/*- * BSD LICENSE * * Copyright (c) Intel Corporation. All rights reserved. * Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/config.h" #include "spdk/thread.h" #include "spdk/likely.h" #include "spdk/nvmf_transport.h" #include "spdk/string.h" #include "spdk/trace.h" #include "spdk/util.h" #include "spdk_internal/assert.h" #include "spdk_internal/log.h" #include "spdk_internal/rdma.h" #include "nvmf_internal.h" struct spdk_nvme_rdma_hooks g_nvmf_hooks = {}; const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma; /* RDMA Connection Resource Defaults */ #define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES #define NVMF_DEFAULT_RSP_SGE 1 #define NVMF_DEFAULT_RX_SGE 2 /* The RDMA completion queue size */ #define DEFAULT_NVMF_RDMA_CQ_SIZE 4096 #define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2) /* Timeout for destroying defunct rqpairs */ #define NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US 4000000 static int g_spdk_nvmf_ibv_query_mask = IBV_QP_STATE | IBV_QP_PKEY_INDEX | IBV_QP_PORT | IBV_QP_ACCESS_FLAGS | IBV_QP_AV | IBV_QP_PATH_MTU | IBV_QP_DEST_QPN | IBV_QP_RQ_PSN | IBV_QP_MAX_DEST_RD_ATOMIC | IBV_QP_MIN_RNR_TIMER | IBV_QP_SQ_PSN | IBV_QP_TIMEOUT | IBV_QP_RETRY_CNT | IBV_QP_RNR_RETRY | IBV_QP_MAX_QP_RD_ATOMIC; enum spdk_nvmf_rdma_request_state { /* The request is not currently in use */ RDMA_REQUEST_STATE_FREE = 0, /* Initial state when request first received */ RDMA_REQUEST_STATE_NEW, /* The request is queued until a data buffer is available. */ RDMA_REQUEST_STATE_NEED_BUFFER, /* The request is waiting on RDMA queue depth availability * to transfer data from the host to the controller. */ RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, /* The request is currently transferring data from the host to the controller. */ RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, /* The request is ready to execute at the block device */ RDMA_REQUEST_STATE_READY_TO_EXECUTE, /* The request is currently executing at the block device */ RDMA_REQUEST_STATE_EXECUTING, /* The request finished executing at the block device */ RDMA_REQUEST_STATE_EXECUTED, /* The request is waiting on RDMA queue depth availability * to transfer data from the controller to the host. */ RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, /* The request is ready to send a completion */ RDMA_REQUEST_STATE_READY_TO_COMPLETE, /* The request is currently transferring data from the controller to the host. */ RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, /* The request currently has an outstanding completion without an * associated data transfer. */ RDMA_REQUEST_STATE_COMPLETING, /* The request completed and can be marked free. */ RDMA_REQUEST_STATE_COMPLETED, /* Terminator */ RDMA_REQUEST_NUM_STATES, }; #define OBJECT_NVMF_RDMA_IO 0x40 #define TRACE_GROUP_NVMF_RDMA 0x4 #define TRACE_RDMA_REQUEST_STATE_NEW SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x0) #define TRACE_RDMA_REQUEST_STATE_NEED_BUFFER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x1) #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x2) #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x3) #define TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x4) #define TRACE_RDMA_REQUEST_STATE_EXECUTING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x5) #define TRACE_RDMA_REQUEST_STATE_EXECUTED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x6) #define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x7) #define TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x8) #define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x9) #define TRACE_RDMA_REQUEST_STATE_COMPLETING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xA) #define TRACE_RDMA_REQUEST_STATE_COMPLETED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xB) #define TRACE_RDMA_QP_CREATE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xC) #define TRACE_RDMA_IBV_ASYNC_EVENT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xD) #define TRACE_RDMA_CM_ASYNC_EVENT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xE) #define TRACE_RDMA_QP_STATE_CHANGE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xF) #define TRACE_RDMA_QP_DISCONNECT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x10) #define TRACE_RDMA_QP_DESTROY SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x11) SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA) { spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r'); spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW, OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 1, "cmid: "); spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H", TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C", TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); spdk_trace_register_description("RDMA_REQ_TX_H2C", TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE", TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); spdk_trace_register_description("RDMA_REQ_EXECUTING", TRACE_RDMA_REQUEST_STATE_EXECUTING, OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); spdk_trace_register_description("RDMA_REQ_EXECUTED", TRACE_RDMA_REQUEST_STATE_EXECUTED, OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL", TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H", TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); spdk_trace_register_description("RDMA_REQ_COMPLETING", TRACE_RDMA_REQUEST_STATE_COMPLETING, OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); spdk_trace_register_description("RDMA_REQ_COMPLETED", TRACE_RDMA_REQUEST_STATE_COMPLETED, OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: "); spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE, OWNER_NONE, OBJECT_NONE, 0, 0, ""); spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT, OWNER_NONE, OBJECT_NONE, 0, 0, "type: "); spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT, OWNER_NONE, OBJECT_NONE, 0, 0, "type: "); spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE, OWNER_NONE, OBJECT_NONE, 0, 1, "state: "); spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT, OWNER_NONE, OBJECT_NONE, 0, 0, ""); spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY, OWNER_NONE, OBJECT_NONE, 0, 0, ""); } enum spdk_nvmf_rdma_wr_type { RDMA_WR_TYPE_RECV, RDMA_WR_TYPE_SEND, RDMA_WR_TYPE_DATA, }; struct spdk_nvmf_rdma_wr { enum spdk_nvmf_rdma_wr_type type; }; /* This structure holds commands as they are received off the wire. * It must be dynamically paired with a full request object * (spdk_nvmf_rdma_request) to service a request. It is separate * from the request because RDMA does not appear to order * completions, so occasionally we'll get a new incoming * command when there aren't any free request objects. */ struct spdk_nvmf_rdma_recv { struct ibv_recv_wr wr; struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE]; struct spdk_nvmf_rdma_qpair *qpair; /* In-capsule data buffer */ uint8_t *buf; struct spdk_nvmf_rdma_wr rdma_wr; uint64_t receive_tsc; STAILQ_ENTRY(spdk_nvmf_rdma_recv) link; }; struct spdk_nvmf_rdma_request_data { struct spdk_nvmf_rdma_wr rdma_wr; struct ibv_send_wr wr; struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES]; }; struct spdk_nvmf_rdma_request { struct spdk_nvmf_request req; enum spdk_nvmf_rdma_request_state state; struct spdk_nvmf_rdma_recv *recv; struct { struct spdk_nvmf_rdma_wr rdma_wr; struct ibv_send_wr wr; struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE]; } rsp; struct spdk_nvmf_rdma_request_data data; uint32_t iovpos; uint32_t num_outstanding_data_wr; uint64_t receive_tsc; STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link; }; enum spdk_nvmf_rdma_qpair_disconnect_flags { RDMA_QP_DISCONNECTING = 1, RDMA_QP_RECV_DRAINED = 1 << 1, RDMA_QP_SEND_DRAINED = 1 << 2 }; struct spdk_nvmf_rdma_resource_opts { struct spdk_nvmf_rdma_qpair *qpair; /* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */ void *qp; struct ibv_pd *pd; uint32_t max_queue_depth; uint32_t in_capsule_data_size; bool shared; }; struct spdk_nvmf_send_wr_list { struct ibv_send_wr *first; struct ibv_send_wr *last; }; struct spdk_nvmf_recv_wr_list { struct ibv_recv_wr *first; struct ibv_recv_wr *last; }; struct spdk_nvmf_rdma_resources { /* Array of size "max_queue_depth" containing RDMA requests. */ struct spdk_nvmf_rdma_request *reqs; /* Array of size "max_queue_depth" containing RDMA recvs. */ struct spdk_nvmf_rdma_recv *recvs; /* Array of size "max_queue_depth" containing 64 byte capsules * used for receive. */ union nvmf_h2c_msg *cmds; struct ibv_mr *cmds_mr; /* Array of size "max_queue_depth" containing 16 byte completions * to be sent back to the user. */ union nvmf_c2h_msg *cpls; struct ibv_mr *cpls_mr; /* Array of size "max_queue_depth * InCapsuleDataSize" containing * buffers to be used for in capsule data. */ void *bufs; struct ibv_mr *bufs_mr; /* The list of pending recvs to transfer */ struct spdk_nvmf_recv_wr_list recvs_to_post; /* Receives that are waiting for a request object */ STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue; /* Queue to track free requests */ STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue; }; typedef void (*spdk_nvmf_rdma_qpair_ibv_event)(struct spdk_nvmf_rdma_qpair *rqpair); struct spdk_nvmf_rdma_ibv_event_ctx { struct spdk_nvmf_rdma_qpair *rqpair; spdk_nvmf_rdma_qpair_ibv_event cb_fn; /* Link to other ibv events associated with this qpair */ STAILQ_ENTRY(spdk_nvmf_rdma_ibv_event_ctx) link; }; struct spdk_nvmf_rdma_qpair { struct spdk_nvmf_qpair qpair; struct spdk_nvmf_rdma_device *device; struct spdk_nvmf_rdma_poller *poller; struct spdk_rdma_qp *rdma_qp; struct rdma_cm_id *cm_id; struct ibv_srq *srq; struct rdma_cm_id *listen_id; /* The maximum number of I/O outstanding on this connection at one time */ uint16_t max_queue_depth; /* The maximum number of active RDMA READ and ATOMIC operations at one time */ uint16_t max_read_depth; /* The maximum number of RDMA SEND operations at one time */ uint32_t max_send_depth; /* The current number of outstanding WRs from this qpair's * recv queue. Should not exceed device->attr.max_queue_depth. */ uint16_t current_recv_depth; /* The current number of active RDMA READ operations */ uint16_t current_read_depth; /* The current number of posted WRs from this qpair's * send queue. Should not exceed max_send_depth. */ uint32_t current_send_depth; /* The maximum number of SGEs per WR on the send queue */ uint32_t max_send_sge; /* The maximum number of SGEs per WR on the recv queue */ uint32_t max_recv_sge; struct spdk_nvmf_rdma_resources *resources; STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue; STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue; /* Number of requests not in the free state */ uint32_t qd; TAILQ_ENTRY(spdk_nvmf_rdma_qpair) link; STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link; STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link; /* IBV queue pair attributes: they are used to manage * qp state and recover from errors. */ enum ibv_qp_state ibv_state; uint32_t disconnect_flags; /* Poller registered in case the qpair doesn't properly * complete the qpair destruct process and becomes defunct. */ struct spdk_poller *destruct_poller; /* * io_channel which is used to destroy qpair when it is removed from poll group */ struct spdk_io_channel *destruct_channel; /* List of ibv async events */ STAILQ_HEAD(, spdk_nvmf_rdma_ibv_event_ctx) ibv_events; /* There are several ways a disconnect can start on a qpair * and they are not all mutually exclusive. It is important * that we only initialize one of these paths. */ bool disconnect_started; /* Lets us know that we have received the last_wqe event. */ bool last_wqe_reached; }; struct spdk_nvmf_rdma_poller_stat { uint64_t completions; uint64_t polls; uint64_t requests; uint64_t request_latency; uint64_t pending_free_request; uint64_t pending_rdma_read; uint64_t pending_rdma_write; }; struct spdk_nvmf_rdma_poller { struct spdk_nvmf_rdma_device *device; struct spdk_nvmf_rdma_poll_group *group; int num_cqe; int required_num_wr; struct ibv_cq *cq; /* The maximum number of I/O outstanding on the shared receive queue at one time */ uint16_t max_srq_depth; /* Shared receive queue */ struct ibv_srq *srq; struct spdk_nvmf_rdma_resources *resources; struct spdk_nvmf_rdma_poller_stat stat; TAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs; STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv; STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send; TAILQ_ENTRY(spdk_nvmf_rdma_poller) link; }; struct spdk_nvmf_rdma_poll_group_stat { uint64_t pending_data_buffer; }; struct spdk_nvmf_rdma_poll_group { struct spdk_nvmf_transport_poll_group group; struct spdk_nvmf_rdma_poll_group_stat stat; TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers; TAILQ_ENTRY(spdk_nvmf_rdma_poll_group) link; /* * buffers which are split across multiple RDMA * memory regions cannot be used by this transport. */ STAILQ_HEAD(, spdk_nvmf_transport_pg_cache_buf) retired_bufs; }; struct spdk_nvmf_rdma_conn_sched { struct spdk_nvmf_rdma_poll_group *next_admin_pg; struct spdk_nvmf_rdma_poll_group *next_io_pg; }; /* Assuming rdma_cm uses just one protection domain per ibv_context. */ struct spdk_nvmf_rdma_device { struct ibv_device_attr attr; struct ibv_context *context; struct spdk_mem_map *map; struct ibv_pd *pd; int num_srq; TAILQ_ENTRY(spdk_nvmf_rdma_device) link; }; struct spdk_nvmf_rdma_port { const struct spdk_nvme_transport_id *trid; struct rdma_cm_id *id; struct spdk_nvmf_rdma_device *device; TAILQ_ENTRY(spdk_nvmf_rdma_port) link; }; struct spdk_nvmf_rdma_transport { struct spdk_nvmf_transport transport; struct spdk_nvmf_rdma_conn_sched conn_sched; struct rdma_event_channel *event_channel; struct spdk_mempool *data_wr_pool; pthread_mutex_t lock; /* fields used to poll RDMA/IB events */ nfds_t npoll_fds; struct pollfd *poll_fds; TAILQ_HEAD(, spdk_nvmf_rdma_device) devices; TAILQ_HEAD(, spdk_nvmf_rdma_port) ports; TAILQ_HEAD(, spdk_nvmf_rdma_poll_group) poll_groups; }; static inline void nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair); static bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, struct spdk_nvmf_rdma_request *rdma_req); static inline int nvmf_rdma_check_ibv_state(enum ibv_qp_state state) { switch (state) { case IBV_QPS_RESET: case IBV_QPS_INIT: case IBV_QPS_RTR: case IBV_QPS_RTS: case IBV_QPS_SQD: case IBV_QPS_SQE: case IBV_QPS_ERR: return 0; default: return -1; } } static inline enum spdk_nvme_media_error_status_code nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) { enum spdk_nvme_media_error_status_code result; switch (err_type) { case SPDK_DIF_REFTAG_ERROR: result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR; break; case SPDK_DIF_APPTAG_ERROR: result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR; break; case SPDK_DIF_GUARD_ERROR: result = SPDK_NVME_SC_GUARD_CHECK_ERROR; break; default: SPDK_UNREACHABLE(); } return