/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/thread.h" #include "bs_scheduler.c" #define DEV_BUFFER_SIZE (64 * 1024 * 1024) #define DEV_BUFFER_BLOCKLEN (4096) #define DEV_BUFFER_BLOCKCNT (DEV_BUFFER_SIZE / DEV_BUFFER_BLOCKLEN) uint8_t *g_dev_buffer; uint64_t g_dev_write_bytes; uint64_t g_dev_read_bytes; struct spdk_power_failure_counters { uint64_t general_counter; uint64_t read_counter; uint64_t write_counter; uint64_t unmap_counter; uint64_t write_zero_counter; uint64_t flush_counter; }; static struct spdk_power_failure_counters g_power_failure_counters = {}; struct spdk_power_failure_thresholds { uint64_t general_threshold; uint64_t read_threshold; uint64_t write_threshold; uint64_t unmap_threshold; uint64_t write_zero_threshold; uint64_t flush_threshold; }; static struct spdk_power_failure_thresholds g_power_failure_thresholds = {}; static uint64_t g_power_failure_rc; void dev_reset_power_failure_event(void); void dev_reset_power_failure_counters(void); void dev_set_power_failure_thresholds(struct spdk_power_failure_thresholds thresholds); void dev_reset_power_failure_event(void) { memset(&g_power_failure_counters, 0, sizeof(g_power_failure_counters)); memset(&g_power_failure_thresholds, 0, sizeof(g_power_failure_thresholds)); g_power_failure_rc = 0; } void dev_reset_power_failure_counters(void) { memset(&g_power_failure_counters, 0, sizeof(g_power_failure_counters)); g_power_failure_rc = 0; } /** * Set power failure event. Power failure will occur after given number * of IO operations. It may occure after number of particular operations * (read, write, unmap, write zero or flush) or after given number of * any IO operations (general_treshold). Value 0 means that the treshold * is disabled. Any other value is the number of operation starting from * which power failure event will happen. */ void dev_set_power_failure_thresholds(struct spdk_power_failure_thresholds thresholds) { g_power_failure_thresholds = thresholds; } /* Define here for UT only. */ struct spdk_io_channel g_io_channel; static struct spdk_io_channel * dev_create_channel(struct spdk_bs_dev *dev) { return &g_io_channel; } static void dev_destroy_channel(struct spdk_bs_dev *dev, struct spdk_io_channel *channel) { } static void dev_destroy(struct spdk_bs_dev *dev) { free(dev); } static void dev_complete_cb(void *arg) { struct spdk_bs_dev_cb_args *cb_args = arg; cb_args->cb_fn(cb_args->channel, cb_args->cb_arg, g_power_failure_rc); } static void dev_complete(void *arg) { _bs_send_msg(dev_complete_cb, arg, NULL); } static void dev_read(struct spdk_bs_dev *dev, struct spdk_io_channel *channel, void *payload, uint64_t lba, uint32_t lba_count, struct spdk_bs_dev_cb_args *cb_args) { uint64_t offset, length; if (g_power_failure_thresholds.read_threshold != 0) { g_power_failure_counters.read_counter++; } if (g_power_failure_thresholds.general_threshold != 0) { g_power_failure_counters.general_counter++; } if ((g_power_failure_thresholds.read_threshold == 0 || g_power_failure_counters.read_counter < g_power_failure_thresholds.read_threshold) && (g_power_failure_thresholds.general_threshold == 0 || g_power_failure_counters.general_counter < g_power_failure_thresholds.general_threshold)) { offset = lba * dev->blocklen; length = lba_count * dev->blocklen; SPDK_CU_ASSERT_FATAL(offset + length <= DEV_BUFFER_SIZE); memcpy(payload, &g_dev_buffer[offset], length); g_dev_read_bytes += length; } else { g_power_failure_rc = -EIO; } spdk_thread_send_msg(spdk_get_thread(), dev_complete, cb_args); } static void dev_write(struct spdk_bs_dev *dev, struct spdk_io_channel *channel, void *payload, uint64_t lba, uint32_t lba_count, struct spdk_bs_dev_cb_args *cb_args) { uint64_t offset, length; if (g_power_failure_thresholds.write_threshold != 0) { g_power_failure_counters.write_counter++; } if (g_power_failure_thresholds.general_threshold != 0) { g_power_failure_counters.general_counter++; } if ((g_power_failure_thresholds.write_threshold == 0 || g_power_failure_counters.write_counter < g_power_failure_thresholds.write_threshold) && (g_power_failure_thresholds.general_threshold == 0 || g_power_failure_counters.general_counter < g_power_failure_thresholds.general_threshold)) { offset = lba * dev->blocklen; length = lba_count * dev->blocklen; SPDK_CU_ASSERT_FATAL(offset + length <= DEV_BUFFER_SIZE); memcpy(&g_dev_buffer[offset], payload, length); g_dev_write_bytes += length; } else { g_power_failure_rc = -EIO; } spdk_thread_send_msg(spdk_get_thread(), dev_complete, cb_args); } static void __check_iov(struct iovec *iov, int iovcnt, uint64_t length) { int i; for (i = 0; i < iovcnt; i++) { length -= iov[i].iov_len; } CU_ASSERT(length == 0); } static void dev_readv(struct spdk_bs_dev *dev, struct spdk_io_channel *channel, struct iovec *iov, int iovcnt, uint64_t lba, uint32_t lba_count, struct spdk_bs_dev_cb_args *cb_args) { uint64_t offset, length; int i; if (g_power_failure_thresholds.read_threshold != 0) { g_power_failure_counters.read_counter++; } if (g_power_failure_thresholds.general_threshold != 0) { g_power_failure_counters.general_counter++; } if ((g_power_failure_thresholds.read_threshold == 0 || g_power_failure_counters.read_counter < g_power_failure_thresholds.read_threshold) && (g_power_failure_thresholds.general_threshold == 0 || g_power_failure_counters.general_counter < g_power_failure_thresholds.general_threshold)) { offset = lba * dev->blocklen; length = lba_count * dev->blocklen; SPDK_CU_ASSERT_FATAL(offset + length <= DEV_BUFFER_SIZE); __check_iov(iov, iovcnt, length); for (i = 0; i < iovcnt; i++) { memcpy(iov[i].iov_base, &g_dev_buffer[offset], iov[i].iov_len); offset += iov[i].iov_len; } g_dev_read_bytes += length; } else { g_power_failure_rc = -EIO; } spdk_thread_send_msg(spdk_get_thread(), dev_complete, cb_args); } static void dev_writev(struct spdk_bs_dev *dev, struct spdk_io_channel *channel, struct iovec *iov, int iovcnt, uint64_t lba, uint32_t lba_count, struct spdk_bs_dev_cb_args *cb_args) { uint64_t offset, length; int i; if (g_power_failure_thresholds.write_threshold != 0) { g_power_failure_counters.write_counter++; } if (g_power_failure_thresholds.general_threshold != 0) { g_power_failure_counters.general_counter++; } if ((g_power_failure_thresholds.write_threshold == 0 || g_power_failure_counters.write_counter < g_power_failure_thresholds.write_threshold) && (g_power_failure_thresholds.general_threshold == 0 || g_power_failure_counters.general_counter < g_power_failure_thresholds.general_threshold)) { offset = lba * dev->blocklen; length = lba_count * dev->blocklen; SPDK_CU_ASSERT_FATAL(offset + length <= DEV_BUFFER_SIZE); __check_iov(iov, iovcnt, length); for (i = 0; i < iovcnt; i++) { memcpy(&g_dev_buffer[offset], iov[i].iov_base, iov[i].iov_len); offset += iov[i].iov_len; } g_dev_write_bytes += length; } else { g_power_failure_rc = -EIO; } spdk_thread_send_msg(spdk_get_thread(), dev_complete, cb_args); } static void dev_flush(struct spdk_bs_dev *dev, struct spdk_io_channel *channel, struct spdk_bs_dev_cb_args *cb_args) { if (g_power_failure_thresholds.flush_threshold != 0) { g_power_failure_counters.flush_counter++; } if (g_power_failure_thresholds.general_threshold != 0) { g_power_failure_counters.general_counter++; } if ((g_power_failure_thresholds.flush_threshold != 0 && g_power_failure_counters.flush_counter >= g_power_failure_thresholds.flush_threshold) || (g_power_failure_thresholds.general_threshold != 0 && g_power_failure_counters.general_counter >= g_power_failure_thresholds.general_threshold)) { g_power_failure_rc = -EIO; } spdk_thread_send_msg(spdk_get_thread(), dev_complete, cb_args); } static void dev_unmap(struct spdk_bs_dev *dev, struct spdk_io_channel *channel, uint64_t lba, uint32_t lba_count, struct spdk_bs_dev_cb_args *cb_args) { uint64_t offset, length; if (g_power_failure_thresholds.unmap_threshold != 0) { g_power_failure_counters.unmap_counter++; } if (g_power_failure_thresholds.general_threshold != 0) { g_power_failure_counters.general_counter++; } if ((g_power_failure_thresholds.unmap_threshold == 0 || g_power_failure_counters.unmap_counter < g_power_failure_thresholds.unmap_threshold) && (g_power_failure_thresholds.general_threshold == 0 || g_power_failure_counters.general_counter < g_power_failure_thresholds.general_threshold)) { offset = lba * dev->blocklen; length = lba_count * dev->blocklen; SPDK_CU_ASSERT_FATAL(offset + length <= DEV_BUFFER_SIZE); memset(&g_dev_buffer[offset], 0, length); } else { g_power_failure_rc = -EIO; } spdk_thread_send_msg(spdk_get_thread(), dev_complete, cb_args); } static void dev_write_zeroes(struct spdk_bs_dev *dev, struct spdk_io_channel *channel, uint64_t lba, uint32_t lba_count, struct spdk_bs_dev_cb_args *cb_args) { uint64_t offset, length; if (g_power_failure_thresholds.write_zero_threshold != 0) { g_power_failure_counters.write_zero_counter++; } if (g_power_failure_thresholds.general_threshold != 0) { g_power_failure_counters.general_counter++; } if ((g_power_failure_thresholds.write_zero_threshold == 0 || g_power_failure_counters.write_zero_counter < g_power_failure_thresholds.write_zero_threshold) && (g_power_failure_thresholds.general_threshold == 0 || g_power_failure_counters.general_counter < g_power_failure_thresholds.general_threshold)) { offset = lba * dev->blocklen; length = lba_count * dev->blocklen; SPDK_CU_ASSERT_FATAL(offset + length <= DEV_BUFFER_SIZE); memset(&g_dev_buffer[offset], 0, length); g_dev_write_bytes += length; } else { g_power_failure_rc = -EIO; } spdk_thread_send_msg(spdk_get_thread(), dev_complete, cb_args); } static struct spdk_bs_dev * init_dev(void) { struct spdk_bs_dev *dev = calloc(1, sizeof(*dev)); SPDK_CU_ASSERT_FATAL(dev != NULL); dev->create_channel = dev_create_channel; dev->destroy_channel = dev_destroy_channel; dev->destroy = dev_destroy; dev->read = dev_read; dev->write = dev_write; dev->readv = dev_readv; dev->writev = dev_writev; dev->flush = dev_flush; dev->unmap = dev_unmap; dev->write_zeroes = dev_write_zeroes; dev->blockcnt = DEV_BUFFER_BLOCKCNT; dev->blocklen = DEV_BUFFER_BLOCKLEN; return dev; }