIR_DISABLED->QPAIR_CONNECTING->QPAIR_CONNECTED->QPAIR_ENABLING->QPAIR_ENABLED. In the * reset case, once the qpair is properly connected, we need to abort any outstanding requests * from the old transport connection and encourage the application to retry them. We also need * to submit any queued requests that built up while we were in the connected or enabling state. */ if (nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTED && !qpair->ctrlr->is_resetting) { nvme_qpair_set_state(qpair, NVME_QPAIR_ENABLING); /* * PCIe is special, for fabrics transports, we can abort requests before disconnect during reset * but we have historically not disconnected pcie qpairs during reset so we have to abort requests * here. */ if (qpair->ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { nvme_qpair_abort_reqs(qpair, 0); } nvme_qpair_set_state(qpair, NVME_QPAIR_ENABLED); while (!STAILQ_EMPTY(&qpair->queued_req)) { req = STAILQ_FIRST(&qpair->queued_req); STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); if (nvme_qpair_resubmit_request(qpair, req)) { break; } } } /* * When doing a reset, we must disconnect the qpair on the proper core. * Note, reset is the only case where we set the failure reason without * setting the qpair state since reset is done at the generic layer on the * controller thread and we can't disconnect I/O qpairs from the controller * thread. */ if (qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE && nvme_qpair_get_state(qpair) == NVME_QPAIR_ENABLED) { /* Don't disconnect PCIe qpairs. They are a special case for reset. */ if (qpair->ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) { nvme_ctrlr_disconnect_qpair(qpair); } return false; } return nvme_qpair_get_state(qpair) == NVME_QPAIR_ENABLED; } void nvme_qpair_resubmit_requests(struct spdk_nvme_qpair *qpair, uint32_t num_requests) { uint32_t i; int resubmit_rc; struct nvme_request *req; for (i = 0; i < num_requests; i++) { if (qpair->ctrlr->is_resetting) { break; } if ((req = STAILQ_FIRST(&qpair->queued_req)) == NULL) { break; } STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); resubmit_rc = nvme_qpair_resubmit_request(qpair, req); if (spdk_unlikely(resubmit_rc != 0)) { SPDK_ERRLOG("Unable to resubmit as many requests as we completed.\n"); break; } } _nvme_qpair_complete_abort_queued_reqs(qpair); } int32_t spdk_nvme_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions) { int32_t ret; struct nvme_request *req, *tmp; if (spdk_unlikely(qpair->ctrlr->is_failed)) { if (qpair->ctrlr->is_removed) { nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING); nvme_qpair_abort_reqs(qpair, 1 /* Do not retry */); } return -ENXIO; } if (spdk_unlikely(!nvme_qpair_check_enabled(qpair) && !(nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING))) { /* * qpair is not enabled, likely because a controller reset is * in progress. */ return -ENXIO; } /* error injection for those queued error requests */ if (spdk_unlikely(!STAILQ_EMPTY(&qpair->err_req_head))) { STAILQ_FOREACH_SAFE(req, &qpair->err_req_head, stailq, tmp) { if (spdk_get_ticks() - req->submit_tick > req->timeout_tsc) { STAILQ_REMOVE(&qpair->err_req_head, req, nvme_request, stailq); nvme_qpair_manual_complete_request(qpair, req, req->cpl.status.sct, req->cpl.status.sc, 0, true); } } } qpair->in_completion_context = 1; ret = nvme_transport_qpair_process_completions(qpair, max_completions); if (ret < 0) { SPDK_ERRLOG("CQ error, abort requests after transport retry counter exceeded\n"); if (nvme_qpair_is_admin_queue(qpair)) { nvme_ctrlr_fail(qpair->ctrlr, false); } } qpair->in_completion_context = 0; if (qpair->delete_after_completion_context) { /* * A request to delete this qpair was made in the context of this completion * routine - so it is safe to delete it now. */ spdk_nvme_ctrlr_free_io_qpair(qpair); return ret; } /* * At this point, ret must represent the number of completions we reaped. * submit as many queued requests as we completed. */ nvme_qpair_resubmit_requests(qpair, ret); return ret; } spdk_nvme_qp_failure_reason spdk_nvme_qpair_get_failure_reason(struct spdk_nvme_qpair *qpair) { return qpair->transport_failure_reason; } int nvme_qpair_init(struct spdk_nvme_qpair *qpair, uint16_t id, struct spdk_nvme_ctrlr *ctrlr, enum spdk_nvme_qprio qprio, uint32_t num_requests) { size_t req_size_padded; uint32_t i; qpair->id = id; qpair->qprio = qprio; qpair->in_completion_context = 0; qpair->delete_after_completion_context = 0; qpair->no_deletion_notification_needed = 0; qpair->ctrlr = ctrlr; qpair->trtype = ctrlr->trid.trtype; STAILQ_INIT(&qpair->free_req); STAILQ_INIT(&qpair->queued_req); STAILQ_INIT(&qpair->aborting_queued_req); TAILQ_INIT(&qpair->err_cmd_head); STAILQ_INIT(&qpair->err_req_head); req_size_padded = (sizeof(struct nvme_request) + 63) & ~(size_t)63; qpair->req_buf = spdk_zmalloc(req_size_padded * num_requests, 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); if (qpair->req_buf == NULL) { SPDK_ERRLOG("no memory to allocate qpair(cntlid:0x%x sqid:%d) req_buf with %d request\n", ctrlr->cntlid, qpair->id, num_requests); return -ENOMEM; } for (i = 0; i < num_requests; i++) { struct nvme_request *req = qpair->req_buf + i * req_size_padded; req->qpair = qpair; STAILQ_INSERT_HEAD(&qpair->free_req, req, stailq); } return 0; } void nvme_qpair_complete_error_reqs(struct spdk_nvme_qpair *qpair) { struct nvme_request *req; while (!STAILQ_EMPTY(&qpair->err_req_head)) { req = STAILQ_FIRST(&qpair->err_req_head); STAILQ_REMOVE_HEAD(&qpair->err_req_head, stailq); nvme_qpair_manual_complete_request(qpair, req, req->cpl.status.sct, req->cpl.status.sc, 0, true); } } void nvme_qpair_deinit(struct spdk_nvme_qpair *qpair) { struct nvme_error_cmd *cmd, *entry; _nvme_qpair_abort_queued_reqs(qpair, 1); _nvme_qpair_complete_abort_queued_reqs(qpair); nvme_qpair_complete_error_reqs(qpair); TAILQ_FOREACH_SAFE(cmd, &qpair->err_cmd_head, link, entry) { TAILQ_REMOVE(&qpair->err_cmd_head, cmd, link); spdk_free(cmd); } spdk_free(qpair->req_buf); } static inline int _nvme_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req) { int rc = 0; struct nvme_request *child_req, *tmp; struct nvme_error_cmd *cmd; struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; bool child_req_failed = false; nvme_qpair_check_enabled(qpair); if (req->num_children) { /* * This is a split (parent) request. Submit all of the children but not the parent * request itself, since the parent is the original unsplit request. */ TAILQ_FOREACH_SAFE(child_req, &req->children, child_tailq, tmp) { if (spdk_likely(!child_req_failed)) { rc = nvme_qpair_submit_request(qpair, child_req); if (spdk_unlikely(rc != 0)) { child_req_failed = true; } } else { /* free remaining child_reqs since one child_req fails */ nvme_request_remove_child(req, child_req); nvme_request_free_children(child_req); nvme_free_request(child_req); } } if (spdk_unlikely(child_req_failed)) { /* part of children requests have been submitted, * return success since we must wait for those children to complete, * but set the parent request to failure. */ if (req->num_children) { req->cpl.status.sct = SPDK_NVME_SCT_GENERIC; req->cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; return 0; } goto error; } return rc; } /* queue those requests which matches with opcode in err_cmd list */ if (spdk_unlikely(!TAILQ_EMPTY(&qpair->err_cmd_head))) { TAILQ_FOREACH(cmd, &qpair->err_cmd_head, link) { if (!cmd->do_not_submit) { continue; } if ((cmd->opc == req->cmd.opc) && cmd->err_count) { /* add to error request list and set cpl */ req->timeout_tsc = cmd->timeout_tsc; req->submit_tick = spdk_get_ticks(); req->cpl.status.sct = cmd->status.sct; req->cpl.status.sc = cmd->status.sc; STAILQ_INSERT_TAIL(&qpair->err_req_head, req, stailq); cmd->err_count--; return 0; } } } if (spdk_unlikely(ctrlr->is_failed)) { rc = -ENXIO; goto error; } /* assign submit_tick before submitting req to specific transport */ if (spdk_unlikely(ctrlr->timeout_enabled)) { if (req->submit_tick == 0) { /* req submitted for the first time */ req->submit_tick = spdk_get_ticks(); req->timed_out = false; } } else { req->submit_tick = 0; } /* Allow two cases: * 1. NVMe qpair is enabled. * 2. Always allow fabrics commands through - these get * the controller out of reset state. */ if (spdk_likely(nvme_qpair_get_state(qpair) == NVME_QPAIR_ENABLED) || (req->cmd.opc == SPDK_NVME_OPC_FABRIC && nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING)) { rc = nvme_transport_qpair_submit_request(qpair, req); } else { /* The controller is being reset - queue this request and * submit it later when the reset is completed. */ return -EAGAIN; } if (spdk_likely(rc == 0)) { req->queued = false; return 0; } if (rc == -EAGAIN) { return -EAGAIN; } error: if (req->parent != NULL) { nvme_request_remove_child(req->parent, req); } /* The request is from queued_req list we should trigger the callback from caller */ if (spdk_unlikely(req->queued)) { nvme_qpair_manual_complete_request(qpair, req, SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INTERNAL_DEVICE_ERROR, true, true); return rc; } nvme_free_request(req); return rc; } int nvme_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req) { int rc; /* This prevents us from entering an infinite loop when freeing queued I/O in disconnect. */ if (spdk_unlikely(nvme_qpair_get_state(qpair) == NVME_QPAIR_DISCONNECTING || nvme_qpair_get_state(qpair) == NVME_QPAIR_DESTROYING)) { if (req->parent != NULL) { nvme_request_remove_child(req->parent, req); } nvme_free_request(req); return -ENXIO; } if (spdk_unlikely(!STAILQ_EMPTY(&qpair->queued_req) && req->num_children == 0)) { /* * requests that have no children should be sent to the transport after all * currently queued requests. Requests with chilren will be split and go back * through this path. */ STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq); req->queued = true; return 0; } rc = _nvme_qpair_submit_request(qpair, req); if (rc == -EAGAIN) { STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq); req->queued = true; rc = 0; } return rc; } static int nvme_qpair_resubmit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req) { int rc; /* * We should never have a request with children on the queue. * This is necessary to preserve the 1:1 relationship between * completions and resubmissions. */ assert(req->num_children == 0); assert(req->queued); rc = _nvme_qpair_submit_request(qpair, req); if (spdk_unlikely(rc == -EAGAIN)) { STAILQ_INSERT_HEAD(&qpair->queued_req, req, stailq); } return rc; } void nvme_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr) { nvme_qpair_complete_error_reqs(qpair); _nvme_qpair_abort_queued_reqs(qpair, dnr); _nvme_qpair_complete_abort_queued_reqs(qpair); nvme_transport_qpair_abort_reqs(qpair, dnr); } int spdk_nvme_qpair_add_cmd_error_injection(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, uint8_t opc, bool do_not_submit, uint64_t timeout_in_us, uint32_t err_count, uint8_t sct, uint8_t sc) { struct nvme_error_cmd *entry, *cmd = NULL; if (qpair == NULL) { qpair = ctrlr->adminq; } TAILQ_FOREACH(entry, &qpair->err_cmd_head, link) { if (entry->opc == opc) { cmd = entry; break; } } if (cmd == NULL) { cmd = spdk_zmalloc(sizeof(*cmd), 64, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); if (!cmd) { return -ENOMEM; } TAILQ_INSERT_TAIL(&qpair->err_cmd_head, cmd, link); } cmd->do_not_submit = do_not_submit; cmd->err_count = err_count; cmd->timeout_tsc = timeout_in_us * spdk_get_ticks_hz() / 1000000ULL; cmd->opc = opc; cmd->status.sct = sct; cmd->status.sc = sc; return 0; } void spdk_nvme_qpair_remove_cmd_error_injection(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair, uint8_t opc) { struct nvme_error_cmd *cmd, *entry; if (qpair == NULL) { qpair = ctrlr->adminq; } TAILQ_FOREACH_SAFE(cmd, &qpair->err_cmd_head, link, entry) { if (cmd->opc == opc) { TAILQ_REMOVE(&qpair->err_cmd_head, cmd, link); spdk_free(cmd); return; } } return; }