/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "vbdev_delay.h" #include "spdk/rpc.h" #include "spdk/env.h" #include "spdk/conf.h" #include "spdk/endian.h" #include "spdk/string.h" #include "spdk/thread.h" #include "spdk/util.h" #include "spdk/bdev_module.h" #include "spdk_internal/log.h" static int vbdev_delay_init(void); static int vbdev_delay_get_ctx_size(void); static void vbdev_delay_examine(struct spdk_bdev *bdev); static void vbdev_delay_finish(void); static int vbdev_delay_config_json(struct spdk_json_write_ctx *w); static struct spdk_bdev_module delay_if = { .name = "delay", .module_init = vbdev_delay_init, .config_text = NULL, .get_ctx_size = vbdev_delay_get_ctx_size, .examine_config = vbdev_delay_examine, .module_fini = vbdev_delay_finish, .config_json = vbdev_delay_config_json }; SPDK_BDEV_MODULE_REGISTER(delay, &delay_if) /* Associative list to be used in examine */ struct bdev_association { char *vbdev_name; char *bdev_name; uint64_t avg_read_latency; uint64_t p99_read_latency; uint64_t avg_write_latency; uint64_t p99_write_latency; TAILQ_ENTRY(bdev_association) link; }; static TAILQ_HEAD(, bdev_association) g_bdev_associations = TAILQ_HEAD_INITIALIZER( g_bdev_associations); /* List of virtual bdevs and associated info for each. */ struct vbdev_delay { struct spdk_bdev *base_bdev; /* the thing we're attaching to */ struct spdk_bdev_desc *base_desc; /* its descriptor we get from open */ struct spdk_bdev delay_bdev; /* the delay virtual bdev */ uint64_t average_read_latency_ticks; /* the average read delay */ uint64_t p99_read_latency_ticks; /* the p99 read delay */ uint64_t average_write_latency_ticks; /* the average write delay */ uint64_t p99_write_latency_ticks; /* the p99 write delay */ TAILQ_ENTRY(vbdev_delay) link; struct spdk_thread *thread; /* thread where base device is opened */ }; static TAILQ_HEAD(, vbdev_delay) g_delay_nodes = TAILQ_HEAD_INITIALIZER(g_delay_nodes); struct delay_bdev_io { int status; uint64_t completion_tick; enum delay_io_type type; struct spdk_io_channel *ch; struct spdk_bdev_io_wait_entry bdev_io_wait; STAILQ_ENTRY(delay_bdev_io) link; }; struct delay_io_channel { struct spdk_io_channel *base_ch; /* IO channel of base device */ STAILQ_HEAD(, delay_bdev_io) avg_read_io; STAILQ_HEAD(, delay_bdev_io) p99_read_io; STAILQ_HEAD(, delay_bdev_io) avg_write_io; STAILQ_HEAD(, delay_bdev_io) p99_write_io; struct spdk_poller *io_poller; unsigned int rand_seed; }; static void vbdev_delay_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io); /* Callback for unregistering the IO device. */ static void _device_unregister_cb(void *io_device) { struct vbdev_delay *delay_node = io_device; /* Done with this delay_node. */ free(delay_node->delay_bdev.name); free(delay_node); } static void _vbdev_delay_destruct(void *ctx) { struct spdk_bdev_desc *desc = ctx; spdk_bdev_close(desc); } static int vbdev_delay_destruct(void *ctx) { struct vbdev_delay *delay_node = (struct vbdev_delay *)ctx; /* It is important to follow this exact sequence of steps for destroying * a vbdev... */ TAILQ_REMOVE(&g_delay_nodes, delay_node, link); /* Unclaim the underlying bdev. */ spdk_bdev_module_release_bdev(delay_node->base_bdev); /* Close the underlying bdev on its same opened thread. */ if (delay_node->thread && delay_node->thread != spdk_get_thread()) { spdk_thread_send_msg(delay_node->thread, _vbdev_delay_destruct, delay_node->base_desc); } else { spdk_bdev_close(delay_node->base_desc); } /* Unregister the io_device. */ spdk_io_device_unregister(delay_node, _device_unregister_cb); return 0; } static int _process_io_stailq(void *arg, uint64_t ticks) { STAILQ_HEAD(, delay_bdev_io) *head = arg; struct delay_bdev_io *io_ctx, *tmp; int completions = 0; STAILQ_FOREACH_SAFE(io_ctx, head, link, tmp) { if (io_ctx->completion_tick <= ticks) { STAILQ_REMOVE(head, io_ctx, delay_bdev_io, link); spdk_bdev_io_complete(spdk_bdev_io_from_ctx(io_ctx), io_ctx->status); completions++; } else { /* In the general case, I/O will become ready in an fifo order. When timeouts are dynamically * changed, this is not necessarily the case. However, the normal behavior will be restored * after the outstanding I/O at the time of the change have been completed. * This essentially means that moving from a high to low latency creates a dam for the new I/O * submitted after the latency change. This is considered desirable behavior for the use case where * we are trying to trigger a pre-defined timeout on an initiator. */ break; } } return completions; } static int _delay_finish_io(void *arg) { struct delay_io_channel *delay_ch = arg; uint64_t ticks = spdk_get_ticks(); int completions = 0; completions += _process_io_stailq(&delay_ch->avg_read_io, ticks); completions += _process_io_stailq(&delay_ch->avg_write_io, ticks); completions += _process_io_stailq(&delay_ch->p99_read_io, ticks); completions += _process_io_stailq(&delay_ch->p99_write_io, ticks); return completions == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY; } /* Completion callback for IO that were issued from this bdev. The original bdev_io * is passed in as an arg so we'll complete that one with the appropriate status * and then free the one that this module issued. */ static void _delay_complete_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) { struct spdk_bdev_io *orig_io = cb_arg; struct vbdev_delay *delay_node = SPDK_CONTAINEROF(orig_io->bdev, struct vbdev_delay, delay_bdev); struct delay_bdev_io *io_ctx = (struct delay_bdev_io *)orig_io->driver_ctx; struct delay_io_channel *delay_ch = spdk_io_channel_get_ctx(io_ctx->ch); io_ctx->status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; spdk_bdev_free_io(bdev_io); /* Put the I/O into the proper list for processing by the channel poller. */ switch (io_ctx->type) { case DELAY_AVG_READ: io_ctx->completion_tick = spdk_get_ticks() + delay_node->average_read_latency_ticks; STAILQ_INSERT_TAIL(&delay_ch->avg_read_io, io_ctx, link); break; case DELAY_AVG_WRITE: io_ctx->completion_tick = spdk_get_ticks() + delay_node->average_write_latency_ticks; STAILQ_INSERT_TAIL(&delay_ch->avg_write_io, io_ctx, link); break; case DELAY_P99_READ: io_ctx->completion_tick = spdk_get_ticks() + delay_node->p99_read_latency_ticks; STAILQ_INSERT_TAIL(&delay_ch->p99_read_io, io_ctx, link); break; case DELAY_P99_WRITE: io_ctx->completion_tick = spdk_get_ticks() + delay_node->p99_write_latency_ticks; STAILQ_INSERT_TAIL(&delay_ch->p99_write_io, io_ctx, link); break; case DELAY_NONE: default: spdk_bdev_io_complete(orig_io, io_ctx->status); break; } } static void vbdev_delay_resubmit_io(void *arg) { struct spdk_bdev_io *bdev_io = (struct spdk_bdev_io *)arg; struct delay_bdev_io *io_ctx = (struct delay_bdev_io *)bdev_io->driver_ctx; vbdev_delay_submit_request(io_ctx->ch, bdev_io); } static void vbdev_delay_queue_io(struct spdk_bdev_io *bdev_io) { struct delay_bdev_io *io_ctx = (struct delay_bdev_io *)bdev_io->driver_ctx; struct delay_io_channel *delay_ch = spdk_io_channel_get_ctx(io_ctx->ch); int rc; io_ctx->bdev_io_wait.bdev = bdev_io->bdev; io_ctx->bdev_io_wait.cb_fn = vbdev_delay_resubmit_io; io_ctx->bdev_io_wait.cb_arg = bdev_io; rc = spdk_bdev_queue_io_wait(bdev_io->bdev, delay_ch->base_ch, &io_ctx->bdev_io_wait); if (rc != 0) { SPDK_ERRLOG("Queue io failed in vbdev_delay_queue_io, rc=%d.