result; } static enum ibv_qp_state nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) { enum ibv_qp_state old_state, new_state; struct ibv_qp_attr qp_attr; struct ibv_qp_init_attr init_attr; int rc; old_state = rqpair->ibv_state; rc = ibv_query_qp(rqpair->rdma_qp->qp, &qp_attr, g_spdk_nvmf_ibv_query_mask, &init_attr); if (rc) { SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n"); return IBV_QPS_ERR + 1; } new_state = qp_attr.qp_state; rqpair->ibv_state = new_state; qp_attr.ah_attr.port_num = qp_attr.port_num; rc = nvmf_rdma_check_ibv_state(new_state); if (rc) { SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state); /* * IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8 * IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR */ return IBV_QPS_ERR + 1; } if (old_state != new_state) { spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0, (uintptr_t)rqpair->cm_id, new_state); } return new_state; } static void nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req, struct spdk_nvmf_rdma_transport *rtransport) { struct spdk_nvmf_rdma_request_data *data_wr; struct ibv_send_wr *next_send_wr; uint64_t req_wrid; rdma_req->num_outstanding_data_wr = 0; data_wr = &rdma_req->data; req_wrid = data_wr->wr.wr_id; while (data_wr && data_wr->wr.wr_id == req_wrid) { memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge); data_wr->wr.num_sge = 0; next_send_wr = data_wr->wr.next; if (data_wr != &rdma_req->data) { spdk_mempool_put(rtransport->data_wr_pool, data_wr); } data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL : SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr); } } static void nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req) { SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool); if (req->req.cmd) { SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode); } if (req->recv) { SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id); } } static void nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair) { int i; SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid); for (i = 0; i < rqpair->max_queue_depth; i++) { if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) { nvmf_rdma_dump_request(&rqpair->resources->reqs[i]); } } } static void nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources) { if (resources->cmds_mr) { ibv_dereg_mr(resources->cmds_mr); } if (resources->cpls_mr) { ibv_dereg_mr(resources->cpls_mr); } if (resources->bufs_mr) { ibv_dereg_mr(resources->bufs_mr); } spdk_free(resources->cmds); spdk_free(resources->cpls); spdk_free(resources->bufs); free(resources->reqs); free(resources->recvs); free(resources); } static struct spdk_nvmf_rdma_resources * nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts) { struct spdk_nvmf_rdma_resources *resources; struct spdk_nvmf_rdma_request *rdma_req; struct spdk_nvmf_rdma_recv *rdma_recv; struct ibv_qp *qp; struct ibv_srq *srq; uint32_t i; int rc; resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources)); if (!resources) { SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); return NULL; } resources->reqs = calloc(opts->max_queue_depth, sizeof(*resources->reqs)); resources->recvs = calloc(opts->max_queue_depth, sizeof(*resources->recvs)); resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds), 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls), 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); if (opts->in_capsule_data_size > 0) { resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size, 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA); } if (!resources->reqs || !resources->recvs || !resources->cmds || !resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) { SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n"); goto cleanup; } resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds), IBV_ACCESS_LOCAL_WRITE); resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls), 0); if (opts->in_capsule_data_size) { resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs, opts->max_queue_depth * opts->in_capsule_data_size, IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); } if (!resources->cmds_mr || !resources->cpls_mr || (opts->in_capsule_data_size && !resources->bufs_mr)) { goto cleanup; } SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Command Array: %p Length: %lx LKey: %x\n", resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds), resources->cmds_mr->lkey); SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Completion Array: %p Length: %lx LKey: %x\n", resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls), resources->cpls_mr->lkey); if (resources->bufs && resources->bufs_mr) { SPDK_DEBUGLOG(SPDK_LOG_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n", resources->bufs, opts->max_queue_depth * opts->in_capsule_data_size, resources->bufs_mr->lkey); } /* Initialize queues */ STAILQ_INIT(&resources->incoming_queue); STAILQ_INIT(&resources->free_queue); for (i = 0; i < opts->max_queue_depth; i++) { struct ibv_recv_wr *bad_wr = NULL; rdma_recv = &resources->recvs[i]; rdma_recv->qpair = opts->qpair; /* Set up memory to receive commands */ if (resources->bufs) { rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i * opts->in_capsule_data_size)); } rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV; rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i]; rdma_recv->sgl[0].length = sizeof(resources->cmds[i]); rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey; rdma_recv->wr.num_sge = 1; if (rdma_recv->buf && resources->bufs_mr) { rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf; rdma_recv->sgl[1].length = opts->in_capsule_data_size; rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey; rdma_recv->wr.num_sge++; } rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr; rdma_recv->wr.sg_list = rdma_recv->sgl; if (opts->shared) { srq = (struct ibv_srq *)opts->qp; rc = ibv_post_srq_recv(srq, &rdma_recv->wr, &bad_wr); } else { qp = (struct ibv_qp *)opts->qp; rc = ibv_post_recv(qp, &rdma_recv->wr, &bad_wr); } if (rc) { goto cleanup; } } for (i = 0; i < opts->max_queue_depth; i++) { rdma_req = &resources->reqs[i]; if (opts->qpair != NULL) { rdma_req->req.qpair = &opts->qpair->qpair; } else { rdma_req->req.qpair = NULL; } rdma_req->req.cmd = NULL; /* Set up memory to send responses */ rdma_req->req.rsp = &resources->cpls[i]; rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i]; rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]); rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey; rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND; rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr; rdma_req->rsp.wr.next = NULL; rdma_req->rsp.wr.opcode = IBV_WR_SEND; rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED; rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl; rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl); /* Set up memory for data buffers */ rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA; rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr; rdma_req->data.wr.next = NULL; rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED; rdma_req->data.wr.sg_list = rdma_req->data.sgl; rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl); /* Initialize request state to FREE */ rdma_req->state = RDMA_REQUEST_STATE_FREE; STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link); } return resources; cleanup: nvmf_rdma_resources_destroy(resources); return NULL; } static void nvmf_rdma_qpair_clean_ibv_events(struct spdk_nvmf_rdma_qpair *rqpair) { struct spdk_nvmf_rdma_ibv_event_ctx *ctx, *tctx; STAILQ_FOREACH_SAFE(ctx, &rqpair->ibv_events, link, tctx) { ctx->rqpair = NULL; /* Memory allocated for ctx is freed in nvmf_rdma_qpair_process_ibv_event */ STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); } } static void nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair) { struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp; struct ibv_recv_wr *bad_recv_wr = NULL; int rc; spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair->cm_id, 0); spdk_poller_unregister(&rqpair->destruct_poller); if (rqpair->qd != 0) { struct spdk_nvmf_qpair *qpair = &rqpair->qpair; struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); struct spdk_nvmf_rdma_request *req; uint32_t i, max_req_count = 0; SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd); if (rqpair->srq == NULL) { nvmf_rdma_dump_qpair_contents(rqpair); max_req_count = rqpair->max_queue_depth; } else if (rqpair->poller && rqpair->resources) { max_req_count = rqpair->poller->max_srq_depth; } SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Release incomplete requests\n"); for (i = 0; i < max_req_count; i++) { req = &rqpair->resources->reqs[i]; if (req->req.qpair == qpair && req->state != RDMA_REQUEST_STATE_FREE) { /* nvmf_rdma_request_process checks qpair ibv and internal state * and completes a request */ nvmf_rdma_request_process(rtransport, req); } } assert(rqpair->qd == 0); } if (rqpair->poller) { TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link); if (rqpair->srq != NULL && rqpair->resources != NULL) { /* Drop all received but unprocessed commands for this queue and return them to SRQ */ STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) { if (rqpair == rdma_recv->qpair) { STAILQ_REMOVE(&rqpair->resources->incoming_queue, rdma_recv, spdk_nvmf_rdma_recv, link); rc = ibv_post_srq_recv(rqpair->srq, &rdma_recv->wr, &bad_recv_wr); if (rc) { SPDK_ERRLOG("Unable to re-post rx descriptor\n"); } } } } } if (rqpair->cm_id) { if (rqpair->rdma_qp != NULL) { spdk_rdma_qp_destroy(rqpair->rdma_qp); rqpair->rdma_qp = NULL; } rdma_destroy_id(rqpair->cm_id); if (rqpair->poller != NULL && rqpair->srq == NULL) { rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth); } } if (rqpair->srq == NULL && rqpair->resources != NULL) { nvmf_rdma_resources_destroy(rqpair->resources); } nvmf_rdma_qpair_clean_ibv_events(rqpair); if (rqpair->destruct_channel) { spdk_put_io_channel(rqpair->destruct_channel); rqpair->destruct_channel = NULL; } free(rqpair); } static int nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device) { struct spdk_nvmf_rdma_poller *rpoller; int rc, num_cqe, required_num_wr; /* Enlarge CQ size dynamically */ rpoller = rqpair->poller; required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth); num_cqe = rpoller->num_cqe; if (num_cqe < required_num_wr) { num_cqe = spdk_max(num_cqe * 2, required_num_wr); num_cqe = spdk_min(num_cqe, device->attr.max_cqe); } if (rpoller->num_cqe != num_cqe) { if (required_num_wr > device->attr.max_cqe) { SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n", required_num_wr, device->attr.max_cqe); return -1; } SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe); rc = ibv_resize_cq(rpoller->cq, num_cqe); if (rc) { SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); return -1; } rpoller->num_cqe = num_cqe; } rpoller->required_num_wr = required_num_wr; return 0; } static int nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair) { struct spdk_nvmf_rdma_qpair *rqpair; struct spdk_nvmf_rdma_transport *rtransport; struct spdk_nvmf_transport *transport; struct spdk_nvmf_rdma_resource_opts opts; struct spdk_nvmf_rdma_device *device; struct spdk_rdma_qp_init_attr qp_init_attr = {}; rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); device = rqpair->device; qp_init_attr.qp_context = rqpair; qp_init_attr.pd = device->pd; qp_init_attr.send_cq = rqpair->poller->cq; qp_init_attr.recv_cq = rqpair->poller->cq; if (rqpair->srq) { qp_init_attr.srq = rqpair->srq; } else { qp_init_attr.cap.max_recv_wr = rqpair->max_queue_depth; } /* SEND, READ, and WRITE operations */ qp_init_attr.cap.max_send_wr = (uint32_t)rqpair->max_queue_depth * 2; qp_init_attr.cap.max_send_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_TX_SGE); qp_init_attr.cap.max_recv_sge = spdk_min((uint32_t)device->attr.max_sge, NVMF_DEFAULT_RX_SGE); if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) { SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n"); goto error; } rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &qp_init_attr); if (!rqpair->rdma_qp) { goto error; } rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2), qp_init_attr.cap.max_send_wr); rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, qp_init_attr.cap.max_send_sge); rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, qp_init_attr.cap.max_recv_sge); spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair->cm_id, 0); SPDK_DEBUGLOG(SPDK_LOG_RDMA, "New RDMA Connection: %p\n", qpair); if (rqpair->poller->srq == NULL) { rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); transport = &rtransport->transport; opts.qp = rqpair->rdma_qp->qp; opts.pd = rqpair->cm_id->pd; opts.qpair = rqpair; opts.shared = false; opts.max_queue_depth = rqpair->max_queue_depth; opts.in_capsule_data_size = transport->opts.in_capsule_data_size; rqpair->resources = nvmf_rdma_resources_create(&opts); if (!rqpair->resources) { SPDK_ERRLOG("Unable to allocate resources for receive queue.