\n", rc); spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); } } static void delay_read_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success) { struct vbdev_delay *delay_node = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_delay, delay_bdev); struct delay_io_channel *delay_ch = spdk_io_channel_get_ctx(ch); int rc; if (!success) { spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); return; } rc = spdk_bdev_readv_blocks(delay_node->base_desc, delay_ch->base_ch, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, _delay_complete_io, bdev_io); if (rc == -ENOMEM) { SPDK_ERRLOG("No memory, start to queue io for delay.\n"); vbdev_delay_queue_io(bdev_io); } else if (rc != 0) { SPDK_ERRLOG("ERROR on bdev_io submission!\n"); spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); } } static void vbdev_delay_reset_dev(struct spdk_io_channel_iter *i, int status) { struct spdk_bdev_io *bdev_io = spdk_io_channel_iter_get_ctx(i); struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); struct delay_io_channel *delay_ch = spdk_io_channel_get_ctx(ch); struct vbdev_delay *delay_node = spdk_io_channel_iter_get_io_device(i); int rc; rc = spdk_bdev_reset(delay_node->base_desc, delay_ch->base_ch, _delay_complete_io, bdev_io); if (rc == -ENOMEM) { SPDK_ERRLOG("No memory, start to queue io for delay.\n"); vbdev_delay_queue_io(bdev_io); } else if (rc != 0) { SPDK_ERRLOG("ERROR on bdev_io submission!\n"); spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); } } static void _abort_all_delayed_io(void *arg) { STAILQ_HEAD(, delay_bdev_io) *head = arg; struct delay_bdev_io *io_ctx, *tmp; STAILQ_FOREACH_SAFE(io_ctx, head, link, tmp) { STAILQ_REMOVE(head, io_ctx, delay_bdev_io, link); spdk_bdev_io_complete(spdk_bdev_io_from_ctx(io_ctx), SPDK_BDEV_IO_STATUS_ABORTED); } } static void vbdev_delay_reset_channel(struct spdk_io_channel_iter *i) { struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i); struct delay_io_channel *delay_ch = spdk_io_channel_get_ctx(ch); _abort_all_delayed_io(&delay_ch->avg_read_io); _abort_all_delayed_io(&delay_ch->avg_write_io); _abort_all_delayed_io(&delay_ch->p99_read_io); _abort_all_delayed_io(&delay_ch->p99_write_io); spdk_for_each_channel_continue(i, 0); } static bool abort_delayed_io(void *_head, struct spdk_bdev_io *bio_to_abort) { STAILQ_HEAD(, delay_bdev_io) *head = _head; struct delay_bdev_io *io_ctx_to_abort = (struct delay_bdev_io *)bio_to_abort->driver_ctx; struct delay_bdev_io *io_ctx; STAILQ_FOREACH(io_ctx, head, link) { if (io_ctx == io_ctx_to_abort) { STAILQ_REMOVE(head, io_ctx_to_abort, delay_bdev_io, link); spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_ABORTED); return true; } } return false; } static int vbdev_delay_abort(struct vbdev_delay *delay_node, struct delay_io_channel *delay_ch, struct spdk_bdev_io *bdev_io) { struct spdk_bdev_io *bio_to_abort = bdev_io->u.abort.bio_to_abort; if (abort_delayed_io(&delay_ch->avg_read_io, bio_to_abort) || abort_delayed_io(&delay_ch->avg_write_io, bio_to_abort) || abort_delayed_io(&delay_ch->p99_read_io, bio_to_abort) || abort_delayed_io(&delay_ch->p99_write_io, bio_to_abort)) { spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS); return 0; } return spdk_bdev_abort(delay_node->base_desc, delay_ch->base_ch, bio_to_abort, _delay_complete_io, bdev_io); } static void vbdev_delay_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io) { struct vbdev_delay *delay_node = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_delay, delay_bdev); struct delay_io_channel *delay_ch = spdk_io_channel_get_ctx(ch); struct delay_bdev_io *io_ctx = (struct delay_bdev_io *)bdev_io->driver_ctx; int rc = 0; bool is_p99; is_p99 = rand_r(&delay_ch->rand_seed) % 100 == 0 ? true : false; io_ctx->ch = ch; io_ctx->type = DELAY_NONE; switch (bdev_io->type) { case SPDK_BDEV_IO_TYPE_READ: io_ctx->type = is_p99 ? DELAY_P99_READ : DELAY_AVG_READ; spdk_bdev_io_get_buf(bdev_io, delay_read_get_buf_cb, bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen); break; case SPDK_BDEV_IO_TYPE_WRITE: io_ctx->type = is_p99 ? DELAY_P99_WRITE : DELAY_AVG_WRITE; rc = spdk_bdev_writev_blocks(delay_node->base_desc, delay_ch->base_ch, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, _delay_complete_io, bdev_io); break; case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: rc = spdk_bdev_write_zeroes_blocks(delay_node->base_desc, delay_ch->base_ch, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, _delay_complete_io, bdev_io); break; case SPDK_BDEV_IO_TYPE_UNMAP: rc = spdk_bdev_unmap_blocks(delay_node->base_desc, delay_ch->base_ch, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, _delay_complete_io, bdev_io); break; case SPDK_BDEV_IO_TYPE_FLUSH: rc = spdk_bdev_flush_blocks(delay_node->base_desc, delay_ch->base_ch, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, _delay_complete_io, bdev_io); break; case SPDK_BDEV_IO_TYPE_RESET: /* During reset, the generic bdev layer aborts all new I/Os and queues all new resets. * Hence we can simply abort all I/Os delayed to complete. */ spdk_for_each_channel(delay_node, vbdev_delay_reset_channel, bdev_io, vbdev_delay_reset_dev); break; case SPDK_BDEV_IO_TYPE_ABORT: rc = vbdev_delay_abort(delay_node, delay_ch, bdev_io); break; default: SPDK_ERRLOG("delay: unknown I/O type %d\n", bdev_io->type); spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); return; } if (rc == -ENOMEM) { SPDK_ERRLOG("No memory, start to queue io for delay.\n"); vbdev_delay_queue_io(bdev_io); } else if (rc != 0) { SPDK_ERRLOG("ERROR on bdev_io submission!\n"); spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); } } static bool vbdev_delay_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type) { struct vbdev_delay *delay_node = (struct vbdev_delay *)ctx; if (io_type == SPDK_BDEV_IO_TYPE_ZCOPY) { return false; } else { return spdk_bdev_io_type_supported(delay_node->base_bdev, io_type); } } static struct spdk_io_channel * vbdev_delay_get_io_channel(void *ctx) { struct vbdev_delay *delay_node = (struct vbdev_delay *)ctx; struct spdk_io_channel *delay_ch = NULL; delay_ch = spdk_get_io_channel(delay_node); return delay_ch; } static void _delay_write_conf_values(struct vbdev_delay *delay_node, struct spdk_json_write_ctx *w) { spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&delay_node->delay_bdev)); spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(delay_node->base_bdev)); spdk_json_write_named_int64(w, "avg_read_latency", delay_node->average_read_latency_ticks * SPDK_SEC_TO_USEC / spdk_get_ticks_hz()); spdk_json_write_named_int64(w, "p99_read_latency", delay_node->p99_read_latency_ticks * SPDK_SEC_TO_USEC / spdk_get_ticks_hz()); spdk_json_write_named_int64(w, "avg_write_latency", delay_node->average_write_latency_ticks * SPDK_SEC_TO_USEC / spdk_get_ticks_hz()); spdk_json_write_named_int64(w, "p99_write_latency", delay_node->p99_write_latency_ticks * SPDK_SEC_TO_USEC / spdk_get_ticks_hz()); } static int vbdev_delay_dump_info_json(void *ctx, struct spdk_json_write_ctx *w) { struct vbdev_delay *delay_node = (struct vbdev_delay *)ctx; spdk_json_write_name(w, "delay"); spdk_json_write_object_begin(w); _delay_write_conf_values(delay_node, w); spdk_json_write_object_end(w); return 0; } /* This is used to generate JSON that can configure this module to its current state. */ static int vbdev_delay_config_json(struct spdk_json_write_ctx *w) { struct vbdev_delay *delay_node; TAILQ_FOREACH(delay_node, &g_delay_nodes, link) { spdk_json_write_object_begin(w); spdk_json_write_named_string(w, "method", "bdev_delay_create"); spdk_json_write_named_object_begin(w, "params"); _delay_write_conf_values(delay_node, w); spdk_json_write_object_end(w); } return 0; } /* We provide this callback for the SPDK channel code to create a channel using * the channel struct we provided in our module get_io_channel() entry point. Here * we get and save off an underlying base channel of the device below us so that * we can communicate with the base bdev on a per channel basis. If we needed * our own poller for this vbdev, we'd register it here. */ static int delay_bdev_ch_create_cb(void *io_device, void *ctx_buf) { struct delay_io_channel *delay_ch = ctx_buf; struct vbdev_delay *delay_node = io_device; STAILQ_INIT(&delay_ch->avg_read_io); STAILQ_INIT(&delay_ch->p99_read_io); STAILQ_INIT(&delay_ch->avg_write_io); STAILQ_INIT(&delay_ch->p99_write_io); delay_ch->io_poller = SPDK_POLLER_REGISTER(_delay_finish_io, delay_ch, 0); delay_ch->base_ch = spdk_bdev_get_io_channel(delay_node->base_desc); delay_ch->rand_seed = time(NULL); return 0; } /* We provide this callback for the SPDK channel code to destroy a channel * created with our create callback. We just need to undo anything we did * when we created. If this bdev used its own poller, we'd unregsiter it here. */ static void delay_bdev_ch_destroy_cb(void *io_device, void *ctx_buf) { struct delay_io_channel *delay_ch = ctx_buf; spdk_poller_unregister(&delay_ch->io_poller); spdk_put_io_channel(delay_ch->base_ch); } /* Create the delay association from the bdev and vbdev name and insert * on the global list. */ static int vbdev_delay_insert_association(const char *bdev_name, const char *vbdev_name, uint64_t avg_read_latency, uint64_t p99_read_latency, uint64_t avg_write_latency, uint64_t p99_write_latency) { struct bdev_association *assoc; TAILQ_FOREACH(assoc, &g_bdev_associations, link) { if (strcmp(vbdev_name, assoc->vbdev_name) == 0) { SPDK_ERRLOG("delay bdev %s already exists\n", vbdev_name); return -EEXIST; } } assoc = calloc(1, sizeof(struct bdev_association)); if (!assoc) { SPDK_ERRLOG("could not allocate bdev_association\n"); return -ENOMEM; } assoc->bdev_name = strdup(bdev_name); if (!assoc->bdev_name) { SPDK_ERRLOG("could not allocate assoc->bdev_name\n"); free(assoc); return -ENOMEM; } assoc->vbdev_name = strdup(vbdev_name); if (!assoc->vbdev_name) { SPDK_ERRLOG("could not allocate assoc->vbdev_name\n"); free(assoc->bdev_name); free(assoc); return -ENOMEM; } assoc->avg_read_latency = avg_read_latency; assoc->p99_read_latency = p99_read_latency; assoc->avg_write_latency = avg_write_latency; assoc->p99_write_latency = p99_write_latency; TAILQ_INSERT_TAIL(&g_bdev_associations, assoc, link); return 0; } int vbdev_delay_update_latency_value(char *delay_name, uint64_t latency_us, enum delay_io_type type) { struct spdk_bdev *delay_bdev; struct vbdev_delay *delay_node; uint64_t ticks_mhz = spdk_get_ticks_hz() / SPDK_SEC_TO_USEC; delay_bdev = spdk_bdev_get_by_name(delay_name); if (delay_bdev == NULL) { return -ENODEV; } else if (delay_bdev->module != &delay_if) { return -EINVAL; } delay_node = SPDK_CONTAINEROF(delay_bdev, struct vbdev_delay, delay_bdev); switch (type) { case DELAY_AVG_READ: delay_node->average_read_latency_ticks = ticks_mhz * latency_us; break; case DELAY_AVG_WRITE: delay_node->average_write_latency_ticks = ticks_mhz * latency_us; break; case DELAY_P99_READ: delay_node->p99_read_latency_ticks = ticks_mhz * latency_us; break; case DELAY_P99_WRITE: delay_node->p99_write_latency_ticks = ticks_mhz * latency_us; break; default: return -EINVAL; } return 0; } static int vbdev_delay_init(void) { /* Not allowing for .ini style configuration. */ return 0; } static void vbdev_delay_finish(void) { struct bdev_association *assoc; while ((assoc = TAILQ_FIRST(&g_bdev_associations))) { TAILQ_REMOVE(&g_bdev_associations, assoc, link); free(assoc->bdev_name); free(assoc->vbdev_name); free(assoc); } } static int vbdev_delay_get_ctx_size(void) { return sizeof(struct delay_bdev_io); } static void vbdev_delay_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) { /* No config per bdev needed */ } /* When we register our bdev this is how we specify our entry points. */ static const struct spdk_bdev_fn_table vbdev_delay_fn_table = { .destruct = vbdev_delay_destruct, .submit_request = vbdev_delay_submit_request, .io_type_supported = vbdev_delay_io_type_supported, .get_io_channel = vbdev_delay_get_io_channel, .dump_info_json = vbdev_delay_dump_info_json, .write_config_json = vbdev_delay_write_config_json, }; /* Called when the underlying base bdev goes away. */ static void vbdev_delay_base_bdev_hotremove_cb(void *ctx) { struct vbdev_delay *delay_node, *tmp; struct spdk_bdev *bdev_find = ctx; TAILQ_FOREACH_SAFE(delay_node, &g_delay_nodes, link, tmp) { if (bdev_find == delay_node->base_bdev) { spdk_bdev_unregister(&delay_node->delay_bdev, NULL, NULL); } } } /* Create and register the delay vbdev if we find it in our list of bdev names. * This can be called either by the examine path or RPC method. */ static int vbdev_delay_register(struct spdk_bdev *bdev) { struct bdev_association *assoc; struct vbdev_delay *delay_node; uint64_t ticks_mhz = spdk_get_ticks_hz() / SPDK_SEC_TO_USEC; int rc = 0; /* Check our list of names from config versus this bdev and if * there's a match, create the delay_node & bdev accordingly. */ TAILQ_FOREACH(assoc, &g_bdev_associations, link) { if (strcmp(assoc->bdev_name, bdev->name) != 0) { continue; } delay_node = calloc(1, sizeof(struct vbdev_delay)); if (!delay_node) { rc = -ENOMEM; SPDK_ERRLOG("could not allocate delay_node\n"); break; } /* The base bdev that we're attaching to. */ delay_node->base_bdev = bdev; delay_node->delay_bdev.name = strdup(assoc->vbdev_name); if (!delay_node->delay_bdev.name) { rc = -ENOMEM; SPDK_ERRLOG("could not allocate delay_bdev name\n"); free(delay_node); break; } delay_node->delay_bdev.product_name = "delay"; delay_node->delay_bdev.write_cache = bdev->write_cache; delay_node->delay_bdev.required_alignment = bdev->required_alignment; delay_node->delay_bdev.optimal_io_boundary = bdev->optimal_io_boundary; delay_node->delay_bdev.blocklen = bdev->blocklen; delay_node->delay_bdev.blockcnt = bdev->blockcnt; delay_node->delay_bdev.ctxt = delay_node; delay_node->delay_bdev.fn_table = &vbdev_delay_fn_table; delay_node->delay_bdev.module = &delay_if; /* Store the number of ticks you need to add to get the I/O expiration time. */ delay_node->average_read_latency_ticks = ticks_mhz * assoc->avg_read_latency; delay_node->p99_read_latency_ticks = ticks_mhz * assoc->p99_read_latency; delay_node->average_write_latency_ticks = ticks_mhz * assoc->avg_write_latency; delay_node->p99_write_latency_ticks = ticks_mhz * assoc->p99_write_latency; spdk_io_device_register(delay_node, delay_bdev_ch_create_cb, delay_bdev_ch_destroy_cb, sizeof(struct delay_io_channel), assoc->vbdev_name); rc = spdk_bdev_open(bdev, true, vbdev_delay_base_bdev_hotremove_cb, bdev, &delay_node->base_desc); if (rc) { SPDK_ERRLOG("could not open bdev %s\n", spdk_bdev_get_name(bdev)); goto error_unregister; } /* Save the thread where the base device is opened */ delay_node->thread = spdk_get_thread(); rc = spdk_bdev_module_claim_bdev(bdev, delay_node->base_desc, delay_node->delay_bdev.module); if (rc) { SPDK_ERRLOG("could not claim bdev %s\n", spdk_bdev_get_name(bdev)); goto error_close; } rc = spdk_bdev_register(&delay_node->delay_bdev); if (rc) { SPDK_ERRLOG("could not register delay_bdev\n"); spdk_bdev_module_release_bdev(delay_node->base_bdev); goto error_close; } TAILQ_INSERT_TAIL(&g_delay_nodes, delay_node, link); } return rc; error_close: spdk_bdev_close(delay_node->base_desc); error_unregister: spdk_io_device_unregister(delay_node, NULL); free(delay_node->delay_bdev.name); free(delay_node); return rc; } int create_delay_disk(const char *bdev_name, const char *vbdev_name, uint64_t avg_read_latency, uint64_t p99_read_latency, uint64_t avg_write_latency, uint64_t p99_write_latency) { struct spdk_bdev *bdev = NULL; int rc = 0; if (p99_read_latency < avg_read_latency || p99_write_latency < avg_write_latency) { SPDK_ERRLOG("Unable to create a delay bdev where p99 latency is less than average latency.\n"); return -EINVAL; } rc = vbdev_delay_insert_association(bdev_name, vbdev_name, avg_read_latency, p99_read_latency, avg_write_latency, p99_write_latency); if (rc) { return rc; } bdev = spdk_bdev_get_by_name(bdev_name); if (!bdev) { return 0; } return vbdev_delay_register(bdev); } void delete_delay_disk(struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, void *cb_arg) { struct bdev_association *assoc; if (!bdev || bdev->module != &delay_if) { cb_fn(cb_arg, -ENODEV); return; } TAILQ_FOREACH(assoc, &g_bdev_associations, link) { if (strcmp(assoc->vbdev_name, bdev->name) == 0) { TAILQ_REMOVE(&g_bdev_associations, assoc, link); free(assoc->bdev_name); free(assoc->vbdev_name); free(assoc); break; } } spdk_bdev_unregister(bdev, cb_fn, cb_arg); } static void vbdev_delay_examine(struct spdk_bdev *bdev) { vbdev_delay_register(bdev); spdk_bdev_module_examine_done(&delay_if); } SPDK_LOG_REGISTER_COMPONENT("vbdev_delay", SPDK_LOG_VBDEV_DELAY)