\n"); rdma_destroy_qp(rqpair->cm_id); goto error; } } else { rqpair->resources = rqpair->poller->resources; } rqpair->current_recv_depth = 0; STAILQ_INIT(&rqpair->pending_rdma_read_queue); STAILQ_INIT(&rqpair->pending_rdma_write_queue); return 0; error: rdma_destroy_id(rqpair->cm_id); rqpair->cm_id = NULL; return -1; } /* Append the given recv wr structure to the resource structs outstanding recvs list. */ /* This function accepts either a single wr or the first wr in a linked list. */ static void nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first) { struct ibv_recv_wr *last; last = first; while (last->next != NULL) { last = last->next; } if (rqpair->resources->recvs_to_post.first == NULL) { rqpair->resources->recvs_to_post.first = first; rqpair->resources->recvs_to_post.last = last; if (rqpair->srq == NULL) { STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link); } } else { rqpair->resources->recvs_to_post.last->next = first; rqpair->resources->recvs_to_post.last = last; } } static int request_transfer_in(struct spdk_nvmf_request *req) { struct spdk_nvmf_rdma_request *rdma_req; struct spdk_nvmf_qpair *qpair; struct spdk_nvmf_rdma_qpair *rqpair; qpair = req->qpair; rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER); assert(rdma_req != NULL); if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, &rdma_req->data.wr)) { STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); } rqpair->current_read_depth += rdma_req->num_outstanding_data_wr; rqpair->current_send_depth += rdma_req->num_outstanding_data_wr; return 0; } static int request_transfer_out(struct spdk_nvmf_request *req, int *data_posted) { int num_outstanding_data_wr = 0; struct spdk_nvmf_rdma_request *rdma_req; struct spdk_nvmf_qpair *qpair; struct spdk_nvmf_rdma_qpair *rqpair; struct spdk_nvme_cpl *rsp; struct ibv_send_wr *first = NULL; *data_posted = 0; qpair = req->qpair; rsp = &req->rsp->nvme_cpl; rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); /* Advance our sq_head pointer */ if (qpair->sq_head == qpair->sq_head_max) { qpair->sq_head = 0; } else { qpair->sq_head++; } rsp->sqhd = qpair->sq_head; /* queue the capsule for the recv buffer */ assert(rdma_req->recv != NULL); nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr); rdma_req->recv = NULL; assert(rqpair->current_recv_depth > 0); rqpair->current_recv_depth--; /* Build the response which consists of optional * RDMA WRITEs to transfer data, plus an RDMA SEND * containing the response. */ first = &rdma_req->rsp.wr; if (rsp->status.sc != SPDK_NVME_SC_SUCCESS) { /* On failure, data was not read from the controller. So clear the * number of outstanding data WRs to zero. */ rdma_req->num_outstanding_data_wr = 0; } else if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { first = &rdma_req->data.wr; *data_posted = 1; num_outstanding_data_wr = rdma_req->num_outstanding_data_wr; } if (spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, first)) { STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link); } /* +1 for the rsp wr */ rqpair->current_send_depth += num_outstanding_data_wr + 1; return 0; } static int nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair) { struct spdk_nvmf_rdma_accept_private_data accept_data; struct rdma_conn_param ctrlr_event_data = {}; int rc; accept_data.recfmt = 0; accept_data.crqsize = rqpair->max_queue_depth; ctrlr_event_data.private_data = &accept_data; ctrlr_event_data.private_data_len = sizeof(accept_data); if (id->ps == RDMA_PS_TCP) { ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */ ctrlr_event_data.initiator_depth = rqpair->max_read_depth; } /* Configure infinite retries for the initiator side qpair. * When using a shared receive queue on the target side, * we need to pass this value to the initiator to prevent the * initiator side NIC from completing SEND requests back to the * initiator with status rnr_retry_count_exceeded. */ if (rqpair->srq != NULL) { ctrlr_event_data.rnr_retry_count = 0x7; } /* When qpair is created without use of rdma cm API, an additional * information must be provided to initiator in the connection response: * whether qpair is using SRQ and its qp_num * Fields below are ignored by rdma cm if qpair has been * created using rdma cm API. */ ctrlr_event_data.srq = rqpair->srq ? 1 : 0; ctrlr_event_data.qp_num = rqpair->rdma_qp->qp->qp_num; rc = spdk_rdma_qp_accept(rqpair->rdma_qp, &ctrlr_event_data); if (rc) { SPDK_ERRLOG("Error %d on spdk_rdma_qp_accept\n", errno); } else { SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Sent back the accept\n"); } return rc; } static void nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error) { struct spdk_nvmf_rdma_reject_private_data rej_data; rej_data.recfmt = 0; rej_data.sts = error; rdma_reject(id, &rej_data, sizeof(rej_data)); } static int nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event) { struct spdk_nvmf_rdma_transport *rtransport; struct spdk_nvmf_rdma_qpair *rqpair = NULL; struct spdk_nvmf_rdma_port *port; struct rdma_conn_param *rdma_param = NULL; const struct spdk_nvmf_rdma_request_private_data *private_data = NULL; uint16_t max_queue_depth; uint16_t max_read_depth; rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); assert(event->id != NULL); /* Impossible. Can't even reject the connection. */ assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */ rdma_param = &event->param.conn; if (rdma_param->private_data == NULL || rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) { SPDK_ERRLOG("connect request: no private data provided\n"); nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH); return -1; } private_data = rdma_param->private_data; if (private_data->recfmt != 0) { SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n"); nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT); return -1; } SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n", event->id->verbs->device->name, event->id->verbs->device->dev_name); port = event->listen_id->context; SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Listen Id was %p with verbs %p. ListenAddr: %p\n", event->listen_id, event->listen_id->verbs, port); /* Figure out the supported queue depth. This is a multi-step process * that takes into account hardware maximums, host provided values, * and our target's internal memory limits */ SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Calculating Queue Depth\n"); /* Start with the maximum queue depth allowed by the target */ max_queue_depth = rtransport->transport.opts.max_queue_depth; max_read_depth = rtransport->transport.opts.max_queue_depth; SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Target Max Queue Depth: %d\n", rtransport->transport.opts.max_queue_depth); /* Next check the local NIC's hardware limitations */ SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n", port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom); max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr); max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom); /* Next check the remote NIC's hardware limitations */ SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n", rdma_param->initiator_depth, rdma_param->responder_resources); if (rdma_param->initiator_depth > 0) { max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth); } /* Finally check for the host software requested values, which are * optional. */ if (rdma_param->private_data != NULL && rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) { SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize); SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize); max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize); max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1); } SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n", max_queue_depth, max_read_depth); rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair)); if (rqpair == NULL) { SPDK_ERRLOG("Could not allocate new connection.\n"); nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); return -1; } rqpair->device = port->device; rqpair->max_queue_depth = max_queue_depth; rqpair->max_read_depth = max_read_depth; rqpair->cm_id = event->id; rqpair->listen_id = event->listen_id; rqpair->qpair.transport = transport; STAILQ_INIT(&rqpair->ibv_events); /* use qid from the private data to determine the qpair type qid will be set to the appropriate value when the controller is created */ rqpair->qpair.qid = private_data->qid; event->id->context = &rqpair->qpair; spdk_nvmf_tgt_new_qpair(transport->tgt, &rqpair->qpair); return 0; } static int nvmf_rdma_mem_notify(void *cb_ctx, struct spdk_mem_map *map, enum spdk_mem_map_notify_action action, void *vaddr, size_t size) { struct ibv_pd *pd = cb_ctx; struct ibv_mr *mr; int rc; switch (action) { case SPDK_MEM_MAP_NOTIFY_REGISTER: if (!g_nvmf_hooks.get_rkey) { mr = ibv_reg_mr(pd, vaddr, size, IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ | IBV_ACCESS_REMOTE_WRITE); if (mr == NULL) { SPDK_ERRLOG("ibv_reg_mr() failed\n"); return -1; } else { rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr); } } else { rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, g_nvmf_hooks.get_rkey(pd, vaddr, size)); } break; case SPDK_MEM_MAP_NOTIFY_UNREGISTER: if (!g_nvmf_hooks.get_rkey) { mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL); if (mr) { ibv_dereg_mr(mr); } } rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size); break; default: SPDK_UNREACHABLE(); } return rc; } static int nvmf_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2) { /* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */ return addr_1 == addr_2; } static inline void nvmf_rdma_setup_wr(struct ibv_send_wr *wr, struct ibv_send_wr *next, enum spdk_nvme_data_transfer xfer) { if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { wr->opcode = IBV_WR_RDMA_WRITE; wr->send_flags = 0; wr->next = next; } else if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { wr->opcode = IBV_WR_RDMA_READ; wr->send_flags = IBV_SEND_SIGNALED; wr->next = NULL; } else { assert(0); } } static int nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport, struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_sgl_descriptors) { struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES]; struct spdk_nvmf_rdma_request_data *current_data_wr; uint32_t i; if (num_sgl_descriptors > SPDK_NVMF_MAX_SGL_ENTRIES) { SPDK_ERRLOG("Requested too much entries (%u), the limit is %u\n", num_sgl_descriptors, SPDK_NVMF_MAX_SGL_ENTRIES); return -EINVAL; } if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) { return -ENOMEM; } current_data_wr = &rdma_req->data; for (i = 0; i < num_sgl_descriptors; i++) { nvmf_rdma_setup_wr(¤t_data_wr->wr, &work_requests[i]->wr, rdma_req->req.xfer); current_data_wr->wr.next = &work_requests[i]->wr; current_data_wr = work_requests[i]; current_data_wr->wr.sg_list = current_data_wr->sgl; current_data_wr->wr.wr_id = rdma_req->data.wr.wr_id; } nvmf_rdma_setup_wr(¤t_data_wr->wr, &rdma_req->rsp.wr, rdma_req->req.xfer); return 0; } static inline void nvmf_rdma_setup_request(struct spdk_nvmf_rdma_request *rdma_req) { struct ibv_send_wr *wr = &rdma_req->data.wr; struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; wr->wr.rdma.rkey = sgl->keyed.key; wr->wr.rdma.remote_addr = sgl->address; nvmf_rdma_setup_wr(wr, &rdma_req->rsp.wr, rdma_req->req.xfer); } static inline void nvmf_rdma_update_remote_addr(struct spdk_nvmf_rdma_request *rdma_req, uint32_t num_wrs) { struct ibv_send_wr *wr = &rdma_req->data.wr; struct spdk_nvme_sgl_descriptor *sgl = &rdma_req->req.cmd->nvme_cmd.dptr.sgl1; uint32_t i; int j; uint64_t remote_addr_offset = 0; for (i = 0; i < num_wrs; ++i) { wr->wr.rdma.rkey = sgl->keyed.key; wr->wr.rdma.remote_addr = sgl->address + remote_addr_offset; for (j = 0; j < wr->num_sge; ++j) { remote_addr_offset += wr->sg_list[j].length; } wr = wr->next; } } /* This function is used in the rare case that we have a buffer split over multiple memory regions. */ static int nvmf_rdma_replace_buffer(struct spdk_nvmf_rdma_poll_group *rgroup, void **buf) { struct spdk_nvmf_transport_poll_group *group = &rgroup->group; struct spdk_nvmf_transport *transport = group->transport; struct spdk_nvmf_transport_pg_cache_buf *old_buf; void *new_buf; if (!(STAILQ_EMPTY(&group->buf_cache))) { group->buf_cache_count--; new_buf = STAILQ_FIRST(&group->buf_cache); STAILQ_REMOVE_HEAD(&group->buf_cache, link); assert(*buf != NULL); } else { new_buf = spdk_mempool_get(transport->data_buf_pool); } if (*buf == NULL) { return -ENOMEM; } old_buf = *buf; STAILQ_INSERT_HEAD(&rgroup->retired_bufs, old_buf, link); *buf = new_buf; return 0; } static bool nvmf_rdma_get_lkey(struct spdk_nvmf_rdma_device *device, struct iovec *iov, uint32_t *_lkey) { uint64_t translation_len; uint32_t lkey; translation_len = iov->iov_len; if (!g_nvmf_hooks.get_rkey) { lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map, (uint64_t)iov->iov_base, &translation_len))->lkey; } else { lkey = spdk_mem_map_translate(device->map, (uint64_t)iov->iov_base, &translation_len); } if (spdk_unlikely(translation_len < iov->iov_len)) { return false; } *_lkey = lkey; return true; } static bool nvmf_rdma_fill_wr_sge(struct spdk_nvmf_rdma_device *device, struct iovec *iov, struct ibv_send_wr **_wr, uint32_t *_remaining_data_block, uint32_t *_offset, uint32_t *_num_extra_wrs, const struct spdk_dif_ctx *dif_ctx) { struct ibv_send_wr *wr = *_wr; struct ibv_sge *sg_ele = &wr->sg_list[wr->num_sge]; uint32_t lkey = 0; uint32_t remaining, data_block_size, md_size, sge_len; if (spdk_unlikely(!nvmf_rdma_get_lkey(device, iov, &lkey))) { /* This is a very rare case that can occur when using DPDK version < 19.05 */ SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions. Removing it from circulation.\n"); return false; } if (spdk_likely(!dif_ctx)) { sg_ele->lkey = lkey; sg_ele->addr = (uintptr_t)(iov->iov_base); sg_ele->length = iov->iov_len; wr->num_sge++; } else { remaining = iov->iov_len - *_offset; data_block_size = dif_ctx->block_size - dif_ctx->md_size; md_size = dif_ctx->md_size; while (remaining) { if (wr->num_sge >= SPDK_NVMF_MAX_SGL_ENTRIES) { if (*_num_extra_wrs > 0 && wr->next) { *_wr = wr->next; wr = *_wr; wr->num_sge = 0; sg_ele = &wr->sg_list[wr->num_sge]; (*_num_extra_wrs)--; } else { break; } } sg_ele->lkey = lkey; sg_ele->addr = (uintptr_t)((char *)iov->iov_base + *_offset); sge_len = spdk_min(remaining, *_remaining_data_block); sg_ele->length = sge_len; remaining -= sge_len; *_remaining_data_block -= sge_len; *_offset += sge_len; sg_ele++; wr->num_sge++; if (*_remaining_data_block == 0) { /* skip metadata */ *_offset += md_size; /* Metadata that do not fit this IO buffer will be included in the next IO buffer */ remaining -= spdk_min(remaining, md_size); *_remaining_data_block = data_block_size; } if (remaining == 0) { /* By subtracting the size of the last IOV from the offset, we ensure that we skip the remaining metadata bits at the beginning of the next buffer */ *_offset -= iov->iov_len; } } } return true; } static int nvmf_rdma_fill_wr_sgl(struct spdk_nvmf_rdma_poll_group *rgroup, struct spdk_nvmf_rdma_device *device, struct spdk_nvmf_rdma_request *rdma_req, struct ibv_send_wr *wr, uint32_t length, uint32_t num_extra_wrs) { struct spdk_nvmf_request *req = &rdma_req->req; struct spdk_dif_ctx *dif_ctx = NULL; uint32_t remaining_data_block = 0; uint32_t offset = 0; if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) { dif_ctx = &rdma_req->req.dif.dif_ctx; remaining_data_block = dif_ctx->block_size - dif_ctx->md_size; } wr->num_sge = 0; while (length && (num_extra_wrs || wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES)) { while (spdk_unlikely(!nvmf_rdma_fill_wr_sge(device, &req->iov[rdma_req->iovpos], &wr, &remaining_data_block, &offset, &num_extra_wrs, dif_ctx))) { if (nvmf_rdma_replace_buffer(rgroup, &req->buffers[rdma_req->iovpos]) == -ENOMEM) { return -ENOMEM; } req->iov[rdma_req->iovpos].iov_base = (void *)((uintptr_t)(req->buffers[rdma_req->iovpos] + NVMF_DATA_BUFFER_MASK) & ~NVMF_DATA_BUFFER_MASK); } length -= req->iov[rdma_req->iovpos].iov_len; rdma_req->iovpos++; } if (length) { SPDK_ERRLOG("Not enough SG entries to hold data buffer\n"); return -EINVAL; } return 0; } static inline uint32_t nvmf_rdma_calc_num_wrs(uint32_t length, uint32_t io_unit_size, uint32_t block_size) { /* estimate the number of SG entries and WRs needed to process the request */ uint32_t num_sge = 0; uint32_t i; uint32_t num_buffers = SPDK_CEIL_DIV(length, io_unit_size); for (i = 0; i < num_buffers && length > 0; i++) { uint32_t buffer_len = spdk_min(length, io_unit_size); uint32_t num_sge_in_block = SPDK_CEIL_DIV(buffer_len, block_size); if (num_sge_in_block * block_size > buffer_len) { ++num_sge_in_block; } num_sge += num_sge_in_block; length -= buffer_len; } return SPDK_CEIL_DIV(num_sge, SPDK_NVMF_MAX_SGL_ENTRIES); } static int nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport, struct spdk_nvmf_rdma_device *device, struct spdk_nvmf_rdma_request *rdma_req, uint32_t length) { struct spdk_nvmf_rdma_qpair *rqpair; struct spdk_nvmf_rdma_poll_group *rgroup; struct spdk_nvmf_request *req = &rdma_req->req; struct ibv_send_wr *wr = &rdma_req->data.wr; int rc; uint32_t num_wrs = 1; rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair); rgroup = rqpair->poller->group; /* rdma wr specifics */ nvmf_rdma_setup_request(rdma_req); rc = spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport, length); if (rc != 0) { return rc; } assert(req->iovcnt <= rqpair->max_send_sge); rdma_req->iovpos = 0; if (spdk_unlikely(req->dif.dif_insert_or_strip)) { num_wrs = nvmf_rdma_calc_num_wrs(length, rtransport->transport.opts.io_unit_size, req->dif.dif_ctx.block_size); if (num_wrs > 1) { rc = nvmf_request_alloc_wrs(rtransport, rdma_req, num_wrs - 1); if (rc != 0) { goto err_exit; } } } rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, wr, length, num_wrs - 1); if (spdk_unlikely(rc != 0)) { goto err_exit; } if (spdk_unlikely(num_wrs > 1)) { nvmf_rdma_update_remote_addr(rdma_req, num_wrs); } /* set the number of outstanding data WRs for this request. */ rdma_req->num_outstanding_data_wr = num_wrs; return rc; err_exit: spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); nvmf_rdma_request_free_data(rdma_req, rtransport); req->iovcnt = 0; return rc; } static int nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport, struct spdk_nvmf_rdma_device *device, struct spdk_nvmf_rdma_request *rdma_req) { struct spdk_nvmf_rdma_qpair *rqpair; struct spdk_nvmf_rdma_poll_group *rgroup; struct ibv_send_wr *current_wr; struct spdk_nvmf_request *req = &rdma_req->req; struct spdk_nvme_sgl_descriptor *inline_segment, *desc; uint32_t num_sgl_descriptors; uint32_t lengths[SPDK_NVMF_MAX_SGL_ENTRIES]; uint32_t i; int rc; rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); rgroup = rqpair->poller->group; inline_segment = &req->cmd->nvme_cmd.dptr.sgl1; assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT); assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET); num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor); assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES); if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) { return -ENOMEM; } desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; for (i = 0; i < num_sgl_descriptors; i++) { if (spdk_likely(!req->dif.dif_insert_or_strip)) { lengths[i] = desc->keyed.length; } else { req->dif.orig_length += desc->keyed.length; lengths[i] = spdk_dif_get_length_with_md(desc->keyed.length, &req->dif.dif_ctx); req->dif.elba_length += lengths[i]; } desc++; } rc = spdk_nvmf_request_get_buffers_multi(req, &rgroup->group, &rtransport->transport, lengths, num_sgl_descriptors); if (rc != 0) { nvmf_rdma_request_free_data(rdma_req, rtransport); return rc; } /* The first WR must always be the embedded data WR. This is how we unwind them later. */ current_wr = &rdma_req->data.wr; assert(current_wr != NULL); req->length = 0; rdma_req->iovpos = 0; desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address; for (i = 0; i < num_sgl_descriptors; i++) { /* The descriptors must be keyed data block descriptors with an address, not an offset. */ if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK || desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) { rc = -EINVAL; goto err_exit; } current_wr->num_sge = 0; rc = nvmf_rdma_fill_wr_sgl(rgroup, device, rdma_req, current_wr, lengths[i], 0); if (rc != 0) { rc = -ENOMEM; goto err_exit; } req->length += desc->keyed.length; current_wr->wr.rdma.rkey = desc->keyed.key; current_wr->wr.rdma.remote_addr = desc->address; current_wr = current_wr->next; desc++; } #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL /* Go back to the last descriptor in the list. */ desc--; if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; rdma_req->rsp.wr.imm_data = desc->keyed.key; } } #endif rdma_req->num_outstanding_data_wr = num_sgl_descriptors; return 0; err_exit: spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport); nvmf_rdma_request_free_data(rdma_req, rtransport); return rc; } static int nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport, struct spdk_nvmf_rdma_device *device, struct spdk_nvmf_rdma_request *rdma_req) { struct spdk_nvmf_request *req = &rdma_req->req; struct spdk_nvme_cpl *rsp; struct spdk_nvme_sgl_descriptor *sgl; int rc; uint32_t length; rsp = &req->rsp->nvme_cpl; sgl = &req->cmd->nvme_cmd.dptr.sgl1; if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK && (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS || sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) { length = sgl->keyed.length; if (length > rtransport->transport.opts.max_io_size) { SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n", length, rtransport->transport.opts.max_io_size); rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; return -1; } #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) { if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) { rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV; rdma_req->rsp.wr.imm_data = sgl->keyed.key; } } #endif /* fill request length and populate iovs */ req->length = length; if (spdk_unlikely(req->dif.dif_insert_or_strip)) { req->dif.orig_length = length; length = spdk_dif_get_length_with_md(length, &req->dif.dif_ctx); req->dif.elba_length = length; } rc = nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req, length); if (spdk_unlikely(rc < 0)) { if (rc == -EINVAL) { SPDK_ERRLOG("SGL length exceeds the max I/O size\n"); rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; return -1; } /* No available buffers. Queue this request up. */ SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req); return 0; } /* backward compatible */ req->data = req->iov[0].iov_base; SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req, req->iovcnt); return 0; } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK && sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { uint64_t offset = sgl->address; uint32_t max_len = rtransport->transport.opts.in_capsule_data_size; SPDK_DEBUGLOG(SPDK_LOG_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n", offset, sgl->unkeyed.length); if (offset > max_len) { SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n", offset, max_len); rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET; return -1; } max_len -= (uint32_t)offset; if (sgl->unkeyed.length > max_len) { SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n", sgl->unkeyed.length, max_len); rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; return -1; } rdma_req->num_outstanding_data_wr = 0; req->data = rdma_req->recv->buf + offset; req->data_from_pool = false; req->length = sgl->unkeyed.length; req->iov[0].iov_base = req->data; req->iov[0].iov_len = req->length; req->iovcnt = 1; return 0; } else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT && sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) { rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req); if (rc == -ENOMEM) { SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req); return 0; } else if (rc == -EINVAL) { SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n"); rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID; return -1; } /* backward compatible */ req->data = req->iov[0].iov_base; SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req, req->iovcnt); return 0; } SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n", sgl->generic.type, sgl->generic.subtype); rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID; return -1; } static void _nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req, struct spdk_nvmf_rdma_transport *rtransport) { struct spdk_nvmf_rdma_qpair *rqpair; struct spdk_nvmf_rdma_poll_group *rgroup; rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); if (rdma_req->req.data_from_pool) { rgroup = rqpair->poller->group; spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport); } nvmf_rdma_request_free_data(rdma_req, rtransport); rdma_req->req.length = 0; rdma_req->req.iovcnt = 0; rdma_req->req.data = NULL; rdma_req->rsp.wr.next = NULL; rdma_req->data.wr.next = NULL; memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif)); rqpair->qd--; STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link); rdma_req->state = RDMA_REQUEST_STATE_FREE; } bool nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport, struct spdk_nvmf_rdma_request *rdma_req) { struct spdk_nvmf_rdma_qpair *rqpair; struct spdk_nvmf_rdma_device *device; struct spdk_nvmf_rdma_poll_group *rgroup; struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; int rc; struct spdk_nvmf_rdma_recv *rdma_recv; enum spdk_nvmf_rdma_request_state prev_state; bool progress = false; int data_posted; uint32_t num_blocks; rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); device = rqpair->device; rgroup = rqpair->poller->group; assert(rdma_req->state != RDMA_REQUEST_STATE_FREE); /* If the queue pair is in an error state, force the request to the completed state * to release resources. */ if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) { STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link); } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) { STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link); } else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) { STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); } rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; } /* The loop here is to allow for several back-to-back state changes. */ do { prev_state = rdma_req->state; SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p entering state %d\n", rdma_req, prev_state); switch (rdma_req->state) { case RDMA_REQUEST_STATE_FREE: /* Some external code must kick a request into RDMA_REQUEST_STATE_NEW * to escape this state. */ break; case RDMA_REQUEST_STATE_NEW: spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0, (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); rdma_recv = rdma_req->recv; /* The first element of the SGL is the NVMe command */ rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr; memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp)); if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; break; } if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->req.dif.dif_ctx))) { rdma_req->req.dif.dif_insert_or_strip = true; } #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL rdma_req->rsp.wr.opcode = IBV_WR_SEND; rdma_req->rsp.wr.imm_data = 0; #endif /* The next state transition depends on the data transfer needs of this request. */ rdma_req->req.xfer = spdk_nvmf_req_get_xfer(&rdma_req->req); /* If no data to transfer, ready to execute. */ if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) { rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; break; } rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER; STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link); break; case RDMA_REQUEST_STATE_NEED_BUFFER: spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0, (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE); if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) { /* This request needs to wait in line to obtain a buffer */ break; } /* Try to get a data buffer */ rc = nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req); if (rc < 0) { STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; break; } if (!rdma_req->req.data) { /* No buffers available. */ rgroup->stat.pending_data_buffer++; break; } STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link); /* If data is transferring from host to controller and the data didn't * arrive using in capsule data, we need to do a transfer from the host. */ if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && rdma_req->req.data_from_pool) { STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link); rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING; break; } rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; break; case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0, (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) { /* This request needs to wait in line to perform RDMA */ break; } if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth || rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) { /* We can only have so many WRs outstanding. we have to wait until some finish. */ rqpair->poller->stat.pending_rdma_read++; break; } /* We have already verified that this request is the head of the queue. */ STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link); rc = request_transfer_in(&rdma_req->req); if (!rc) { rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER; } else { rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; } break; case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0, (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); /* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE * to escape this state. */ break; case RDMA_REQUEST_STATE_READY_TO_EXECUTE: spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0, (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) { if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { /* generate DIF for write operation */ num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); assert(num_blocks > 0); rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, &rdma_req->req.dif.dif_ctx); if (rc != 0) { SPDK_ERRLOG("DIF generation failed\n"); rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; nvmf_rdma_start_disconnect(rqpair); break; } } assert(rdma_req->req.dif.elba_length >= rdma_req->req.length); /* set extended length before IO operation */ rdma_req->req.length = rdma_req->req.dif.elba_length; } rdma_req->state = RDMA_REQUEST_STATE_EXECUTING; spdk_nvmf_request_exec(&rdma_req->req); break; case RDMA_REQUEST_STATE_EXECUTING: spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0, (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); /* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED * to escape this state. */ break; case RDMA_REQUEST_STATE_EXECUTED: spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0, (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); if (rsp->status.sc == SPDK_NVME_SC_SUCCESS && rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link); rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING; } else { rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; } if (spdk_unlikely(rdma_req->req.dif.dif_insert_or_strip)) { /* restore the original length */ rdma_req->req.length = rdma_req->req.dif.orig_length; if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) { struct spdk_dif_error error_blk; num_blocks = SPDK_CEIL_DIV(rdma_req->req.dif.elba_length, rdma_req->req.dif.dif_ctx.block_size); rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, &rdma_req->req.dif.dif_ctx, &error_blk); if (rc) { struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl; SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type, error_blk.err_offset); rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR; rsp->status.sc = nvmf_rdma_dif_error_to_compl_status(error_blk.err_type); rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link); } } } break; case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0, (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) { /* This request needs to wait in line to perform RDMA */ break; } if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) > rqpair->max_send_depth) { /* We can only have so many WRs outstanding. we have to wait until some finish. * +1 since each request has an additional wr in the resp. */ rqpair->poller->stat.pending_rdma_write++; break; } /* We have already verified that this request is the head of the queue. */ STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link); /* The data transfer will be kicked off from * RDMA_REQUEST_STATE_READY_TO_COMPLETE state. */ rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; break; case RDMA_REQUEST_STATE_READY_TO_COMPLETE: spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0, (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); rc = request_transfer_out(&rdma_req->req, &data_posted); assert(rc == 0); /* No good way to handle this currently */ if (rc) { rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; } else { rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST : RDMA_REQUEST_STATE_COMPLETING; } break; case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0, (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED * to escape this state. */ break; case RDMA_REQUEST_STATE_COMPLETING: spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0, (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); /* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED * to escape this state. */ break; case RDMA_REQUEST_STATE_COMPLETED: spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0, (uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id); rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc; _nvmf_rdma_request_free(rdma_req, rtransport); break; case RDMA_REQUEST_NUM_STATES: default: assert(0); break; } if (rdma_req->state != prev_state) { progress = true; } } while (rdma_req->state != prev_state); return progress; } /* Public API callbacks begin here */ #define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128 #define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128 #define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096 #define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128 #define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096 #define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072 #define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES) #define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095 #define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32 #define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false #define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false #define SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG 100 #define SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC 1 static void nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts) { opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH; opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR; opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE; opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE; opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE; opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH; opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS; opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE; opts->max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH; opts->no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ; opts->dif_insert_or_strip = SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP; opts->acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; opts->abort_timeout_sec = SPDK_NVMF_RDMA_DEFAULT_ABORT_TIMEOUT_SEC; } const struct spdk_mem_map_ops g_nvmf_rdma_map_ops = { .notify_cb = nvmf_rdma_mem_notify, .are_contiguous = nvmf_rdma_check_contiguous_entries }; static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport); static struct spdk_nvmf_transport * nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts) { int rc; struct spdk_nvmf_rdma_transport *rtransport; struct spdk_nvmf_rdma_device *device, *tmp; struct ibv_context **contexts; uint32_t i; int flag; uint32_t sge_count; uint32_t min_shared_buffers; int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES; pthread_mutexattr_t attr; rtransport = calloc(1, sizeof(*rtransport)); if (!rtransport) { return NULL; } if (pthread_mutexattr_init(&attr)) { SPDK_ERRLOG("pthread_mutexattr_init() failed\n"); free(rtransport); return NULL; } if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) { SPDK_ERRLOG("pthread_mutexattr_settype() failed\n"); pthread_mutexattr_destroy(&attr); free(rtransport); return NULL; } if (pthread_mutex_init(&rtransport->lock, &attr)) { SPDK_ERRLOG("pthread_mutex_init() failed\n"); pthread_mutexattr_destroy(&attr); free(rtransport); return NULL; } pthread_mutexattr_destroy(&attr); TAILQ_INIT(&rtransport->devices); TAILQ_INIT(&rtransport->ports); TAILQ_INIT(&rtransport->poll_groups); rtransport->transport.ops = &spdk_nvmf_transport_rdma; SPDK_INFOLOG(SPDK_LOG_RDMA, "*** RDMA Transport Init ***\n" " Transport opts: max_ioq_depth=%d, max_io_size=%d,\n" " max_io_qpairs_per_ctrlr=%d, io_unit_size=%d,\n" " in_capsule_data_size=%d, max_aq_depth=%d,\n" " num_shared_buffers=%d, max_srq_depth=%d, no_srq=%d," " acceptor_backlog=%d, abort_timeout_sec=%d\n", opts->max_queue_depth, opts->max_io_size, opts->max_qpairs_per_ctrlr - 1, opts->io_unit_size, opts->in_capsule_data_size, opts->max_aq_depth, opts->num_shared_buffers, opts->max_srq_depth, opts->no_srq, opts->acceptor_backlog, opts->abort_timeout_sec); /* I/O unit size cannot be larger than max I/O size */ if (opts->io_unit_size > opts->max_io_size) { opts->io_unit_size = opts->max_io_size; } if (opts->acceptor_backlog <= 0) { SPDK_ERRLOG("The acceptor backlog cannot be less than 1, setting to the default value of (%d).\n", SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG); opts->acceptor_backlog = SPDK_NVMF_RDMA_ACCEPTOR_BACKLOG; } if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) { SPDK_ERRLOG("The number of shared data buffers (%d) is less than" "the minimum number required to guarantee that forward progress can be made (%d)\n", opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2)); nvmf_rdma_destroy(&rtransport->transport); return NULL; } min_shared_buffers = spdk_thread_get_count() * opts->buf_cache_size; if (min_shared_buffers > opts->num_shared_buffers) { SPDK_ERRLOG("There are not enough buffers to satisfy" "per-poll group caches for each thread. (%" PRIu32 ")" "supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers); SPDK_ERRLOG("Please specify a larger number of shared buffers\n"); nvmf_rdma_destroy(&rtransport->transport); return NULL; } sge_count = opts->max_io_size / opts->io_unit_size; if (sge_count > NVMF_DEFAULT_TX_SGE) { SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size); nvmf_rdma_destroy(&rtransport->transport); return NULL; } rtransport->event_channel = rdma_create_event_channel(); if (rtransport->event_channel == NULL) { SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno)); nvmf_rdma_destroy(&rtransport->transport); return NULL; } flag = fcntl(rtransport->event_channel->fd, F_GETFL); if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n", rtransport->event_channel->fd, spdk_strerror(errno)); nvmf_rdma_destroy(&rtransport->transport); return NULL; } rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data", opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES, sizeof(struct spdk_nvmf_rdma_request_data), SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, SPDK_ENV_SOCKET_ID_ANY); if (!rtransport->data_wr_pool) { SPDK_ERRLOG("Unable to allocate work request pool for poll group\n"); nvmf_rdma_destroy(&rtransport->transport); return NULL; } contexts = rdma_get_devices(NULL); if (contexts == NULL) { SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); nvmf_rdma_destroy(&rtransport->transport); return NULL; } i = 0; rc = 0; while (contexts[i] != NULL) { device = calloc(1, sizeof(*device)); if (!device) { SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n"); rc = -ENOMEM; break; } device->context = contexts[i]; rc = ibv_query_device(device->context, &device->attr); if (rc < 0) { SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); free(device); break; } max_device_sge = spdk_min(max_device_sge, device->attr.max_sge); #ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) { SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,"); SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id); } /** * The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE. * The Soft-RoCE RXE driver does not currently support send with invalidate, * but incorrectly reports that it does. There are changes making their way * through the kernel now that will enable this feature. When they are merged, * we can conditionally enable this feature. * * TODO: enable this for versions of the kernel rxe driver that support it. */ if (device->attr.vendor_id == 0) { device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS); } #endif /* set up device context async ev fd as NON_BLOCKING */ flag = fcntl(device->context->async_fd, F_GETFL); rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK); if (rc < 0) { SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n"); free(device); break; } TAILQ_INSERT_TAIL(&rtransport->devices, device, link); i++; if (g_nvmf_hooks.get_ibv_pd) { device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context); } else { device->pd = ibv_alloc_pd(device->context); } if (!device->pd) { SPDK_ERRLOG("Unable to allocate protection domain.\n"); rc = -ENOMEM; break; } assert(device->map == NULL); device->map = spdk_mem_map_alloc(0, &g_nvmf_rdma_map_ops, device->pd); if (!device->map) { SPDK_ERRLOG("Unable to allocate memory map for listen address\n"); rc = -ENOMEM; break; } assert(device->map != NULL); assert(device->pd != NULL); } rdma_free_devices(contexts); if (opts->io_unit_size * max_device_sge < opts->max_io_size) { /* divide and round up. */ opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge; /* round up to the nearest 4k. */ opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK; opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE); SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n", opts->io_unit_size); } if (rc < 0) { nvmf_rdma_destroy(&rtransport->transport); return NULL; } /* Set up poll descriptor array to monitor events from RDMA and IB * in a single poll syscall */ rtransport->npoll_fds = i + 1; i = 0; rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd)); if (rtransport->poll_fds == NULL) { SPDK_ERRLOG("poll_fds allocation failed\n"); nvmf_rdma_destroy(&rtransport->transport); return NULL; } rtransport->poll_fds[i].fd = rtransport->event_channel->fd; rtransport->poll_fds[i++].events = POLLIN; TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { rtransport->poll_fds[i].fd = device->context->async_fd; rtransport->poll_fds[i++].events = POLLIN; } return &rtransport->transport; } static int nvmf_rdma_destroy(struct spdk_nvmf_transport *transport) { struct spdk_nvmf_rdma_transport *rtransport; struct spdk_nvmf_rdma_port *port, *port_tmp; struct spdk_nvmf_rdma_device *device, *device_tmp; rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) { TAILQ_REMOVE(&rtransport->ports, port, link); rdma_destroy_id(port->id); free(port); } if (rtransport->poll_fds != NULL) { free(rtransport->poll_fds); } if (rtransport->event_channel != NULL) { rdma_destroy_event_channel(rtransport->event_channel); } TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) { TAILQ_REMOVE(&rtransport->devices, device, link); if (device->map) { spdk_mem_map_free(&device->map); } if (device->pd) { if (!g_nvmf_hooks.get_ibv_pd) { ibv_dealloc_pd(device->pd); } } free(device); } if (rtransport->data_wr_pool != NULL) { if (spdk_mempool_count(rtransport->data_wr_pool) != (transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) { SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n", spdk_mempool_count(rtransport->data_wr_pool), transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES); } } spdk_mempool_free(rtransport->data_wr_pool); pthread_mutex_destroy(&rtransport->lock); free(rtransport); return 0; } static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, struct spdk_nvme_transport_id *trid, bool peer); static int nvmf_rdma_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid) { struct spdk_nvmf_rdma_transport *rtransport; struct spdk_nvmf_rdma_device *device; struct spdk_nvmf_rdma_port *port; struct addrinfo *res; struct addrinfo hints; int family; int rc; rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); assert(rtransport->event_channel != NULL); pthread_mutex_lock(&rtransport->lock); port = calloc(1, sizeof(*port)); if (!port) { SPDK_ERRLOG("Port allocation failed\n"); pthread_mutex_unlock(&rtransport->lock); return -ENOMEM; } port->trid = trid; switch (trid->adrfam) { case SPDK_NVMF_ADRFAM_IPV4: family = AF_INET; break; case SPDK_NVMF_ADRFAM_IPV6: family = AF_INET6; break; default: SPDK_ERRLOG("Unhandled ADRFAM %d\n", trid->adrfam); free(port); pthread_mutex_unlock(&rtransport->lock); return -EINVAL; } memset(&hints, 0, sizeof(hints)); hints.ai_family = family; hints.ai_flags = AI_NUMERICSERV; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = 0; rc = getaddrinfo(trid->traddr, trid->trsvcid, &hints, &res); if (rc) { SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc); free(port); pthread_mutex_unlock(&rtransport->lock); return -EINVAL; } rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP); if (rc < 0) { SPDK_ERRLOG("rdma_create_id() failed\n"); freeaddrinfo(res); free(port); pthread_mutex_unlock(&rtransport->lock); return rc; } rc = rdma_bind_addr(port->id, res->ai_addr); freeaddrinfo(res); if (rc < 0) { SPDK_ERRLOG("rdma_bind_addr() failed\n"); rdma_destroy_id(port->id); free(port); pthread_mutex_unlock(&rtransport->lock); return rc; } if (!port->id->verbs) { SPDK_ERRLOG("ibv_context is null\n"); rdma_destroy_id(port->id); free(port); pthread_mutex_unlock(&rtransport->lock); return -1; } rc = rdma_listen(port->id, transport->opts.acceptor_backlog); if (rc < 0) { SPDK_ERRLOG("rdma_listen() failed\n"); rdma_destroy_id(port->id); free(port); pthread_mutex_unlock(&rtransport->lock); return rc; } TAILQ_FOREACH(device, &rtransport->devices, link) { if (device->context == port->id->verbs) { port->device = device; break; } } if (!port->device) { SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n", port->id->verbs); rdma_destroy_id(port->id); free(port); pthread_mutex_unlock(&rtransport->lock); return -EINVAL; } SPDK_NOTICELOG("*** NVMe/RDMA Target Listening on %s port %s ***\n", trid->traddr, trid->trsvcid); TAILQ_INSERT_TAIL(&rtransport->ports, port, link); pthread_mutex_unlock(&rtransport->lock); return 0; } static void nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport, const struct spdk_nvme_transport_id *trid) { struct spdk_nvmf_rdma_transport *rtransport; struct spdk_nvmf_rdma_port *port, *tmp; rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); pthread_mutex_lock(&rtransport->lock); TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) { if (spdk_nvme_transport_id_compare(port->trid, trid) == 0) { TAILQ_REMOVE(&rtransport->ports, port, link); rdma_destroy_id(port->id); free(port); break; } } pthread_mutex_unlock(&rtransport->lock); } static void nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport, struct spdk_nvmf_rdma_qpair *rqpair, bool drain) { struct spdk_nvmf_request *req, *tmp; struct spdk_nvmf_rdma_request *rdma_req, *req_tmp; struct spdk_nvmf_rdma_resources *resources; /* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */ STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) { if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { break; } } /* Then RDMA writes since reads have stronger restrictions than writes */ STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) { if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { break; } } /* The second highest priority is I/O waiting on memory buffers. */ STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) { rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); if (nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) { break; } } resources = rqpair->resources; while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) { rdma_req = STAILQ_FIRST(&resources->free_queue); STAILQ_REMOVE_HEAD(&resources->free_queue, state_link); rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue); STAILQ_REMOVE_HEAD(&resources->incoming_queue, link); if (rqpair->srq != NULL) { rdma_req->req.qpair = &rdma_req->recv->qpair->qpair; rdma_req->recv->qpair->qd++; } else { rqpair->qd++; } rdma_req->receive_tsc = rdma_req->recv->receive_tsc; rdma_req->state = RDMA_REQUEST_STATE_NEW; if (nvmf_rdma_request_process(rtransport, rdma_req) == false) { break; } } if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) { rqpair->poller->stat.pending_free_request++; } } static void _nvmf_rdma_qpair_disconnect(void *ctx) { struct spdk_nvmf_qpair *qpair = ctx; spdk_nvmf_qpair_disconnect(qpair, NULL, NULL); } static void _nvmf_rdma_try_disconnect(void *ctx) { struct spdk_nvmf_qpair *qpair = ctx; struct spdk_nvmf_poll_group *group; /* Read the group out of the qpair. This is normally set and accessed only from * the thread that created the group. Here, we're not on that thread necessarily. * The data member qpair->group begins it's life as NULL and then is assigned to * a pointer and never changes. So fortunately reading this and checking for * non-NULL is thread safe in the x86_64 memory model. */ group = qpair->group; if (group == NULL) { /* The qpair hasn't been assigned to a group yet, so we can't * process a disconnect. Send a message to ourself and try again. */ spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_try_disconnect, qpair); return; } spdk_thread_send_msg(group->thread, _nvmf_rdma_qpair_disconnect, qpair); } static inline void nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair) { if (!__atomic_test_and_set(&rqpair->disconnect_started, __ATOMIC_RELAXED)) { _nvmf_rdma_try_disconnect(&rqpair->qpair); } } static void nvmf_rdma_destroy_drained_qpair(void *ctx) { struct spdk_nvmf_rdma_qpair *rqpair = ctx; struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, struct spdk_nvmf_rdma_transport, transport); /* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */ if (rqpair->current_send_depth != 0) { return; } if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) { return; } if (rqpair->srq != NULL && rqpair->last_wqe_reached == false) { return; } nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); /* Qpair will be destroyed after nvmf layer closes this qpair */ if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ERROR) { return; } nvmf_rdma_qpair_destroy(rqpair); } static int nvmf_rdma_disconnect(struct rdma_cm_event *evt) { struct spdk_nvmf_qpair *qpair; struct spdk_nvmf_rdma_qpair *rqpair; if (evt->id == NULL) { SPDK_ERRLOG("disconnect request: missing cm_id\n"); return -1; } qpair = evt->id->context; if (qpair == NULL) { SPDK_ERRLOG("disconnect request: no active connection\n"); return -1; } rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair->cm_id, 0); nvmf_rdma_start_disconnect(rqpair); return 0; } #ifdef DEBUG static const char *CM_EVENT_STR[] = { "RDMA_CM_EVENT_ADDR_RESOLVED", "RDMA_CM_EVENT_ADDR_ERROR", "RDMA_CM_EVENT_ROUTE_RESOLVED", "RDMA_CM_EVENT_ROUTE_ERROR", "RDMA_CM_EVENT_CONNECT_REQUEST", "RDMA_CM_EVENT_CONNECT_RESPONSE", "RDMA_CM_EVENT_CONNECT_ERROR", "RDMA_CM_EVENT_UNREACHABLE", "RDMA_CM_EVENT_REJECTED", "RDMA_CM_EVENT_ESTABLISHED", "RDMA_CM_EVENT_DISCONNECTED", "RDMA_CM_EVENT_DEVICE_REMOVAL", "RDMA_CM_EVENT_MULTICAST_JOIN", "RDMA_CM_EVENT_MULTICAST_ERROR", "RDMA_CM_EVENT_ADDR_CHANGE", "RDMA_CM_EVENT_TIMEWAIT_EXIT" }; #endif /* DEBUG */ static void nvmf_rdma_disconnect_qpairs_on_port(struct spdk_nvmf_rdma_transport *rtransport, struct spdk_nvmf_rdma_port *port) { struct spdk_nvmf_rdma_poll_group *rgroup; struct spdk_nvmf_rdma_poller *rpoller; struct spdk_nvmf_rdma_qpair *rqpair; TAILQ_FOREACH(rgroup, &rtransport->poll_groups, link) { TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) { if (rqpair->listen_id == port->id) { nvmf_rdma_start_disconnect(rqpair); } } } } } static bool nvmf_rdma_handle_cm_event_addr_change(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event) { const struct spdk_nvme_transport_id *trid; struct spdk_nvmf_rdma_port *port; struct spdk_nvmf_rdma_transport *rtransport; bool event_acked = false; rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); TAILQ_FOREACH(port, &rtransport->ports, link) { if (port->id == event->id) { SPDK_ERRLOG("ADDR_CHANGE: IP %s:%s migrated\n", port->trid->traddr, port->trid->trsvcid); rdma_ack_cm_event(event); event_acked = true; trid = port->trid; break; } } if (event_acked) { nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); nvmf_rdma_stop_listen(transport, trid); nvmf_rdma_listen(transport, trid); } return event_acked; } static void nvmf_rdma_handle_cm_event_port_removal(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event) { struct spdk_nvmf_rdma_port *port; struct spdk_nvmf_rdma_transport *rtransport; port = event->id->context; rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); SPDK_NOTICELOG("Port %s:%s is being removed\n", port->trid->traddr, port->trid->trsvcid); nvmf_rdma_disconnect_qpairs_on_port(rtransport, port); rdma_ack_cm_event(event); while (spdk_nvmf_transport_stop_listen(transport, port->trid) == 0) { ; } } static void nvmf_process_cm_event(struct spdk_nvmf_transport *transport) { struct spdk_nvmf_rdma_transport *rtransport; struct rdma_cm_event *event; int rc; bool event_acked; rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); if (rtransport->event_channel == NULL) { return; } while (1) { event_acked = false; rc = rdma_get_cm_event(rtransport->event_channel, &event); if (rc) { if (errno != EAGAIN && errno != EWOULDBLOCK) { SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno)); } break; } SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]); spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event); switch (event->event) { case RDMA_CM_EVENT_ADDR_RESOLVED: case RDMA_CM_EVENT_ADDR_ERROR: case RDMA_CM_EVENT_ROUTE_RESOLVED: case RDMA_CM_EVENT_ROUTE_ERROR: /* No action required. The target never attempts to resolve routes. */ break; case RDMA_CM_EVENT_CONNECT_REQUEST: rc = nvmf_rdma_connect(transport, event); if (rc < 0) { SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc); break; } break; case RDMA_CM_EVENT_CONNECT_RESPONSE: /* The target never initiates a new connection. So this will not occur. */ break; case RDMA_CM_EVENT_CONNECT_ERROR: /* Can this happen? The docs say it can, but not sure what causes it. */ break; case RDMA_CM_EVENT_UNREACHABLE: case RDMA_CM_EVENT_REJECTED: /* These only occur on the client side. */ break; case RDMA_CM_EVENT_ESTABLISHED: /* TODO: Should we be waiting for this event anywhere? */ break; case RDMA_CM_EVENT_DISCONNECTED: rc = nvmf_rdma_disconnect(event); if (rc < 0) { SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); break; } break; case RDMA_CM_EVENT_DEVICE_REMOVAL: /* In case of device removal, kernel IB part triggers IBV_EVENT_DEVICE_FATAL * which triggers RDMA_CM_EVENT_DEVICE_REMOVAL on all cma_id’s. * Once these events are sent to SPDK, we should release all IB resources and * don't make attempts to call any ibv_query/modify/create functions. We can only call * ibv_destory* functions to release user space memory allocated by IB. All kernel * resources are already cleaned. */ if (event->id->qp) { /* If rdma_cm event has a valid `qp` pointer then the event refers to the * corresponding qpair. Otherwise the event refers to a listening device */ rc = nvmf_rdma_disconnect(event); if (rc < 0) { SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc); break; } } else { nvmf_rdma_handle_cm_event_port_removal(transport, event); event_acked = true; } break; case RDMA_CM_EVENT_MULTICAST_JOIN: case RDMA_CM_EVENT_MULTICAST_ERROR: /* Multicast is not used */ break; case RDMA_CM_EVENT_ADDR_CHANGE: event_acked = nvmf_rdma_handle_cm_event_addr_change(transport, event); break; case RDMA_CM_EVENT_TIMEWAIT_EXIT: /* For now, do nothing. The target never re-uses queue pairs. */ break; default: SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); break; } if (!event_acked) { rdma_ack_cm_event(event); } } } static void nvmf_rdma_handle_qp_fatal(struct spdk_nvmf_rdma_qpair *rqpair) { nvmf_rdma_update_ibv_state(rqpair); nvmf_rdma_start_disconnect(rqpair); } static void nvmf_rdma_handle_last_wqe_reached(struct spdk_nvmf_rdma_qpair *rqpair) { rqpair->last_wqe_reached = true; nvmf_rdma_destroy_drained_qpair(rqpair); } static void nvmf_rdma_handle_sq_drained(struct spdk_nvmf_rdma_qpair *rqpair) { nvmf_rdma_start_disconnect(rqpair); } static void nvmf_rdma_qpair_process_ibv_event(void *ctx) { struct spdk_nvmf_rdma_ibv_event_ctx *event_ctx = ctx; if (event_ctx->rqpair) { STAILQ_REMOVE(&event_ctx->rqpair->ibv_events, event_ctx, spdk_nvmf_rdma_ibv_event_ctx, link); if (event_ctx->cb_fn) { event_ctx->cb_fn(event_ctx->rqpair); } } free(event_ctx); } static int nvmf_rdma_send_qpair_async_event(struct spdk_nvmf_rdma_qpair *rqpair, spdk_nvmf_rdma_qpair_ibv_event fn) { struct spdk_nvmf_rdma_ibv_event_ctx *ctx; struct spdk_thread *thr = NULL; int rc; if (rqpair->qpair.group) { thr = rqpair->qpair.group->thread; } else if (rqpair->destruct_channel) { thr = spdk_io_channel_get_thread(rqpair->destruct_channel); } if (!thr) { SPDK_DEBUGLOG(SPDK_LOG_RDMA, "rqpair %p has no thread\n", rqpair); return -EINVAL; } ctx = calloc(1, sizeof(*ctx)); if (!ctx) { return -ENOMEM; } ctx->rqpair = rqpair; ctx->cb_fn = fn; STAILQ_INSERT_TAIL(&rqpair->ibv_events, ctx, link); rc = spdk_thread_send_msg(thr, nvmf_rdma_qpair_process_ibv_event, ctx); if (rc) { STAILQ_REMOVE(&rqpair->ibv_events, ctx, spdk_nvmf_rdma_ibv_event_ctx, link); free(ctx); } return rc; } static void nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device) { int rc; struct spdk_nvmf_rdma_qpair *rqpair = NULL; struct ibv_async_event event; rc = ibv_get_async_event(device->context, &event); if (rc) { SPDK_ERRLOG("Failed to get async_event (%d): %s\n", errno, spdk_strerror(errno)); return; } switch (event.event_type) { case IBV_EVENT_QP_FATAL: rqpair = event.element.qp->qp_context; SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair); spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, (uintptr_t)rqpair->cm_id, event.event_type); rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_qp_fatal); if (rc) { SPDK_WARNLOG("Failed to send QP_FATAL event. rqpair %p, err %d\n", rqpair, rc); nvmf_rdma_handle_qp_fatal(rqpair); } break; case IBV_EVENT_QP_LAST_WQE_REACHED: /* This event only occurs for shared receive queues. */ rqpair = event.element.qp->qp_context; SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last WQE reached event received for rqpair %p\n", rqpair); rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_last_wqe_reached); if (rc) { SPDK_WARNLOG("Failed to send LAST_WQE_REACHED event. rqpair %p, err %d\n", rqpair, rc); rqpair->last_wqe_reached = true; } break; case IBV_EVENT_SQ_DRAINED: /* This event occurs frequently in both error and non-error states. * Check if the qpair is in an error state before sending a message. */ rqpair = event.element.qp->qp_context; SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last sq drained event received for rqpair %p\n", rqpair); spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, (uintptr_t)rqpair->cm_id, event.event_type); if (nvmf_rdma_update_ibv_state(rqpair) == IBV_QPS_ERR) { rc = nvmf_rdma_send_qpair_async_event(rqpair, nvmf_rdma_handle_sq_drained); if (rc) { SPDK_WARNLOG("Failed to send SQ_DRAINED event. rqpair %p, err %d\n", rqpair, rc); nvmf_rdma_handle_sq_drained(rqpair); } } break; case IBV_EVENT_QP_REQ_ERR: case IBV_EVENT_QP_ACCESS_ERR: case IBV_EVENT_COMM_EST: case IBV_EVENT_PATH_MIG: case IBV_EVENT_PATH_MIG_ERR: SPDK_NOTICELOG("Async event: %s\n", ibv_event_type_str(event.event_type)); rqpair = event.element.qp->qp_context; spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, (uintptr_t)rqpair->cm_id, event.event_type); nvmf_rdma_update_ibv_state(rqpair); break; case IBV_EVENT_CQ_ERR: case IBV_EVENT_DEVICE_FATAL: case IBV_EVENT_PORT_ACTIVE: case IBV_EVENT_PORT_ERR: case IBV_EVENT_LID_CHANGE: case IBV_EVENT_PKEY_CHANGE: case IBV_EVENT_SM_CHANGE: case IBV_EVENT_SRQ_ERR: case IBV_EVENT_SRQ_LIMIT_REACHED: case IBV_EVENT_CLIENT_REREGISTER: case IBV_EVENT_GID_CHANGE: default: SPDK_NOTICELOG("Async event: %s\n", ibv_event_type_str(event.event_type)); spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type); break; } ibv_ack_async_event(&event); } static uint32_t nvmf_rdma_accept(struct spdk_nvmf_transport *transport) { int nfds, i = 0; struct spdk_nvmf_rdma_transport *rtransport; struct spdk_nvmf_rdma_device *device, *tmp; uint32_t count; rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); count = nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0); if (nfds <= 0) { return 0; } /* The first poll descriptor is RDMA CM event */ if (rtransport->poll_fds[i++].revents & POLLIN) { nvmf_process_cm_event(transport); nfds--; } if (nfds == 0) { return count; } /* Second and subsequent poll descriptors are IB async events */ TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) { if (rtransport->poll_fds[i++].revents & POLLIN) { nvmf_process_ib_event(device); nfds--; } } /* check all flagged fd's have been served */ assert(nfds == 0); return count; } static void nvmf_rdma_cdata_init(struct spdk_nvmf_transport *transport, struct spdk_nvmf_subsystem *subsystem, struct spdk_nvmf_ctrlr_data *cdata) { cdata->nvmf_specific.msdbd = SPDK_NVMF_MAX_SGL_ENTRIES; /* Disable in-capsule data transfer for RDMA controller when dif_insert_or_strip is enabled since in-capsule data only works with NVME drives that support SGL memory layout */ if (transport->opts.dif_insert_or_strip) { cdata->nvmf_specific.ioccsz = sizeof(struct spdk_nvme_cmd) / 16; } } static void nvmf_rdma_discover(struct spdk_nvmf_transport *transport, struct spdk_nvme_transport_id *trid, struct spdk_nvmf_discovery_log_page_entry *entry) { entry->trtype = SPDK_NVMF_TRTYPE_RDMA; entry->adrfam = trid->adrfam; entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED; spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' '); spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' '); entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED; entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE; entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM; } static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group); static struct spdk_nvmf_transport_poll_group * nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport) { struct spdk_nvmf_rdma_transport *rtransport; struct spdk_nvmf_rdma_poll_group *rgroup; struct spdk_nvmf_rdma_poller *poller; struct spdk_nvmf_rdma_device *device; struct ibv_srq_init_attr srq_init_attr; struct spdk_nvmf_rdma_resource_opts opts; int num_cqe; rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport); rgroup = calloc(1, sizeof(*rgroup)); if (!rgroup) { return NULL; } TAILQ_INIT(&rgroup->pollers); STAILQ_INIT(&rgroup->retired_bufs); pthread_mutex_lock(&rtransport->lock); TAILQ_FOREACH(device, &rtransport->devices, link) { poller = calloc(1, sizeof(*poller)); if (!poller) { SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n"); nvmf_rdma_poll_group_destroy(&rgroup->group); pthread_mutex_unlock(&rtransport->lock); return NULL; } poller->device = device; poller->group = rgroup; TAILQ_INIT(&poller->qpairs); STAILQ_INIT(&poller->qpairs_pending_send); STAILQ_INIT(&poller->qpairs_pending_recv); TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link); if (transport->opts.no_srq == false && device->num_srq < device->attr.max_srq) { poller->max_srq_depth = transport->opts.max_srq_depth; device->num_srq++; memset(&srq_init_attr, 0, sizeof(struct ibv_srq_init_attr)); srq_init_attr.attr.max_wr = poller->max_srq_depth; srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE); poller->srq = ibv_create_srq(device->pd, &srq_init_attr); if (!poller->srq) { SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno); nvmf_rdma_poll_group_destroy(&rgroup->group); pthread_mutex_unlock(&rtransport->lock); return NULL; } opts.qp = poller->srq; opts.pd = device->pd; opts.qpair = NULL; opts.shared = true; opts.max_queue_depth = poller->max_srq_depth; opts.in_capsule_data_size = transport->opts.in_capsule_data_size; poller->resources = nvmf_rdma_resources_create(&opts); if (!poller->resources) { SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n"); nvmf_rdma_poll_group_destroy(&rgroup->group); pthread_mutex_unlock(&rtransport->lock); return NULL; } } /* * When using an srq, we can limit the completion queue at startup. * The following formula represents the calculation: * num_cqe = num_recv + num_data_wr + num_send_wr. * where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth */ if (poller->srq) { num_cqe = poller->max_srq_depth * 3; } else { num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE; } poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0); if (!poller->cq) { SPDK_ERRLOG("Unable to create completion queue\n"); nvmf_rdma_poll_group_destroy(&rgroup->group); pthread_mutex_unlock(&rtransport->lock); return NULL; } poller->num_cqe = num_cqe; } TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link); if (rtransport->conn_sched.next_admin_pg == NULL) { rtransport->conn_sched.next_admin_pg = rgroup; rtransport->conn_sched.next_io_pg = rgroup; } pthread_mutex_unlock(&rtransport->lock); return &rgroup->group; } static struct spdk_nvmf_transport_poll_group * nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair) { struct spdk_nvmf_rdma_transport *rtransport; struct spdk_nvmf_rdma_poll_group **pg; struct spdk_nvmf_transport_poll_group *result; rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); pthread_mutex_lock(&rtransport->lock); if (TAILQ_EMPTY(&rtransport->poll_groups)) { pthread_mutex_unlock(&rtransport->lock); return NULL; } if (qpair->qid == 0) { pg = &rtransport->conn_sched.next_admin_pg; } else { pg = &rtransport->conn_sched.next_io_pg; } assert(*pg != NULL); result = &(*pg)->group; *pg = TAILQ_NEXT(*pg, link); if (*pg == NULL) { *pg = TAILQ_FIRST(&rtransport->poll_groups); } pthread_mutex_unlock(&rtransport->lock); return result; } static void nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group) { struct spdk_nvmf_rdma_poll_group *rgroup, *next_rgroup; struct spdk_nvmf_rdma_poller *poller, *tmp; struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair; struct spdk_nvmf_transport_pg_cache_buf *buf, *tmp_buf; struct spdk_nvmf_rdma_transport *rtransport; rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); if (!rgroup) { return; } /* free all retired buffers back to the transport so we don't short the mempool. */ STAILQ_FOREACH_SAFE(buf, &rgroup->retired_bufs, link, tmp_buf) { STAILQ_REMOVE(&rgroup->retired_bufs, buf, spdk_nvmf_transport_pg_cache_buf, link); assert(group->transport != NULL); spdk_mempool_put(group->transport->data_buf_pool, buf); } TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) { TAILQ_REMOVE(&rgroup->pollers, poller, link); TAILQ_FOREACH_SAFE(qpair, &poller->qpairs, link, tmp_qpair) { nvmf_rdma_qpair_destroy(qpair); } if (poller->srq) { if (poller->resources) { nvmf_rdma_resources_destroy(poller->resources); } ibv_destroy_srq(poller->srq); SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Destroyed RDMA shared queue %p\n", poller->srq); } if (poller->cq) { ibv_destroy_cq(poller->cq); } free(poller); } if (rgroup->group.transport == NULL) { /* Transport can be NULL when nvmf_rdma_poll_group_create() * calls this function directly in a failure path. */ free(rgroup); return; } rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport); pthread_mutex_lock(&rtransport->lock); next_rgroup = TAILQ_NEXT(rgroup, link); TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link); if (next_rgroup == NULL) { next_rgroup = TAILQ_FIRST(&rtransport->poll_groups); } if (rtransport->conn_sched.next_admin_pg == rgroup) { rtransport->conn_sched.next_admin_pg = next_rgroup; } if (rtransport->conn_sched.next_io_pg == rgroup) { rtransport->conn_sched.next_io_pg = next_rgroup; } pthread_mutex_unlock(&rtransport->lock); free(rgroup); } static void nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair) { if (rqpair->cm_id != NULL) { nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES); } nvmf_rdma_qpair_destroy(rqpair); } static int nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group, struct spdk_nvmf_qpair *qpair) { struct spdk_nvmf_rdma_poll_group *rgroup; struct spdk_nvmf_rdma_qpair *rqpair; struct spdk_nvmf_rdma_device *device; struct spdk_nvmf_rdma_poller *poller; int rc; rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); device = rqpair->device; TAILQ_FOREACH(poller, &rgroup->pollers, link) { if (poller->device == device) { break; } } if (!poller) { SPDK_ERRLOG("No poller found for device.\n"); return -1; } TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link); rqpair->poller = poller; rqpair->srq = rqpair->poller->srq; rc = nvmf_rdma_qpair_initialize(qpair); if (rc < 0) { SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair); return -1; } rc = nvmf_rdma_event_accept(rqpair->cm_id, rqpair); if (rc) { /* Try to reject, but we probably can't */ nvmf_rdma_qpair_reject_connection(rqpair); return -1; } nvmf_rdma_update_ibv_state(rqpair); return 0; } static int nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group, struct spdk_nvmf_qpair *qpair) { struct spdk_nvmf_rdma_qpair *rqpair; rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); assert(group->transport->tgt != NULL); rqpair->destruct_channel = spdk_get_io_channel(group->transport->tgt); if (!rqpair->destruct_channel) { SPDK_WARNLOG("failed to get io_channel, qpair %p\n", qpair); return 0; } /* Sanity check that we get io_channel on the correct thread */ if (qpair->group) { assert(qpair->group->thread == spdk_io_channel_get_thread(rqpair->destruct_channel)); } return 0; } static int nvmf_rdma_request_free(struct spdk_nvmf_request *req) { struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_rdma_transport, transport); struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); /* * AER requests are freed when a qpair is destroyed. The recv corresponding to that request * needs to be returned to the shared receive queue or the poll group will eventually be * starved of RECV structures. */ if (rqpair->srq && rdma_req->recv) { int rc; struct ibv_recv_wr *bad_recv_wr; rc = ibv_post_srq_recv(rqpair->srq, &rdma_req->recv->wr, &bad_recv_wr); if (rc) { SPDK_ERRLOG("Unable to re-post rx descriptor\n"); } } _nvmf_rdma_request_free(rdma_req, rtransport); return 0; } static int nvmf_rdma_request_complete(struct spdk_nvmf_request *req) { struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport, struct spdk_nvmf_rdma_transport, transport); struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req); struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); if (rqpair->ibv_state != IBV_QPS_ERR) { /* The connection is alive, so process the request as normal */ rdma_req->state = RDMA_REQUEST_STATE_EXECUTED; } else { /* The connection is dead. Move the request directly to the completed state. */ rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; } nvmf_rdma_request_process(rtransport, rdma_req); return 0; } static int nvmf_rdma_destroy_defunct_qpair(void *ctx) { struct spdk_nvmf_rdma_qpair *rqpair = ctx; struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport, struct spdk_nvmf_rdma_transport, transport); SPDK_INFOLOG(SPDK_LOG_RDMA, "QP#%d hasn't been drained as expected, manually destroy it\n", rqpair->qpair.qid); nvmf_rdma_qpair_process_pending(rtransport, rqpair, true); nvmf_rdma_qpair_destroy(rqpair); return SPDK_POLLER_BUSY; } static void nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair) { struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); if (rqpair->disconnect_flags & RDMA_QP_DISCONNECTING) { return; } rqpair->disconnect_flags |= RDMA_QP_DISCONNECTING; /* This happens only when the qpair is disconnected before * it is added to the poll group. Since there is no poll group, * the RDMA qp has not been initialized yet and the RDMA CM * event has not yet been acknowledged, so we need to reject it. */ if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) { nvmf_rdma_qpair_reject_connection(rqpair); return; } if (rqpair->rdma_qp) { spdk_rdma_qp_disconnect(rqpair->rdma_qp); } rqpair->destruct_poller = SPDK_POLLER_REGISTER(nvmf_rdma_destroy_defunct_qpair, (void *)rqpair, NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US); } static struct spdk_nvmf_rdma_qpair * get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc) { struct spdk_nvmf_rdma_qpair *rqpair; /* @todo: improve QP search */ TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) { if (wc->qp_num == rqpair->rdma_qp->qp->qp_num) { return rqpair; } } SPDK_ERRLOG("Didn't find QP with qp_num %u\n", wc->qp_num); return NULL; } #ifdef DEBUG static int nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req) { return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST || rdma_req->state == RDMA_REQUEST_STATE_COMPLETING; } #endif static void _poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr, int rc) { struct spdk_nvmf_rdma_recv *rdma_recv; struct spdk_nvmf_rdma_wr *bad_rdma_wr; SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc); while (bad_recv_wr != NULL) { bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id; rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); rdma_recv->qpair->current_recv_depth++; bad_recv_wr = bad_recv_wr->next; SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc); nvmf_rdma_start_disconnect(rdma_recv->qpair); } } static void _qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc) { SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc); while (bad_recv_wr != NULL) { bad_recv_wr = bad_recv_wr->next; rqpair->current_recv_depth++; } nvmf_rdma_start_disconnect(rqpair); } static void _poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport, struct spdk_nvmf_rdma_poller *rpoller) { struct spdk_nvmf_rdma_qpair *rqpair; struct ibv_recv_wr *bad_recv_wr; int rc; if (rpoller->srq) { if (rpoller->resources->recvs_to_post.first != NULL) { rc = ibv_post_srq_recv(rpoller->srq, rpoller->resources->recvs_to_post.first, &bad_recv_wr); if (rc) { _poller_reset_failed_recvs(rpoller, bad_recv_wr, rc); } rpoller->resources->recvs_to_post.first = NULL; rpoller->resources->recvs_to_post.last = NULL; } } else { while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) { rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv); assert(rqpair->resources->recvs_to_post.first != NULL); rc = ibv_post_recv(rqpair->rdma_qp->qp, rqpair->resources->recvs_to_post.first, &bad_recv_wr); if (rc) { _qp_reset_failed_recvs(rqpair, bad_recv_wr, rc); } rqpair->resources->recvs_to_post.first = NULL; rqpair->resources->recvs_to_post.last = NULL; STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link); } } } static void _qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport, struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc) { struct spdk_nvmf_rdma_wr *bad_rdma_wr; struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL; SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc); for (; bad_wr != NULL; bad_wr = bad_wr->next) { bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id; assert(rqpair->current_send_depth > 0); rqpair->current_send_depth--; switch (bad_rdma_wr->type) { case RDMA_WR_TYPE_DATA: cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); if (bad_wr->opcode == IBV_WR_RDMA_READ) { assert(rqpair->current_read_depth > 0); rqpair->current_read_depth--; } break; case RDMA_WR_TYPE_SEND: cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); break; default: SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair); prev_rdma_req = cur_rdma_req; continue; } if (prev_rdma_req == cur_rdma_req) { /* this request was handled by an earlier wr. i.e. we were performing an nvme read. */ /* We only have to check against prev_wr since each requests wrs are contiguous in this list. */ continue; } switch (cur_rdma_req->state) { case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR; cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; break; case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST: case RDMA_REQUEST_STATE_COMPLETING: cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; break; default: SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n", cur_rdma_req->state, rqpair); continue; } nvmf_rdma_request_process(rtransport, cur_rdma_req); prev_rdma_req = cur_rdma_req; } if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { /* Disconnect the connection. */ nvmf_rdma_start_disconnect(rqpair); } } static void _poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport, struct spdk_nvmf_rdma_poller *rpoller) { struct spdk_nvmf_rdma_qpair *rqpair; struct ibv_send_wr *bad_wr = NULL; int rc; while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) { rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send); rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_wr); /* bad wr always points to the first wr that failed. */ if (rc) { _qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc); } STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link); } } static int nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport, struct spdk_nvmf_rdma_poller *rpoller) { struct ibv_wc wc[32]; struct spdk_nvmf_rdma_wr *rdma_wr; struct spdk_nvmf_rdma_request *rdma_req; struct spdk_nvmf_rdma_recv *rdma_recv; struct spdk_nvmf_rdma_qpair *rqpair; int reaped, i; int count = 0; bool error = false; uint64_t poll_tsc = spdk_get_ticks(); /* Poll for completing operations. */ reaped = ibv_poll_cq(rpoller->cq, 32, wc); if (reaped < 0) { SPDK_ERRLOG("Error polling CQ! (%d): %s\n", errno, spdk_strerror(errno)); return -1; } rpoller->stat.polls++; rpoller->stat.completions += reaped; for (i = 0; i < reaped; i++) { rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id; switch (rdma_wr->type) { case RDMA_WR_TYPE_SEND: rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr); rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); if (!wc[i].status) { count++; assert(wc[i].opcode == IBV_WC_SEND); assert(nvmf_rdma_req_is_completing(rdma_req)); } rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; /* RDMA_WRITE operation completed. +1 since it was chained with rsp WR */ rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1; rdma_req->num_outstanding_data_wr = 0; nvmf_rdma_request_process(rtransport, rdma_req); break; case RDMA_WR_TYPE_RECV: /* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */ rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr); if (rpoller->srq != NULL) { rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]); /* It is possible that there are still some completions for destroyed QP * associated with SRQ. We just ignore these late completions and re-post * receive WRs back to SRQ. */ if (spdk_unlikely(NULL == rdma_recv->qpair)) { struct ibv_recv_wr *bad_wr; int rc; rdma_recv->wr.next = NULL; rc = ibv_post_srq_recv(rpoller->srq, &rdma_recv->wr, &bad_wr); if (rc) { SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc); } continue; } } rqpair = rdma_recv->qpair; assert(rqpair != NULL); if (!wc[i].status) { assert(wc[i].opcode == IBV_WC_RECV); if (rqpair->current_recv_depth >= rqpair->max_queue_depth) { nvmf_rdma_start_disconnect(rqpair); break; } } rdma_recv->wr.next = NULL; rqpair->current_recv_depth++; rdma_recv->receive_tsc = poll_tsc; rpoller->stat.requests++; STAILQ_INSERT_TAIL(&rqpair->resources->incoming_queue, rdma_recv, link); break; case RDMA_WR_TYPE_DATA: rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr); rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair); assert(rdma_req->num_outstanding_data_wr > 0); rqpair->current_send_depth--; rdma_req->num_outstanding_data_wr--; if (!wc[i].status) { assert(wc[i].opcode == IBV_WC_RDMA_READ); rqpair->current_read_depth--; /* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */ if (rdma_req->num_outstanding_data_wr == 0) { rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE; nvmf_rdma_request_process(rtransport, rdma_req); } } else { /* If the data transfer fails still force the queue into the error state, * if we were performing an RDMA_READ, we need to force the request into a * completed state since it wasn't linked to a send. However, in the RDMA_WRITE * case, we should wait for the SEND to complete. */ if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) { rqpair->current_read_depth--; if (rdma_req->num_outstanding_data_wr == 0) { rdma_req->state = RDMA_REQUEST_STATE_COMPLETED; } } } break; default: SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode); continue; } /* Handle error conditions */ if (wc[i].status) { if ((rdma_wr->type == RDMA_WR_TYPE_RECV && !rpoller->srq)) { /* When we don't use SRQ and close a qpair, we will receive completions with error * status for all posted ibv_recv_wrs. This is expected and we don't want to log * an error in that case. */ SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Error on CQ %p, request 0x%lu, type %d, status: (%d): %s\n", rpoller->cq, wc[i].wr_id, rdma_wr->type, wc[i].status, ibv_wc_status_str(wc[i].status)); } else { SPDK_ERRLOG("Error on CQ %p, request 0x%lu, type %d, status: (%d): %s\n", rpoller->cq, wc[i].wr_id, rdma_wr->type, wc[i].status, ibv_wc_status_str(wc[i].status)); } error = true; if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) { /* Disconnect the connection. */ nvmf_rdma_start_disconnect(rqpair); } else { nvmf_rdma_destroy_drained_qpair(rqpair); } continue; } nvmf_rdma_qpair_process_pending(rtransport, rqpair, false); if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) { nvmf_rdma_destroy_drained_qpair(rqpair); } } if (error == true) { return -1; } /* submit outstanding work requests. */ _poller_submit_recvs(rtransport, rpoller); _poller_submit_sends(rtransport, rpoller); return count; } static int nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group) { struct spdk_nvmf_rdma_transport *rtransport; struct spdk_nvmf_rdma_poll_group *rgroup; struct spdk_nvmf_rdma_poller *rpoller; int count, rc; rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport); rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group); count = 0; TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { rc = nvmf_rdma_poller_poll(rtransport, rpoller); if (rc < 0) { return rc; } count += rc; } return count; } static int nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id, struct spdk_nvme_transport_id *trid, bool peer) { struct sockaddr *saddr; uint16_t port; spdk_nvme_trid_populate_transport(trid, SPDK_NVME_TRANSPORT_RDMA); if (peer) { saddr = rdma_get_peer_addr(id); } else { saddr = rdma_get_local_addr(id); } switch (saddr->sa_family) { case AF_INET: { struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr; trid->adrfam = SPDK_NVMF_ADRFAM_IPV4; inet_ntop(AF_INET, &saddr_in->sin_addr, trid->traddr, sizeof(trid->traddr)); if (peer) { port = ntohs(rdma_get_dst_port(id)); } else { port = ntohs(rdma_get_src_port(id)); } snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); break; } case AF_INET6: { struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr; trid->adrfam = SPDK_NVMF_ADRFAM_IPV6; inet_ntop(AF_INET6, &saddr_in->sin6_addr, trid->traddr, sizeof(trid->traddr)); if (peer) { port = ntohs(rdma_get_dst_port(id)); } else { port = ntohs(rdma_get_src_port(id)); } snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port); break; } default: return -1; } return 0; } static int nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair, struct spdk_nvme_transport_id *trid) { struct spdk_nvmf_rdma_qpair *rqpair; rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true); } static int nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair, struct spdk_nvme_transport_id *trid) { struct spdk_nvmf_rdma_qpair *rqpair; rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); return nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false); } static int nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair, struct spdk_nvme_transport_id *trid) { struct spdk_nvmf_rdma_qpair *rqpair; rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); return nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false); } void spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) { g_nvmf_hooks = *hooks; } static void nvmf_rdma_request_set_abort_status(struct spdk_nvmf_request *req, struct spdk_nvmf_rdma_request *rdma_req_to_abort) { rdma_req_to_abort->req.rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC; rdma_req_to_abort->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST; rdma_req_to_abort->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE; req->rsp->nvme_cpl.cdw0 &= ~1U; /* Command was successfully aborted. */ } static int _nvmf_rdma_qpair_abort_request(void *ctx) { struct spdk_nvmf_request *req = ctx; struct spdk_nvmf_rdma_request *rdma_req_to_abort = SPDK_CONTAINEROF( req->req_to_abort, struct spdk_nvmf_rdma_request, req); struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(req->req_to_abort->qpair, struct spdk_nvmf_rdma_qpair, qpair); int rc; spdk_poller_unregister(&req->poller); switch (rdma_req_to_abort->state) { case RDMA_REQUEST_STATE_EXECUTING: rc = nvmf_ctrlr_abort_request(req); if (rc == SPDK_NVMF_REQUEST_EXEC_STATUS_ASYNCHRONOUS) { return SPDK_POLLER_BUSY; } break; case RDMA_REQUEST_STATE_NEED_BUFFER: STAILQ_REMOVE(&rqpair->poller->group->group.pending_buf_queue, &rdma_req_to_abort->req, spdk_nvmf_request, buf_link); nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); break; case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING: STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req_to_abort, spdk_nvmf_rdma_request, state_link); nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); break; case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING: STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req_to_abort, spdk_nvmf_rdma_request, state_link); nvmf_rdma_request_set_abort_status(req, rdma_req_to_abort); break; case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER: if (spdk_get_ticks() < req->timeout_tsc) { req->poller = SPDK_POLLER_REGISTER(_nvmf_rdma_qpair_abort_request, req, 0); return SPDK_POLLER_BUSY; } break; default: break; } spdk_nvmf_request_complete(req); return SPDK_POLLER_BUSY; } static void nvmf_rdma_qpair_abort_request(struct spdk_nvmf_qpair *qpair, struct spdk_nvmf_request *req) { struct spdk_nvmf_rdma_qpair *rqpair; struct spdk_nvmf_rdma_transport *rtransport; struct spdk_nvmf_transport *transport; uint16_t cid; uint32_t i; struct spdk_nvmf_rdma_request *rdma_req_to_abort = NULL; rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair); rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport); transport = &rtransport->transport; cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid; for (i = 0; i < rqpair->max_queue_depth; i++) { rdma_req_to_abort = &rqpair->resources->reqs[i]; if (rdma_req_to_abort->state != RDMA_REQUEST_STATE_FREE && rdma_req_to_abort->req.cmd->nvme_cmd.cid == cid) { break; } } if (rdma_req_to_abort == NULL) { spdk_nvmf_request_complete(req); return; } req->req_to_abort = &rdma_req_to_abort->req; req->timeout_tsc = spdk_get_ticks() + transport->opts.abort_timeout_sec * spdk_get_ticks_hz(); req->poller = NULL; _nvmf_rdma_qpair_abort_request(req); } static int nvmf_rdma_poll_group_get_stat(struct spdk_nvmf_tgt *tgt, struct spdk_nvmf_transport_poll_group_stat **stat) { struct spdk_io_channel *ch; struct spdk_nvmf_poll_group *group; struct spdk_nvmf_transport_poll_group *tgroup; struct spdk_nvmf_rdma_poll_group *rgroup; struct spdk_nvmf_rdma_poller *rpoller; struct spdk_nvmf_rdma_device_stat *device_stat; uint64_t num_devices = 0; if (tgt == NULL || stat == NULL) { return -EINVAL; } ch = spdk_get_io_channel(tgt); group = spdk_io_channel_get_ctx(ch);; spdk_put_io_channel(ch); TAILQ_FOREACH(tgroup, &group->tgroups, link) { if (SPDK_NVME_TRANSPORT_RDMA == tgroup->transport->ops->type) { *stat = calloc(1, sizeof(struct spdk_nvmf_transport_poll_group_stat)); if (!*stat) { SPDK_ERRLOG("Failed to allocate memory for NVMf RDMA statistics\n"); return -ENOMEM; } (*stat)->trtype = SPDK_NVME_TRANSPORT_RDMA; rgroup = SPDK_CONTAINEROF(tgroup, struct spdk_nvmf_rdma_poll_group, group); /* Count devices to allocate enough memory */ TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { ++num_devices; } (*stat)->rdma.devices = calloc(num_devices, sizeof(struct spdk_nvmf_rdma_device_stat)); if (!(*stat)->rdma.devices) { SPDK_ERRLOG("Failed to allocate NVMf RDMA devices statistics\n"); free(*stat); return -ENOMEM; } (*stat)->rdma.pending_data_buffer = rgroup->stat.pending_data_buffer; (*stat)->rdma.num_devices = num_devices; num_devices = 0; TAILQ_FOREACH(rpoller, &rgroup->pollers, link) { device_stat = &(*stat)->rdma.devices[num_devices++]; device_stat->name = ibv_get_device_name(rpoller->device->context->device); device_stat->polls = rpoller->stat.polls; device_stat->completions = rpoller->stat.completions; device_stat->requests = rpoller->stat.requests; device_stat->request_latency = rpoller->stat.request_latency; device_stat->pending_free_request = rpoller->stat.pending_free_request; device_stat->pending_rdma_read = rpoller->stat.pending_rdma_read; device_stat->pending_rdma_write = rpoller->stat.pending_rdma_write; } return 0; } } return -ENOENT; } static void nvmf_rdma_poll_group_free_stat(struct spdk_nvmf_transport_poll_group_stat *stat) { if (stat) { free(stat->rdma.devices); } free(stat); } const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = { .name = "RDMA", .type = SPDK_NVME_TRANSPORT_RDMA, .opts_init = nvmf_rdma_opts_init, .create = nvmf_rdma_create, .destroy = nvmf_rdma_destroy, .listen = nvmf_rdma_listen, .stop_listen = nvmf_rdma_stop_listen, .accept = nvmf_rdma_accept, .cdata_init = nvmf_rdma_cdata_init, .listener_discover = nvmf_rdma_discover, .poll_group_create = nvmf_rdma_poll_group_create, .get_optimal_poll_group = nvmf_rdma_get_optimal_poll_group, .poll_group_destroy = nvmf_rdma_poll_group_destroy, .poll_group_add = nvmf_rdma_poll_group_add, .poll_group_remove = nvmf_rdma_poll_group_remove, .poll_group_poll = nvmf_rdma_poll_group_poll, .req_free = nvmf_rdma_request_free, .req_complete = nvmf_rdma_request_complete, .qpair_fini = nvmf_rdma_close_qpair, .qpair_get_peer_trid = nvmf_rdma_qpair_get_peer_trid, .qpair_get_local_trid = nvmf_rdma_qpair_get_local_trid, .qpair_get_listen_trid = nvmf_rdma_qpair_get_listen_trid, .qpair_abort_request = nvmf_rdma_qpair_abort_request, .poll_group_get_stat = nvmf_rdma_poll_group_get_stat, .poll_group_free_stat = nvmf_rdma_poll_group_free_stat, }; SPDK_NVMF_TRANSPORT_REGISTER(rdma, &spdk_nvmf_transport_rdma); SPDK_LOG_REGISTER_COMPONENT("rdma", SPDK_LOG_RDMA)